説明

固体電解質及び固体電解質を有する蓄電装置

【課題】非水系電解質溶液に代わる、耐熱性及び安全性が高い固体電解質を得る。
【解決手段】固体電解質2が、モリブデン塩化物クラスター〔MoCl142−に、水及び有機物の少なくとも一方を混合してなる材料、上記モリブデン塩化物クラスターの塩素の一部をLi若しくは水分子に置換してなる材料、又は、上記混合及び上記置換の両方を行うことにより得られる材料を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電気自動車やハイブリッド自動車、電子機器等に利用可能な蓄電装置用の固体電解質及び該固体電解質を有する蓄電装置に関する技術分野に属する。
【背景技術】
【0002】
近年、環境負荷低減を目的に、自動車においては、モータで駆動する電気自動車や、モータとエンジンとを組み合わせて駆動するハイブリッド自動車の研究開発が活発に行われている。このような自動車には、車体の軽量化のみならず、モータの高出力化や小型化、さらには電池の改良が求められる。特に電池の改良には、エネルギー密度の向上は勿論のこと、安全性の向上が重要である。このことは、自動車のみならず、携帯電話やデジタルカメラ、パソコン等の電子機器も同様である。
【0003】
例えば、現在ではリチウムイオン電池が主流となりつつあるが、このリチウムイオン電池では、非水系電解質溶液が、正極と負極との間にセパレータと共に含有されており、この非水系電解質溶液は、耐熱性が低くて、摂氏数百度程度で分解するため、電池が発熱し発火という懸念がある。
【0004】
そこで、上記のような非水系電解質溶液に代わる、耐熱性が高くかつイオン伝導性を有する固体電解質の研究開発も進められている。
【0005】
このような固体電解質として、特許文献1には、非晶質LiS−P及びガラスセラミックス、LiAlTiPOが開示され、特許文献2には、Mo8−x(0≦x≦0.2)で表されるシェブレル化合物が開示されている。
【0006】
ここで、非特許文献1には、オキソニウムイオンを含む(HO)MoCl14・6HOが開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2011−40282号公報
【特許文献2】特開2010−282815号公報
【非特許文献】
【0008】
【非特許文献1】F.W.Koknat、外3名,“CONVENIENT SYNTHESIS OF THE HEXANUCLEAR MOLYBDENUM(II) HALIDES Mo6Cl12 AND Mo6Br12・2H2O”,(英国),INORG.NUCL.CHEM.LETTERS,Pergamon Press Ltd.,1980年,第16巻,p.307−310
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、上記特許文献1及び2の固体電解質に用いられる材料はイオウを含むため、このイオウが電池の外側へ放出される可能性があり、より安全性を高めるという観点からは改良の余地がある。
【0010】
ところで、非特許文献1には、(HO)MoCl14・6HOがイオン伝導性を有するという記載はない。しかし、モリブデン塩化物クラスター〔MoCl142−は、対称性の高いアニオンクラスター骨格を有し、その大きさがナノメートルサイズとなるものであり、表面電荷密度が小さいため、カチオンを束縛する力が弱く、これにより、(HO)MoCl14・6HOのように、モリブデン塩化物クラスターの骨格を有する材料は、イオン伝導性の実現が期待できる。そこで、モリブデン塩化物クラスター(6核モリブデンクラスター化合物)をベースにした材料であれば、耐熱性及び安全性が高い固体電解質が得られる可能性がある。
【0011】
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、非水系電解質溶液に代わる、耐熱性及び安全性が高い固体電解質を得ることにある。
【課題を解決するための手段】
【0012】
上記の目的を達成するために、本発明の固体電解質は、モリブデン塩化物クラスター〔MoCl142−に、水及び有機物の少なくとも一方を混合してなる材料、上記モリブデン塩化物クラスターの塩素の一部をLi若しくは水分子に置換してなる材料、又は、上記混合及び上記置換の両方を行うことにより得られる材料を含むものとする。
【0013】
上記材料を含む固体電解質は、耐熱性及び安全性が高く、特にモリブデン塩化物クラスターに有機物を混合(又は複合)したものは、その有機物により、耐熱性及び安全性がより一層向上する。また、イオン伝導性を発現しないモリブデン塩化物クラスターから、イオン伝導性(特にプロトン伝導性)を有する材料が容易に得られるとともに、イオン伝導性を有しない材料であっても、モリブデン塩化物クラスターと同じ骨格を有しており、その骨格内には、比較的大きな隙間があるので、その隙間を通って、イオンがスムーズに移動することができるため、蓄電装置の固体電解質として用いることが可能である。また、複数のモリブデン塩化物クラスターが複数層の層状に配列し、有機物は、相隣接する層間に位置するので、相隣接する層間にも比較的大きな隙間が生じ、イオンが移動し易くなる。
【0014】
上記固体電解質において、上記有機物は、クラウンエーテル、ピリジン及びアルキルアンモニウム塩の中から選ばれた少なくとも一種である、ことが好ましい。
【0015】
上記固体電解質において、上記材料のプロトン伝導度が8.5×10−9S/cm以上である、ことが好ましい。
【0016】
本発明の別の態様は、蓄電装置の発明であり、この蓄電装置は、上記固体電解質を有するものとする。
【0017】
このことで、耐熱性及び安全性が高い固体電解質により、自動車や電子機器に最適な蓄電装置が得られる。
【発明の効果】
【0018】
以上説明したように、本発明の固体電解質及び蓄電装置によると、蓄電装置に用いることが可能な、耐熱性及び安全性が高い固体電解質が容易に得られる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施形態に係る固体電解質を有する蓄電装置を示す断面図である。
【図2】モリブデン塩化物クラスターの結晶格子を示す図である。
【図3】試料1のX線回折法による分析結果を示す図である。
【図4】試料2のX線回折法による分析結果を示す図である。
【図5】試料3のX線回折法による分析結果を示す図である。
【図6】試料4のX線回折法による分析結果を示す図である。
【図7】試料5のX線回折法による分析結果を示す図である。
【図8】試料6のX線回折法による分析結果を示す図である。
【図9】試料7のX線回折法による分析結果を示す図である。
【図10】試料9のX線回折法による分析結果を示す図である。
【図11】試料10のX線回折法による分析結果を示す図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態を図面に基づいて詳細に説明する。
【0021】
図1は、本発明の実施形態に係る固体電解質2を有する蓄電装置1を示し、この蓄電装置1は、固体電解質2に加えて、該固体電解質2を挟持する正極3及び負極4と、これら全体を覆うケース5とを有している。正極3及び負極4の材料としては、一般的なリチウムイオン二次電池に用いられる材料と同様のものを使用することができる。例えば、正極3の材料は、Liを含む金属酸化物等であり、負極4の材料は、カーボン等である。
【0022】
上記固体電解質2は、モリブデン塩化物クラスター〔MoCl142−に、水及び有機物の少なくとも一方を混合してなる材料、上記モリブデン塩化物クラスターの塩素の一部をLi若しくは水分子に置換してなる材料、又は、上記混合及び上記置換の両方を行うことにより得られる材料を含む。
【0023】
上記材料のプロトン伝導度は、8.5×10−9S/cm以上であることが好ましい。
【0024】
上記モリブデン塩化物クラスターは、図2に示すように、対称性の高いアニオンクラスター骨格を有し、その大きさがナノメートルサイズとなるものである。モリブデン塩化物クラスターの骨格内には、比較的大きな隙間がある。
【0025】
上記モリブデン塩化物クラスターに水を混合することにより得られる材料としては、(HO)MoCl14・6HO等が挙げられる。
【0026】
上記モリブデン塩化物クラスターの塩素の一部を水分子に置換することにより得られる材料としては、(HO)MoCl12等が挙げられる。(HO)MoCl12の場合、図2の上下両端に位置する塩素が水分子に置換されてなる。
【0027】
上記有機物は、クラウンエーテル、ピリジン(4−ヒドロキシピリジンを含む)及びアルキルアンモニウム塩の中から選ばれた少なくとも一種であることが好ましい。複数のモリブデン塩化物クラスターが、複数層の層状に配列し、上記有機物は、相隣接する層間に位置する。これにより、相隣接する層間の距離が有機物の大きさの分だけ大きくなる。
【0028】
上記モリブデン塩化物クラスターにピリジンを混合することにより得られる材料としては、(CNH)MoCl14が挙げられる。また、上記モリブデン塩化物クラスターに4−ヒドロキシピリジン及び水を混合することにより、(HOCNH)MoCl14・6HOが得られる。
【0029】
上記モリブデン塩化物クラスターにクラウンエーテルを混合することにより得られる材料としては、HMoCl14/(C1224)1.83、K1.23MoCl13/(C1224)0.99、K0.56Li0.42MoCl13/(C1224)0.50、Li2.64MoCl13/(C1224)1.44等が挙げられる。
【0030】
ここで、Li2.64MoCl13/(C1224)1.44、及び、K0.56Li0.42MoCl13/(C1224)0.50は、クラウンエーテルの混合に加えて、上記モリブデン塩化物クラスターの塩素の一部をLiに置換することにより得られる材料でもある。
【0031】
上記アルキルアンモニウム塩としては、トリメチルステアリルアンモニウムクロリドC1837N(CH)Clが好ましい。上記モリブデン塩化物クラスターとトリメチルステアリルアンモニウムクロリドとの混合は、ボールミリングにより行うことが好ましい。この場合、予め100℃で真空乾燥したトリメチルステアリルアンモニウムクロリドと、上記モリブデン塩化物クラスターと、塩化リチウムLiClとを、常温のドライボックス中(アルゴン雰囲気下)でボールミリングにより3時間程度混合する。このとき、ボールミル中に外気が入らないように、ミルの蓋の周りをパラフィンでシーリングし、その状態でミリングする。
【0032】
トリメチルステアリルアンモニウムクロリドの、モリブデン塩化物クラスターに対する比率は、10mol%〜50mol%程度が好ましい。
【0033】
上記例示の各材料の製造方法を説明する。
【0034】
[(HO)MoCl14・6HOの製造方法]
先ず、ドライボックス中(アルゴン雰囲気下)で、MoCl1.093g(4mmol)と金属Mo粉末1.727g(18mmol)とをメノウ乳鉢で混合し、さらに、粉砕したNaCl 0.195g(3.3mmol)を混ぜ、石英管(例えば直径15mm)に真空封入する。これを電気炉に入れ、6〜8時間かけて720℃まで加熱し、720℃の状態を12時間保つことで、焼成物NaMoCl13を生成する。そして、石英管の中の焼成物を取り出し、これを大気中でメノウ乳鉢を用いてよくすり潰す。
【0035】
続いて、そのすり潰したものを無水エタノール10mlに溶かして、一日間激しく撹拌する。そして、それをテフロンフィルターを用いて濾過した後、濾液(オレンジ色)に15mlの濃塩酸36%を加える。これにより白色の物質が沈殿する。次いで、その沈殿物をブフナー漏斗で濾過にて取り除き、濾液を撹拌しながらヒーター(例えばホットプレート)で濃縮する。その溶液が5ml程度になった後、水冷・静置すると、黄色針状結晶が析出する。この結晶を濃塩酸で洗った後、大気中で乾燥させると、(HO)MoCl14・6HOが得られる。
【0036】
[(HO)MoCl12の製造方法]
上記のようにして製造した(HO)MoCl14・6HOを前駆体として、この前駆体を水中に浸し、1日間撹拌した後、濾過して乾燥することで、(HO)MoCl12が得られる。
【0037】
[(CNH)MoCl14の製造方法]
上記前駆体0.500g(0.410mmol)を濃塩酸30mlに加熱溶解し、これを過剰量のピリジン0.324g(4.100mmol)と混合する。続いて、溶液が10ml程度になるまで加熱濃縮した後、前駆体の製造時と同様に、冷却・静置・濾過・塩酸洗浄を行うことで、(CNH)MoCl14の結晶が得られる。
【0038】
[(HOCNH)MoCl14・6HOの製造方法]
上記前駆体0.500g(0.410mmol)を濃塩酸30mlに加熱溶解し、これを過剰量の4−ヒドロキシピリジン0.390g(4.100mmol)と混合する。続いて、溶液が10ml程度になるまで加熱濃縮した後、前駆体の製造時と同様に、冷却・静置・濾過・塩酸洗浄を行うことで、(HOCNH)MoCl14・6HOの結晶が得られる。
【0039】
[HMoCl14/(C1224)1.83の製造方法]
上記のように製造した(HO)MoCl14・6HO 0.500g(0.410mmol)を無水エタノール30mlに加熱溶解し、これに、少量のエタノール溶媒に18−クラウン−6−エーテル0.108g(0.410mmol)を溶解したものを加えて混合する。18−クラウン−6−エーテルを加えると直ちに析出物が生じ、これを濾過して、混合物HMoCl14/(C1224)1.83を得る。
【0040】
[K1.23MoCl13/(C1224)0.99の製造方法]
ドライボックス中(アルゴン雰囲気下)で、MoCl 1.093g(4mmol)と金属Mo粉末1.727g(18mmol)とをメノウ乳鉢で混合し、さらに、粉砕したKCl 0.246g(3.3mmol)を混ぜ、石英管(例えば直径15mm)に真空封入する。これを電気炉に入れ、6〜8時間かけて720℃まで加熱し、720℃の状態を12時間保つことで、焼成物K1.23MoCl13を得る。そして、石英管の中の焼成物を取り出し、これを大気中でメノウ乳鉢を用いてよくすり潰す。
【0041】
続いて、そのすり潰したものを無水エタノールに溶かして、一日間激しく撹拌する。そして、それをテフロンフィルターを用いて濾過して、K1.23MoCl13のエタノール溶液を得る。これに所定量の18−クラウン−6−エーテル溶液を加え、蒸発乾燥することで、K1.23MoCl13/(C1224)0.99が得られる。
【0042】
[K0.56Li0.42MoCl13/(C1224)0.50の製造方法]
ドライボックス中(アルゴン雰囲気下)で、MoCl 1.093g(4mmol)と金属Mo粉末1.727g(18mmol)とをメノウ乳鉢で混合し、さらに、粉砕したKCl 0.086g(1.15mmol)及びLiCl 0.049g(1.15mmol)を混ぜ、石英管(例えば直径15mm)に真空封入する。これを電気炉に入れ、6〜8時間かけて720℃まで加熱し、720℃の状態を12時間保つことで、焼成物K0.56Li0.42MoCl13を得る。そして、石英管の中の焼成物を取り出し、これを大気中でメノウ乳鉢を用いてよくすり潰す。
【0043】
続いて、そのすり潰したものを無水エタノールに溶かして、一日間激しく撹拌する。そして、それをテフロンフィルターを用いて濾過して、K0.56Li0.42MoCl13のエタノール溶液を得る。これに所定量の18−クラウン−6−エーテル溶液を加え、蒸発乾燥することで、K0.56Li0.42MoCl13/(C1224)0.50が得られる。
【0044】
[Li2.64MoCl13/(C1224)1.44の製造方法]
ドライボックス中(アルゴン雰囲気下)で、MoCl 1.093g(4mmol)と金属Mo粉末1.727g(18mmol)とをメノウ乳鉢で混合し、さらに、粉砕したLiCl 0.140g(3.3mmol)を混ぜ、石英管(例えば直径15mm)に真空封入する。これを電気炉に入れ、6〜8時間かけて720℃まで加熱し、720℃の状態を12時間保つことで、焼成物Li2.64MoCl13を得る。そして、石英管の中の焼成物を取り出し、これを大気中でメノウ乳鉢を用いてよくすり潰す。
【0045】
続いて、そのすり潰したものを無水エタノールに溶かして、一日間激しく撹拌する。そして、それをテフロンフィルターを用いて濾過して、Li2.64MoCl13のエタノール溶液を得る。これに所定量の18−クラウン−6−エーテル溶液を加え、蒸発乾燥することで、Li2.64MoCl13/(C1224)1.44が得られる。
【0046】
ここで、上記製造方法により製造した材料を含む試料(試料1〜9)を準備した。各試料の大きさは、直径10mm、厚み1mmである。試料1〜9の材料は、以下の通りである。尚、試料9において、C1837N(CH)Cl/MoCl14=10mol%、LiCl/MoCl14=2mol%である。
【0047】
試料1:(HO)MoCl12
試料2:(CNH)MoCl14
試料3:(HOCNH)MoCl14・6H
試料4:(HO)MoCl14・6H
試料5:HMoCl14/(C1224)1.83
試料6:K1.23MoCl13/(C1224)0.99
試料7:K0.56Li0.42MoCl13/(C1224)0.50
試料8:Li2.64MoCl13/(C1224)1.44
試料9:MoCl14+C1837N(CH)Cl+LiCl
上記各試料を、Pt電極とAu電極との間に挟み、さらに、Pt電極及びAu電極の試料とは反対側にスライドガラスをそれぞれ配置して、該両スライドガラスで、Pt電極、Au電極及び試料を挟持した。そして、各試料について、プロトン伝導度を測定した。この測定は、測定装置(日置電機社製 Hioki LCRハイテスタ3532−50)と各電極とを接続して、交流インピーダンス法により行った(オープン補正値:Z=50kΩ/θ=65.23°、ショート補正値:Z=5.9kΩ/θ=93.05°)。
【0048】
上記測定結果を表1に示す。
【0049】
【表1】

【0050】
試料3、試料6及び試料8の材料は、プロトン伝導性を発現せず、それ以外の試料の材料は、プロトン伝導性があり、8.5×10−9S/cm以上のプロトン伝導度を有する。したがって、試料1、試料2、試料4、試料5及び試料7及び試料9の材料は、蓄電装置の固体電解質として用いることが可能である。但し、プロトン伝導性がない材料であっても、モリブデン塩化物クラスターと同じ骨格を有しており、その骨格内には、比較的大きな隙間があるので、その隙間を通ってイオンがスムーズに移動できるため、蓄電装置の固体電解質として用いることが可能である。
【0051】
次いで、試料7を固体電解質として用いて電池を構成した。この電池の正極は金属リチウムからなり、負極はハードカーボン(クレハ社製)からなる。尚、試料7には、プロピレンカーボネート、ジメチルカーボネート及び1モルのLiPF6からなる電解液を含浸させた。
【0052】
上記試料7の材料を用いて上記電池の容量を測定したところ、79mAh/gとなり、このことから、試料7の材料の骨格内をリチウムイオンが移動していることになる。
【0053】
次に、試料1〜試料7、試料9及び試料10をX線回折法(X-ray diffraction; XRD)により分析した。試料10の材料は、試料9に比べてC1837N(CH)Clの混合割合を増加させたものであって、C1837N(CH)Cl/MoCl14=50mol%であり、試料10の製造方法は試料9と同様である。
【0054】
試料1〜試料7、試料9及び試料10の分析結果を、それぞれ図3〜図11に示す。いずれの試料においても、2θ=10°の付近に、MoCl14の結晶として現れるピークが現れており、MoCl14と同じ骨格が存在していると考えられる。尚、図10で、○印で示すピークは、LiMoCl13である。
【0055】
したがって、本実施形態では、固体電解質2が、モリブデン塩化物クラスター〔MoCl142−に、水及び有機物の少なくとも一方を混合してなる材料、上記モリブデン塩化物クラスターの塩素の一部をLi若しくは水分子に置換してなる材料、又は、上記混合及び上記置換の両方を行うことにより得られる材料を含むので、固体電解質2は、耐熱性及び安全性が高く、特にモリブデン塩化物クラスターに有機物を混合(又は複合)したものは、その有機物により、耐熱性及び安全性がより一層向上する。また、イオン伝導性を発現しないモリブデン塩化物クラスターから、イオン伝導性(プロトン伝導性)を有する材料が容易に得られるとともに、イオン伝導性を有しない材料であっても、モリブデン塩化物クラスターと同じ骨格を有しており、その骨格内には、比較的大きな隙間があるので、その隙間を通って、イオンがスムーズに移動することができるため、蓄電装置の固体電解質として用いることが可能である。また、複数のモリブデン塩化物クラスターが複数層の層状に配列し、有機物は、相隣接する層間に位置するので、相隣接する層間にも比較的大きな隙間が生じ、イオンが移動し易くなる。
【0056】
本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
【0057】
上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
【産業上の利用可能性】
【0058】
本発明は、電気自動車やハイブリッド自動車、電子機器等に利用可能な蓄電装置用の固体電解質及び該固体電解質を有する蓄電装置に有用である。
【符号の説明】
【0059】
1 蓄電装置
2 固体電解質
3 正極
4 負極

【特許請求の範囲】
【請求項1】
モリブデン塩化物クラスター〔MoCl142−に、水及び有機物の少なくとも一方を混合してなる材料、上記モリブデン塩化物クラスターの塩素の一部をLi若しくは水分子に置換してなる材料、又は、上記混合及び上記置換の両方を行うことにより得られる材料を含むことを特徴とする固体電解質。
【請求項2】
上記有機物は、クラウンエーテル、ピリジン及びアルキルアンモニウム塩の中から選ばれた少なくとも一種であることを特徴とする請求項1記載の固体電解質。
【請求項3】
上記材料のプロトン伝導度が8.5×10−9S/cm以上であることを特徴とする請求項1又は2記載の固体電解質。
【請求項4】
請求項1〜3のいずれか1つに記載の固体電解質を有することを特徴とする蓄電装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−4217(P2013−4217A)
【公開日】平成25年1月7日(2013.1.7)
【国際特許分類】
【出願番号】特願2011−131992(P2011−131992)
【出願日】平成23年6月14日(2011.6.14)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 刊行物名;第49回セラミックス基礎科学討論会 講演要旨集 発行日;平成23年1月11日 発行所;日本セラミックス協会 基礎科学部会
【公序良俗違反の表示】
(特許庁注:以下のものは登録商標)
1.テフロン
【出願人】(504136568)国立大学法人広島大学 (924)
【出願人】(000003137)マツダ株式会社 (6,115)
【Fターム(参考)】