説明

基板処理方法および基板処理装置

【課題】基板に対する異物の付着力を低下させることができ、ランニングコストを低減できる基板処理方法および基板処理装置を提供すること。
【解決手段】液滴ノズル15からの液滴が基板Wの上面内の一部の領域だけに供給される。その後、基板Wの上面に保持されている液滴が冷却または加熱される。これにより、基板W上の液滴の温度が変化する。液滴に接しているパーティクルは、液滴によって冷却または加熱され、収縮または膨張する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、基板を処理する基板処理方法および基板処理装置に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
【背景技術】
【0002】
半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。
特許文献1に記載の枚葉式の基板処理装置は、基板を水平に保持して回転させるスピンチャックと、スピンチャックに保持されている基板の上面に向けて処理液を吐出する処理液ノズルと、スピンチャックに保持されている基板の上面に向けて冷却ガスを吐出する冷却ガス吐出ノズルとを備えている。
【0003】
この基板処理装置では、処理液ノズルから処理液が吐出されることにより、基板の上面全域を覆う液膜が形成される。その後、冷却ガス吐出ノズルから冷却ガスが吐出されることにより、基板上のパーティクルと共に液膜全体が凍結される。これにより、パーティクルを含む凍結膜が基板上に形成される。この凍結膜は、基板への処理液の供給によって解凍された後、基板の回転による遠心力によって基板の周囲に排出される。基板上のパーティクルは、凍結膜と共に基板から除去される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−71875号公報
【特許文献2】特開2008−016660号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
基板の上面においてパーティクルが存在している領域は、基板の上面全域ではなく、基板の上面内の一部の領域である。しかしながら、特許文献1に記載の基板処理装置では、基板の上面全域に処理液が供給され、基板の上面全域を覆う液膜が形成される。すなわち、過剰な処理液が基板に供給されるので、処理液を無駄に消費している。さらに、基板の上面全域を覆う大きな液膜が形成されるので、この液膜を凍結させるときに使用される冷却ガスの消費量が多い。このように、従来の基板処理装置では、大量の処理液等が使用されるから、ランニングコストが増加してしまう。
【0006】
そこで、この発明の目的は、基板に対する異物の付着力を低下させることができ、ランニングコストを低減できる基板処理方法および基板処理装置を提供することである。
【課題を解決するための手段】
【0007】
前記目的を達成するための請求項1に記載の発明は、基板(W)の主面内の一部の領域だけに液滴を供給する液滴供給工程と、前記基板上の液滴の温度を変化させる温度変化工程とを含む、基板処理方法である。基板の主面は、デバイス形成面である基板の表面であってもよいし、表面とは反対側の裏面であってもよい。
この方法によれば、基板の主面内の一部の領域だけに液滴が供給される。その後、基板の主面に保持されている液滴が冷却または加熱される。これにより、基板上の液滴の温度が変化する。基板上の異物が液滴に接している場合、この異物は、液滴によって冷却または加熱され、収縮または膨張する。そのため、基板と異物との間に応力が発生し、基板に対する異物の付着力が低下する。これにより、異物が基板から剥がれやすい状態となる。さらに、基板の主面内の一部の領域だけに液滴が供給されるから、基板の主面全域に液体を供給する場合よりも液体の消費量が少ない。しかも、基板上の液量が少ないから、液滴の温度を変化させる物質(たとえば、後述の冷却剤)やエネルギー(たとえば、赤外線を発生させるときのエネルギー)を低減できる。これにより、ランニングコストを低減できる。
【0008】
温度変化工程は、基板上の液滴を冷却または加熱する工程であってもよいし、基板上の液滴を冷却および加熱する工程であってもよい。すなわち、請求項2に記載の発明のように、前記温度変化工程は、前記基板上の液滴を冷却する冷却工程と、前記基板上の液滴を加熱する加熱工程とを含んでいてもよい。この場合、基板上の液滴が冷却および加熱されるから、冷却または加熱だけが行われる場合よりも、液滴温度の変化量が大きい。そのため、液滴に接する異物の変位量を増加させることができる。これにより、基板に対する異物の付着力を確実に低下させて、異物が基板から剥がれやすい状態にすることができる。
【0009】
冷却工程は、基板上の液滴を室温(20〜30℃)より低い温度まで冷却する工程であってもよい。また、加熱工程は、基板上の液滴を室温より高い温度まで加熱する工程であってもよい。たとえば請求項3に記載の発明のように、前記冷却工程は、前記基板上の液滴を凍結させる凍結工程を含んでいてもよいし、前記加熱工程は、前記基板上の液滴を解凍させる解凍工程を含んでいてもよい。すなわち、基板の主面に供給される液体が水を主成分とする液体である場合、冷却工程は、基板上の液滴を0℃以下まで冷却する工程であってもよいし、加熱工程は、基板上の液滴を0℃より高い温度まで加熱する工程であってもよい。この場合、液滴温度の変化量を増加させることができるから、液滴に接する異物の変位量を増加させることができる。これにより、基板に対する異物の付着力を確実に低下させて、異物が基板から剥がれやすい状態にすることができる。
【0010】
また、温度変化工程は、基板上の液滴を冷却した後に加熱する工程であってもよいし、それとは反対に、基板上の液滴を加熱した後に冷却する工程であってもよい。また、冷却の回数は、一回であってもよいし、複数回であってもよい。同様に、加熱の回数は、一回であってもよいし、複数回であってもよい。
液滴の冷却および加熱が複数回行われる場合、請求項4に記載の発明のように、前記温度変化工程は、前記液滴の冷却と加熱とを交互に複数回行う繰り返し工程を含んでいてもよい。この場合、液滴に接する異物が収縮および膨張を交互に繰り返すので、冷却および加熱が一回だけしか行われない場合よりも、基板に対する異物の付着力を低下させることができる。これにより、異物が基板から剥がれやすい状態にすることができる。
【0011】
また、液滴の冷却および加熱が複数回行われる場合、請求項5に記載の発明のように、基板の主面内の一部の領域だけに液滴を供給する液滴供給工程と、基板上の液滴を凍結させる凍結工程と、基板上の液滴を蒸発させる蒸発工程とが、この順番で複数回行われてもよい。この場合、基板上の液滴が冷却され凍結する。その後、凍結状態の液滴が加熱され蒸発する。これにより、基板上から液滴が除去される。そのため、再び液滴が基板の主面に供給される。そして、再び液滴の凍結および蒸発が行われる。このように、液滴の凍結および蒸発が繰り返されるから、基板の主面に供給される液体が水を主成分とする液体である場合には、基板上の液滴の温度は、0℃以下から室温より高い温度(たとえば、100℃以上)まで変化する。したがって、液滴に接する異物の変位量を増加させて、基板に対する異物の付着力を確実に低下させることができる。
【0012】
冷却工程は、基板を冷却することにより基板上の液滴を冷却する工程であってもよいし、加熱工程は、基板を加熱することにより基板上の液滴を加熱する工程であってもよい。また、冷却工程は、基板を殆ど冷却することなく、基板上の液滴を冷却する工程であってもよいし、加熱工程は、基板を殆ど加熱することなく、基板上の液滴を加熱する工程であってもよい。
【0013】
すなわち、請求項6に記載の発明のように、前記冷却工程は、前記基板上の液滴を選択的に冷却する選択的冷却工程を含んでいてもよいし、前記加熱工程は、前記基板上の液滴を選択的に加熱する選択的加熱工程を含んでいてもよい。この場合、基板上の液滴が選択的に冷却および加熱されるから、液滴およびこの液滴に接する部分(液滴と基板との接触部や、液滴に接する異物)の温度だけが大幅に変化し、基板全体の温度は殆ど変化しない。したがって、液滴に接する異物の温度が大幅に変化する一方で、基板の温度は殆ど変化しない。たとえば、異物および基板の両方の温度が大幅に上昇した場合には、異物および基板の両方が大幅に膨張するから、異物および基板の接触部での相対的な変位量は、異物だけが膨張する場合よりも小さい。したがって、基板上の液滴だけが選択的に冷却および加熱されることにより、基板に対する異物の付着力がさらに低下する。これにより、異物が基板からさらに剥がれやすい状態となる。
【0014】
また、液滴供給工程において液滴が供給される基板の主面内の領域は、基板毎に設定されてもよい。すなわち、請求項7に記載の発明のように、前記基板処理方法は、前記液滴供給工程が行われる前に、前記基板の主面において異物が付着している汚染部分を特定する汚染状態測定工程をさらに含み、前記液滴供給工程は、前記汚染部分だけに液滴を供給する工程を含んでいてもよい。この場合、異物が付着している汚染部分だけに液滴が供給されるから、異物に対して液滴を確実に接触させることができる。したがって、液滴の温度を変化させることにより、異物を確実に収縮または膨張させることができる。これにより、基板に対する異物の付着力を低下させることができる。さらに、汚染部分だけに液滴が供給されるから、基板を腐食させる腐食液によって液滴が形成されている場合には、汚染部分以外の領域にダメージが発生することを抑制または防止できる。
【0015】
また、液滴供給工程において液滴が供給される基板の主面内の領域は、予め設定されていてもよい。すなわち、請求項8に記載の発明のように、前記液滴供給工程は、前記基板の主面内の予め定められた部分(特定部分)に液滴を供給する特定部分供給工程を含んでいてもよい。また、特定部分は、基板の主面周縁部であってもよい。すなわち、基板の主面周縁部は、基板を搬送する搬送ロボットのハンドや、スピンチャックなどの基板保持手段と接触する。そのため、基板の主面周縁部は、基板の他の領域よりも汚染され易い。したがって、液滴が供給される領域は、この汚染され易い領域に設定されていてもよい。これらの場合、液滴が供給される領域が予め定められているから、基板の主面に対する液滴の供給位置を基板毎に変更しなくてもよい。
【0016】
また、基板の主面に供給される液体(液滴を形成する液体)は、水を含む液体であってもよいし、基板を腐食させる腐食成分を含む液体であってもよいし、その他の液体であってもよい。たとえば、請求項9に記載の発明のように、前記液滴供給工程は、基板を腐食させる腐食液の液滴を基板の主面内の一部の領域だけに供給する工程を含んでいてもよい。この場合、基板の表層が腐食液によって腐食されるので、基板に対する異物の付着力を低下させたり、異物を基板から剥がしたり(リフトオフ)することができる。
【0017】
また、前記目的を達成するための請求項10に記載の発明は、基板(W)を保持する基板保持手段(8)と、前記基板保持手段に保持されている基板の主面内の一部の領域だけに液滴を供給する液滴供給手段(9)と、前記基板保持手段に保持されている基板上の液滴の温度を変化させる温度変化手段(10、11)とを含む、基板処理装置(1)である。この構成によれば、請求項1の発明に関して述べた効果と同様な効果を奏することができる。
【0018】
請求項11に記載の発明は、前記温度変化手段は、前記基板上の液滴を冷却する冷却手段(10)と、前記基板上の液滴を加熱する加熱手段(11)とを含む、請求項10に記載の基板処理装置である。この構成によれば、請求項2の発明に関して述べた効果と同様な効果を奏することができる。
請求項12に記載の発明は、前記冷却手段は、前記基板上の液滴を凍結させる凍結手段(10)を含み、前記加熱手段は、前記基板上の液滴を解凍させる解凍手段(11)を含む、請求項11に記載の基板処理装置である。この構成によれば、請求項3の発明に関して述べた効果と同様な効果を奏することができる。
【0019】
請求項13に記載の発明は、前記冷却手段および加熱手段によって前記液滴の冷却と加熱とを交互に複数回実行させる制御手段(5)をさらに含む、請求項11または12に記載の基板処理装置である。この構成によれば、請求項4の発明に関して述べた効果と同様な効果を奏することができる。
請求項14に記載の発明は、前記冷却手段は、前記基板上の液滴を凍結させる凍結手段(10)を含み、前記加熱手段は、前記基板上の液滴を蒸発させる蒸発手段(11)を含み、前記制御手段は、前記液滴供給手段、凍結手段、および蒸発手段によって、基板への液滴の供給、前記液滴の凍結、および前記液滴の蒸発をこの順番で複数回実行させる、請求項13に記載の基板処理装置である。この構成によれば、請求項5の発明に関して述べた効果と同様な効果を奏することができる。
【0020】
請求項15に記載の発明は、前記冷却手段は、冷却剤を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する冷却ノズル(18)を含み、前記加熱手段は、加熱剤を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する加熱ノズル(22)、前記基板保持手段に保持されている基板に赤外線を照射する赤外線照射手段(30)、および前記基板保持手段に保持されている基板の主面上の液滴だけに接触可能な発熱部材(31)のうちの少なくとも一つを含む、請求項11〜14のいずれか一項に記載の基板処理装置である。
【0021】
冷却剤は、加熱剤よりも低温の物質である。たとえば、冷却剤は、室温よりも低温の物質であり、加熱剤は、室温よりも高温の物質である。冷却剤は、気体であってもよいし、液体であってもよいし、固体であってもよい。加熱剤についても同様である。冷却ノズルから吐出された冷却剤は、基板の主面内の一部の領域だけに供給される。したがって、液滴が存在する領域だけに冷却剤を供給できる。そのため、基板上の液滴を選択的に冷却できる。同様に、加熱ノズルが加熱手段に含まれている場合、加熱ノズルから吐出された加熱剤が、基板の主面内の一部の領域だけに供給される。したがって、液滴が存在する領域だけに加熱剤を供給できる。そのため、基板上の液滴を選択的に加熱できる。
【0022】
また、赤外線照射手段が加熱手段に含まれている場合、赤外線照射手段からの赤外線が基板に照射される。基板保持手段に保持される基板がシリコン基板であり、この基板に供給される液滴が水を含む液体によって形成されている場合、赤外線照射手段が発する赤外線の波長は、約3μmから4μm未満であることが好ましい。すなわち、たとえば特許文献2に記載されているように、この範囲内の波長の赤外線は、シリコン基板に殆ど吸収されずに、シリコン基板を透過する。その一方で、この範囲内の波長の赤外線は、水を含む液体に効率的に吸収される。したがって、この範囲内の波長の赤外線を基板に照射すると、基板上の液体だけが加熱される。そのため、基板上の液滴を選択的に加熱できる。
【0023】
また、発熱部材が加熱手段に含まれている場合、発熱部材が基板上の液滴だけに接触し、液滴だけが加熱される。したがって、基板上の液滴を選択的に加熱できる。このように、この構成によれば、基板上の液滴を選択的に冷却および加熱できる。したがって、請求項6に記載の発明と同様に、基板に対する異物の付着力を低下させることができ、ランニングコストを低減できる。
【0024】
請求項16に記載の発明は、前記液滴供給手段は、液滴を吐出する液滴ノズル(15)と、前記液滴ノズルを移動させる液滴ノズル移動手段(16)とを含み、前記基板処理装置は、前記基板保持手段に保持されている基板の主面において異物が付着している汚染部分を特定する汚染状態測定手段(7)と、前記汚染状態測定手段からの出力に基づいて前記液滴ノズル移動手段を制御することにより、前記液滴ノズルからの液滴の供給位置を前記汚染部分に位置させる制御手段(5)とをさらに含む、請求項10〜15のいずれか一項に記載の基板処理装置である。
【0025】
この構成によれば、基板の主面において異物が付着している汚染部分が、汚染状態測定手段によって特定される。制御装置は、汚染状態測定手段からの出力に基づいて液滴ノズル移動手段を制御することにより、基板の主面に対する液滴の供給位置(狙い位置)を汚染部分に位置させる。そして、制御装置は、この状態で、液滴ノズルから汚染部分に向けて液滴を吐出させる。これにより、汚染部分だけに液滴が供給される。したがって、請求項7に記載の発明と同様に、基板に対する異物の付着力を低下させることができ、ランニングコストを低減できる。
【0026】
請求項17に記載の発明は、前記液滴供給手段は、前記基板保持手段に保持されている基板の主面内の予め定められた部分に液滴を供給するように構成されている、請求項10〜15のいずれか一項に記載の基板処理装置である。この構成によれば、請求項8の発明に関して述べた効果と同様な効果を奏することができる。
請求項18に記載の発明は、前記液滴供給手段は、基板の主面を腐食させる腐食液の液滴を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する、請求項10〜17のいずれか一項に記載の基板処理装置である。この構成によれば、請求項9の発明に関して述べた効果と同様な効果を奏することができる。
【0027】
請求項19に記載の発明は、前記液滴供給手段は、液体を滴下させるピペット(15)を含む、請求項10〜18のいずれか一項に記載の基板処理装置である。
この構成によれば、微量の液体がピペットから滴下される。これにより、基板保持手段に保持されている基板の主面の一部の領域だけに液滴が供給される。また、液体が滴下されるので、基板の主面内の所定位置(狙い位置)の上方にピペットを位置させた状態で、ピペットから液体を滴下させることにより、狙い位置に液滴を確実に供給できる。さらに、基板に供給される液量が少ないので、液滴の温度を変化させる物質やエネルギーを低減できる。これにより、基板処理装置のコストを低減できる。
【0028】
なお、この項において、括弧内の英数字は、後述の実施形態における対応構成要素の参照符号を表すものであるが、これらの参照符号により特許請求の範囲を限定する趣旨ではない。
【図面の簡単な説明】
【0029】
【図1】本発明の一実施形態に係る基板処理装置の模式的な平面図である。
【図2】本発明の一実施形態に係る処理ユニットの内部を水平方向から見た模式図である。
【図3A】本発明の一実施形態に係る基板の処理例について説明するための工程図である。
【図3B】前記処理例について説明するための工程図である。
【図3C】前記処理例について説明するための工程図である。
【図3D】前記処理例について説明するための工程図である。
【図3E】前記処理例について説明するための工程図である。
【図3F】前記処理例について説明するための工程図である。
【図4】本発明の一実施形態の変形例について説明するための模式図である。
【発明を実施するための形態】
【0030】
以下では、この発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係る基板処理装置1の模式的な平面図である。
基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の基板処理装置である。基板処理装置1は、基板Wを収容する複数のキャリアCを保持するロードポート2と、基板Wの受け渡しが行われる基板受渡ユニット3と、基板Wを処理する複数の処理ユニット4とを含む。ロードポート2および処理ユニット4は、水平方向に間隔を空けて配置されている。基板受渡ユニット3は、ロードポート2と処理ユニット4との間で搬送される基板Wの搬送経路上に配置されている。基板処理装置1は、さらに、ロードポート2と基板受渡ユニット3との間に配置されたインデクサロボットIRと、基板受渡ユニット3と処理ユニット4との間に配置されたメインロボットMRと、基板処理装置1に備えられた装置の動作やバルブの開閉を制御する制御装置5(制御手段)とを含む。
【0031】
インデクサロボットIRは、基板Wを支持した状態で水平に保持する平面視U字状のハンドHIRを備えている。インデクサロボットIRは、ハンドHIRを水平方向および鉛直方向に移動させる。さらに、インデクサロボットIRは、鉛直軸線まわりに回転(自転)することにより、ハンドHIRの向きを変更する。複数のキャリアCは、水平な配列方向D1に配列されている。インデクサロボットIRは、配列方向D1に移動する。インデクサロボットIRは、配列方向D1への移動および自転によって、任意のキャリアCおよび基板受渡ユニット3にハンドHIRを対向させる。そして、インデクサロボットIRは、水平方向および鉛直方向のハンドHIRの移動によって、キャリアCおよび基板受渡ユニット3に基板Wを搬入する搬入動作、およびキャリアCおよび基板受渡ユニット3から基板Wを搬出する搬出動作を行う。インデクサロボットIRは、キャリアCと基板受渡ユニット3との間で基板Wを搬送する。
【0032】
同様に、メインロボットMRは、基板Wを支持した状態で水平に保持する平面視U字状のハンドHMRを備えている。メインロボットMRは、ハンドHMRを水平方向および鉛直方向に移動させる。さらに、メインロボットMRは、鉛直軸線まわりに回転(自転)することにより、ハンドHMRの向きを変更する。メインロボットMRは、複数の処理ユニット4の間に配置されている。メインロボットMRは、自転によって任意の処理ユニット4および基板受渡ユニット3にハンドHMRを対向させる。そして、メインロボットMRは、水平方向および鉛直方向のハンドHMRの移動によって、処理ユニット4および基板受渡ユニット3に基板Wを搬入する搬入動作、および処理ユニット4および基板受渡ユニット3から基板Wを搬出する搬出動作を行う。メインロボットMRは、処理ユニット4と基板受渡ユニット3との間で基板Wを搬送する。
【0033】
基板受渡ユニット3は、基板Wを水平に支持する複数の支持ピン6と、複数の支持ピン6に支持されている基板Wの汚染状態を測定する測定ユニット7(汚染状態測定手段)とを含む。支持ピン6および測定ユニット7は、基板受渡ユニット3の内部に配置されている。図示はしないが、支持ピン6は、半球状の先端部を有する上向きに凸の円錐状である。複数の支持ピン6の先端部は、中心位置P1を取り囲む基板Wの直径よりも小さい円に沿って配置されている。各支持ピン6の先端部の高さは等しい。基板Wは、支持ピン6の先端部と基板Wの下面周縁部との点接触によって水平な姿勢で支持される。インデクサロボットIRおよびメインロボットMRは、ハンドHIRおよびハンドHMRによって支持ピン6上に基板Wを置き、支持ピン6に支持されている基板WをハンドHIRおよびハンドHMRによって持ち上げる。インデクサロボットIRおよびメインロボットMRは、中心位置P1を通る鉛直軸線上に基板Wの中心が位置するように、支持ピン6に基板Wを渡す。
【0034】
また、測定ユニット7は、パーティクルなどの基板Wに付着している異物の数および基板Wに対する各異物の位置を測定するユニットである。測定ユニット7は、たとえば、パーティクルカウンタ、全反射蛍光X線分析装置(TRXRF)、エネルギー分散型X線分析装置(EDX:Energy Dispersive X−ray spectrometer)、走査型電子顕微鏡(SEM:Scanning Electron Microscope)、および画像認識異物検査装置の少なくとも一つを含む。測定ユニット7は、たとえば、基板Wの上面の中心から異物までの径方向の距離と、基板Wの周縁部に設けられたノッチやオリフラから異物までの周方向への距離とに基づいて異物の位置を特定する。そして、測定ユニット7は、異物の位置を位置情報として制御装置5に出力する。後述するように、制御装置5は、測定ユニット7の測定結果を取得し、この測定結果に基づいて処理ユニット4に基板Wを処理させる。
【0035】
図2は、本発明の一実施形態に係る処理ユニット4の内部を水平方向から見た模式図である。
処理ユニット4は、基板Wを一枚ずつ処理する枚葉式のユニットである。処理ユニット4は、基板Wを水平に保持して回転させるスピンチャック8(基板保持手段)と、スピンチャック8に保持されている基板Wの上面内の任意の部分に液滴を保持させる液滴供給ユニット9(液滴供給手段)と、基板Wに保持されている液滴を冷却する冷却ユニット10(温度変化手段、冷却手段、凍結手段)と、基板Wに保持されている液滴を加熱する加熱ユニット11(温度変化手段、加熱手段、解凍手段、蒸発手段)と、スピンチャック8に保持されている基板Wの上面にリンス液を供給するリンスユニット12とを含む。
【0036】
スピンチャック8は、基板Wを水平に保持して当該基板Wの中心を通る鉛直な回転軸線A1まわりに回転可能な円盤状のスピンベース13と、このスピンベース13を回転軸線A1まわりに回転させるスピンモータ14とを含む。スピンチャック8は、基板Wを水平方向に挟んで当該基板Wを水平に保持する挟持式のチャックであってもよいし、非デバイス形成面である基板Wの裏面(下面)を吸着することにより当該基板Wを水平に保持するバキューム式のチャックであってもよい。図2は、スピンチャック8が挟持式のチャックである場合を示している。スピンチャック8において基板Wに供給された液体に接する接触部分(たとえば、スピンベース13)は、合成樹脂などの耐薬性を有する耐薬性材料によって形成されていてもよいし、ステンレス鋼などの金属によって形成されていてもよい。薬液などのように金属を腐食させる腐食成分を含む腐食液が基板Wに供給される場合、接触部分は、耐薬性材料によって形成されている。一方、腐食成分を含まない液体だけが基板Wに供給される場合、接触部分は、金属などの耐薬性材料以外の材料によって形成されていてもよい。
【0037】
液滴供給ユニット9は、液滴を吐出する液滴ノズル15(ピペット)と、液滴ノズル15を移動させるノズル移動ユニット16(液滴ノズル移動手段)とを含む。液滴ノズル15は、たとえば、微量の液体を吐出する電動式のマイクロピペットである。液滴ノズル15の内部には、所定量の液体が貯留されている。液滴ノズル15に貯留されている液体は、水を含む液体であってもよいし、有機溶剤であってもよいし、アルコールであってもよいし、薬液などのその他の液体であってもよい。具体的には、液滴ノズル15に貯留されている液体は、水を含む液体の一例である純水(脱イオン水)であってもよいし、薬液の一例であるSC−1(NHOHとHとを含む水溶液)であってもよい。SC−1は、基板Wを腐食させる腐食成分を含む腐食液の一例である。
【0038】
制御装置5は、液滴ノズル15に内蔵されているアクチュエータ17を駆動することにより、液滴ノズル15の下端から微量の液体を滴下させる。液滴ノズル15から一度に吐出される液量は、たとえば、数ピコリットル〜数マイクロリットルである。制御装置5は、ノズル移動ユニット16を制御することにより、液滴ノズル15から吐出された液滴が基板Wの上面に着液する処理位置と、液滴ノズル15が基板Wの上方から退避した退避位置との間で液滴ノズル15を移動させる。図示はしないが、ノズル移動ユニット16は、たとえば、モータと、モータの動力を液滴ノズル15に伝達する伝達機構とを含む。制御装置5は、液滴ノズル15およびノズル移動ユニット16を制御することにより、基板Wの上面内の任意の位置に液滴を供給することができる。
【0039】
冷却ユニット10は、基板Wに保持されている液滴を冷却する冷却剤を吐出する冷却ノズル18と、冷却ノズル18に接続された冷却配管19と、冷却配管19に介装された冷却バルブ20と、冷却ノズル18を移動させるノズル移動ユニット21とを含む。冷却剤供給源からの冷却剤は、冷却配管19を介して冷却ノズル18に供給される。冷却ノズル18への冷却剤の供給は、冷却バルブ20の開閉により制御される。冷却ノズル18は、下向きに冷却剤を吐出する。制御装置5は、ノズル移動ユニット21を制御することにより、冷却ノズル18から吐出された冷却剤が基板Wの上面内の領域に吹き付けられる処理位置と、冷却ノズル18が基板Wの上方から退避した退避位置との間で冷却ノズル18を移動させる。冷却剤は、たとえば、−20℃〜室温の範囲内の低温の物質である。冷却剤の温度は、後述する加熱剤より低い。冷却剤は、液体窒素であってもよいし、ドライアイスの粉末であってもよいし、その他の物質であってもよい。
【0040】
加熱ユニット11は、基板Wに保持されている液滴を加熱する加熱剤を吐出する加熱ノズル22と、加熱ノズル22に接続された加熱配管23と、加熱配管23に介装された加熱バルブ24と、加熱ノズル22を移動させるノズル移動ユニット25とを含む。加熱剤供給源からの加熱剤は、加熱配管23を介して加熱ノズル22に供給される。加熱ノズル22への加熱剤の供給は、加熱バルブ24の開閉により制御される。加熱ノズル22は、下向きに加熱剤を吐出する。制御装置5は、ノズル移動ユニット25を制御することにより、加熱ノズル22から吐出された加熱剤が基板Wの上面内の領域に吹き付けられる処理位置と、加熱ノズル22が基板Wの上方から退避した退避位置との間で加熱ノズル22を移動させる。加熱剤は、たとえば、室温〜130℃の範囲内の高温の気体である。加熱剤は、高温の空気であってもよいし、高温の水蒸気であってもよいし、その他の気体であってもよい。
【0041】
リンスユニット12は、リンス液を吐出するリンス液ノズル26と、リンス液ノズル26に接続されたリンス液配管27と、リンス液配管27に介装されたリンス液バルブ28と、リンス液ノズル26を移動させるノズル移動ユニット29とを含む。リンス液供給源からのリンス液は、リンス液配管27を介してリンス液ノズル26に供給される。リンス液ノズル26へのリンス液の供給は、リンス液バルブ28の開閉により制御される。リンス液ノズル26は、下向きにリンス液を吐出する。制御装置5は、ノズル移動ユニット29を制御することにより、リンス液ノズル26から吐出されたリンス液が基板Wの上面に着液する処理位置と、リンス液ノズル26が基板Wの上方から退避した退避位置との間でリンス液ノズル26を移動させる。リンス液ノズル26に供給されるリンス液としては、純水、炭酸水、電解イオン水、水素水、オゾン水や、希釈濃度(たとえば、10〜100ppm程度)の塩酸水などを例示することができる。
【0042】
図3A〜図3Fは、本発明の一実施形態に係る基板Wの処理例について説明するための工程図である。以下では、図1および図2を参照する。図3A〜図3Fについては適宜参照する。
基板処理装置1によって基板Wが処理されるときには、制御装置5は、インデクサロボットIRによって、キャリアCから基板Wを搬出させ、この基板Wを基板受渡ユニット3に搬入させる。そして、図3Aに示すように、制御装置5は、測定ユニット7によって基板Wの汚染状態を測定させる(汚染状態測定工程)。これにより、基板Wの上面に付着している異物の位置が測定され、基板Wの上面内における異物の位置を示す位置情報が測定ユニット7から制御装置5に出力される。制御装置5は、測定ユニット7によって基板Wの汚染状態が測定された後、メインロボットMRによって、基板受渡ユニット3から基板Wを搬出させ、処理ユニット4にこの基板Wを搬入させる。これにより、基板Wがスピンチャック8によって水平な姿勢で保持される。
【0043】
次に、基板Wの上面において異物が付着している汚染部分(基板Wと異物とが接している部分、およびその周辺の部分)だけに微量の液体を供給する液滴供給工程が行われる。具体的には、制御装置5は、測定ユニット7から取得した位置情報に基づいてノズル移動ユニット16を制御することにより、液滴が汚染部分に着液する所定位置に液滴ノズル15を移動させる。この実施形態では、液滴ノズル15から鉛直下方に液体が吐出されるから、液滴ノズル15は、異物の上方に配置される。制御装置5は、液滴ノズル15を所定位置に移動させるときに、液滴ノズル15の移動に加えて、スピンチャック8を制御することにより基板Wを回転させてもよいし、基板Wを回転させずに液滴ノズル15だけを移動させてもよい。すなわち、液滴ノズル15だけ、または基板Wだけを移動させることにより、着液位置を汚染部分に移動させてもよいし、液滴ノズル15および基板Wの両方を移動させることにより、着液位置を汚染部分に移動させてもよい。
【0044】
図3Bに示すように、制御装置5は、液滴ノズル15が所定位置に移動した後、液滴ノズル15に内蔵されているアクチュエータ17を駆動することにより、液体の一例であるSC−1を液滴ノズル15から基板Wの上面に向けて吐出させる。液滴ノズル15から吐出される液量が少ないから、液滴ノズル15からSC−1が吐出されると、汚染部分だけにSC−1が供給される。これにより、図3Bにおいて拡大して示すように、異物(パーティクル)がSC−1によって覆われる。複数の異物が基板Wに付着している場合には、制御装置5は、前述の液滴ノズル15の移動からSC−1の供給までの動作を液滴ノズル15等に再び行わせ、液滴ノズル15から各異物に向けて液滴を吐出させる。これにより、複数の液滴が基板Wの上面に保持され、各異物がSC−1によって覆われる。そして、全ての異物がSC−1によって覆われた後、制御装置5は、ノズル移動ユニット16を制御することにより、基板Wの上方から液滴ノズル15を退避させる。
【0045】
次に、基板W上の液滴を凍らせる冷凍工程(冷却工程)が行われる。具体的には、制御装置5は、測定ユニット7から取得した位置情報に基づいてノズル移動ユニット21を制御することにより、冷却剤が汚染部分だけに吹き付けられる所定位置に冷却ノズル18を移動させる。このとき、制御装置5は、液滴供給工程と同様に、冷却ノズル18だけを移動させてもよいし、冷却ノズル18の移動に加えて、基板Wを回転させてもよい。図3Cに示すように、制御装置5は、冷却ノズル18が所定位置に移動した後、冷却バルブ20を開いて、冷却剤の一例である液体窒素を冷却ノズル18から吐出させる。冷却ノズル18から吐出された液体窒素は、SC−1の液滴によって覆われている異物に供給され、異物およびSC−1の温度を室温より低い温度まで低下させる。これにより、異物ごとSC−1が一瞬で凍結する。制御装置5は、SC−1が凍結した後、冷却バルブ20を閉じて、冷却ノズル18からの液体窒素の吐出を停止させる。複数の異物が基板Wに付着している場合には、制御装置5は、前述の冷却ノズル18の移動から液体窒素の供給停止までの動作を冷却ノズル18等に再び行わせ、冷却ノズル18から各異物に向けて液体窒素を吐出させる。これにより、基板W上の全ての液滴が凍結する。そして、制御装置5は、全ての液滴が凍結した後、ノズル移動ユニット21を制御することにより、基板Wの上方から冷却ノズル18を退避させる。
【0046】
次に、基板W上の液滴を蒸発させる解凍工程(加熱工程、蒸発工程)が行われる。具体的には、制御装置5は、測定ユニット7から取得した位置情報に基づいてノズル移動ユニット25を制御することにより、加熱剤が汚染部分だけに吹き付けられる所定位置に加熱ノズル22を移動させる。このとき、制御装置5は、液滴供給工程と同様に、加熱ノズル22だけを移動させてもよいし、加熱ノズル22の移動に加えて、基板Wを回転させてもよい。図3Dに示すように、制御装置5は、加熱ノズル22が所定位置に移動した後、加熱バルブ24を開いて、加熱剤の一例である100℃付近の高温の水蒸気を加熱ノズル22から吐出させる。加熱ノズル22から吐出された高温の水蒸気は、SC−1の液滴によって覆われている異物に吹き付けられ、異物およびSC−1の温度を室温より高い温度まで上昇させる。これにより、冷凍状態のSC−1が、一瞬で解け蒸発する。制御装置5は、SC−1が蒸発した後、加熱バルブ24を閉じて、加熱ノズル22からの水蒸気の吐出を停止させる。複数の異物が基板Wに付着している場合、制御装置5は、前述の加熱ノズル22の移動から水蒸気の供給停止までの動作を加熱ノズル22等に再び行わせ、加熱ノズル22から各異物に向けて高温の水蒸気を吐出させる。これにより、基板W上の全てのSC−1が蒸発し、基板WからSC−1が無くなる。そして、制御装置5は、全ての液滴が蒸発した後、ノズル移動ユニット25を制御することにより、基板Wの上方から加熱ノズル22を退避させる。
【0047】
次に、基板W上の液滴を凍結および蒸発させる繰り返し工程が行われる。具体的には、制御装置5は、前述の液滴供給工程と同様に、汚染部分に液滴を供給させる。その後、制御装置5は、前述の冷凍工程と同様に、汚染部分に冷却剤を供給させる。その後、制御装置5は、前述の解凍工程と同様に、汚染部分に加熱剤を供給させる。したがって、液滴供給工程から解凍工程までの1つのサイクルが繰り返される。このサイクルの繰り返し回数は、1回であってもよいし、2回以上であってもよい。また、2回目以降の液滴供給工程において基板Wに供給される液体は、その前の液滴供給工程において基板Wに供給される液体と同じ種類の液体であってもよいし、異なる種類の液体であってもよい。冷却剤および加熱剤についても同様である。
【0048】
次に、基板W上の異物をリンス液によって洗い流すリンス工程が行われる。具体的には、制御装置5は、スピンチャック8を制御することにより、回転軸線A1まわりに基板Wを回転させる。その後、制御装置5は、ノズル移動ユニット29を制御することにより、リンス液が基板Wの上面に着液する所定位置にリンス液ノズル26を移動させる。図3Eに示すように、制御装置5は、リンス液ノズル26が所定位置に移動した後、リンス液バルブ28を開いて、リンス液の一例である純水をリンス液ノズル26から吐出させる。このとき、制御装置5は、リンス液ノズル26を移動させながら純水を吐出させてもよいし、リンス液ノズル26を移動させずに純水を吐出させてもよい。リンス液ノズル26から吐出された純水は、基板Wの上面に供給され、基板Wの回転による遠心力を受けて基板Wの上面に沿って外方に広がる。これにより、基板Wの上面全域に純水が供給され、基板W上の異物が洗い流される。そして、リンス液バルブ28が開かれてから所定時間が経過すると、制御装置5は、リンス液バルブ28を閉じてリンス液ノズル26からの純水の吐出を停止させる。その後、制御装置5は、ノズル移動ユニット29を制御することにより、基板Wの上方からリンス液ノズル26を退避させる。
【0049】
次に、基板Wを乾燥させる乾燥工程(スピンドライ)が行われる。具体的には、制御装置5は、スピンチャック8を制御することにより、基板Wを高回転速度(たとえば数千rpm)で回転させる。これにより、図3Fに示すように、基板Wに付着している純水に大きな遠心力が作用し、基板Wに付着している純水が基板Wの周囲に振り切られる。このようにして、基板Wから純水が除去され、基板Wが乾燥する。そして、乾燥工程が所定時間に亘って行われた後は、制御装置5は、スピンチャック8を制御することにより、基板Wの回転を停止させる。その後、制御装置5は、メインロボットMRによって、処理済みの基板Wを処理ユニット4から搬出させ、この基板Wを基板受渡ユニット3に搬入させる。そして、制御装置5は、インデクサロボットIRによって、処理済みの基板Wを基板受渡ユニット3から搬出させ、この基板WをいずれかのキャリアCに搬入させる。制御装置5は、インデクサロボットIR等にこの一連の動作を繰り返し実行させることにより、複数枚の基板Wを一枚ずつ処理させる。
【0050】
以上のように本実施形態では、基板Wの上面内の一部の領域だけに液滴が保持され、この液滴が凍結および蒸発される。液滴に接している基板W上の異物は、液滴が凍結する過程で冷却され、液滴が蒸発する過程で加熱される。したがって、液滴の凍結および蒸発が繰り返されることにより、基板W上の異物が収縮および膨張を繰り返す。異物が収縮または膨張すると、基板Wと異物との間に応力が発生し、基板Wに対する異物の付着力が低下する。これにより、異物が基板Wから剥がれやすい状態となる。
【0051】
さらに、基板W上の液滴に向けて冷却剤および加熱剤が吐出されるので、液滴だけが選択的に冷却および加熱される。そのため、液滴および異物の温度だけが大幅に変化し、基板Wの温度は殆ど変化しない。たとえば、異物および基板Wの両方の温度が大幅に上昇した場合には、異物および基板Wの両方が大幅に膨張するから、異物および基板Wの接触部での相対的な変位量は、異物だけが膨張する場合よりも小さい。したがって、基板W上の液滴だけが選択的に冷却および加熱されることにより、基板Wに対する異物の付着力がさらに低下する。これにより、異物が基板Wからさらに剥がれやすい状態となる。
【0052】
さらにまた、基板Wを腐食させるSC−1の液滴が、基板Wの上面に供給されるので、基板Wの表層がSC−1によって腐食される(溶ける)。そのため、基板Wに対する異物の付着力がさらに低下したり、異物が基板Wから剥がれたりする(リフトオフ)。したがって、基板Wは、異物を容易に除去できる状態になる。そのため、リンス液が基板Wに供給されることにより、基板W上の全ての異物が洗い流され、基板W上から異物が確実に除去される。これにより、基板Wの清浄度を向上させることができる。
【0053】
しかも、基板Wの上面内の一部の領域だけに液滴が供給されるので、基板Wの上面全域に液体が供給される場合よりも、液体の消費量が少ない。さらに、基板W上に保持されている液量が少ないので、少量の冷却剤および加熱剤で、液滴を冷却および加熱できる。したがって、冷却剤および加熱剤の消費量を低減できる。そのため、基板処理装置1のランニングコストを低減できる。さらに、基板W上に保持されている液量が少ないので、短時間で液滴を凍結および蒸発させることができる。したがって、基板Wの処理時間を短縮できる。さらに、異物が存在する領域だけにSC−1などの液体が供給されるから、液体を供給する必要がない基板Wの上面内の領域にダメージが発生することを抑制または防止できる。
【0054】
また、液滴の冷却および加熱によって、基板Wに対する異物の付着力が低下するので、SC−1などの腐食液の液滴を基板Wに供給しなくてもよい。すなわち、たとえば前述の処理例においてSC−1の代わりに純水を用いたとしても、基板W上から異物を確実に除去できる。前述のように、腐食成分を含まない液体だけが基板Wに供給される場合、スピンチャック8において基板Wに供給された液体に接する接触部分を、金属などの耐薬性材料以外の材料で形成できる。すなわち、接触部分を、ステンレス鋼などの合成樹脂よりも加工性に優れた材料によって形成できる。これにより、基板処理装置1の製造コストを低減できる。さらに、腐食による基板処理装置1の劣化を防止できるので、基板処理装置1の製品寿命(ライフ)を延ばすことができる。
【0055】
この発明の実施形態の説明は以上であるが、この発明は、前述の実施形態の内容に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。
たとえば、前述の実施形態では、基板W上の液滴が加熱剤によって加熱される場合について説明したが、液滴の加熱方法は、これに限られない。
具体的には、図4に示すように、スピンベース13に内蔵された赤外線照射ユニット30(赤外線照射手段)から、たとえば、約3μmから4μm未満の波長の赤外線を基板Wの全域に照射してもよい。スピンチャック8に保持されている基板Wが、たとえばシリコン基板である場合、この範囲内の波長の赤外線は、シリコン基板に殆ど吸収されずに、シリコン基板を透過する。その一方で、基板W上の液滴が、水を含む液体によって形成されている場合、この範囲内の波長の赤外線は、液滴に効率的に吸収される。したがって、この範囲内の波長の赤外線を基板Wの全域に照射すると、基板W上の液滴だけが加熱される。そのため、基板W上の液滴を選択的に加熱できる。
【0056】
また、基板W上の液滴は、液滴だけに接触可能な発熱部材によって加熱されてもよい。具体的には、図4に示すように、制御装置5は、熱を発する熱プローブ31(発熱部材)を発熱部材移動ユニット32によって移動させることにより、熱プローブ31の先端を基板W上の液滴だけに接触させて、基板W上の液滴を選択的に加熱してもよい。
また、前述の処理例では、凍結状態の液滴を蒸発させることにより、全ての液滴を基板Wから除去する場合について説明したが、たとえば加熱剤の温度や供給時間を変更することにより、基板W上から全ての液滴が無くならないように、液滴の加熱温度を調整してもよい。この場合、基板Wから液滴が無くならないので、液滴を加熱した後に、液滴ノズル15から基板Wへの液滴の供給を行わなくてもよい。すなわち、液滴の冷却および加熱を複数回行う場合でも、液滴供給工程を複数回行わなくてもよい。したがって、基板Wの処理時間を短縮できる。
【0057】
また、前述の処理例では、処理ユニット4で基板Wを乾燥させた後、この基板WをキャリアCに搬送する場合について説明したが、処理ユニット4で処理された基板Wの汚染状態を測定ユニット7で再び測定してもよい。そして、基板Wの清浄度が低い場合には、この基板Wを再び処理ユニット4で処理してもよい。
また、前述の処理例では、液滴が供給される基板Wの上面内の領域が、基板W毎に設定される場合について説明したが、この領域は、予め設定されていてもよい。たとえば、基板Wの上面周縁部だけに液滴が供給されてもよい。基板Wの上面周縁部は、搬送ロボットIR、MRや、スピンチャック8に接触する。そのため、基板Wの上面周縁部は、基板Wの他の領域よりも汚染され易い。したがって、液滴が供給される領域は、この汚染され易い領域に設定されていてもよい。
【0058】
また、前述の実施形態では、基板処理装置1が、円板状の基板Wを処理する装置である場合について説明したが、基板処理装置1は、液晶表示装置用基板などの多角形の基板を処理する装置であってもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
【符号の説明】
【0059】
1 :基板処理装置
5 :制御装置(制御手段)
7 :測定ユニット(汚染状態測定手段)
8 :スピンチャック(基板保持手段)
9 :液滴供給ユニット(液滴供給手段)
10 :冷却ユニット(温度変化手段、冷却手段、凍結手段)
11 :加熱ユニット(温度変化手段、加熱手段、解凍手段、蒸発手段)
15 :液滴ノズル(ピペット)
16 :ノズル移動ユニット(液滴ノズル移動手段)
18 :冷却ノズル
22 :加熱ノズル
30 :赤外線照射ユニット(赤外線照射手段)
31 :熱プローブ(発熱部材)
W :基板

【特許請求の範囲】
【請求項1】
基板の主面内の一部の領域だけに液滴を供給する液滴供給工程と、
前記基板上の液滴の温度を変化させる温度変化工程とを含む、基板処理方法。
【請求項2】
前記温度変化工程は、前記基板上の液滴を冷却する冷却工程と、前記基板上の液滴を加熱する加熱工程とを含む、請求項1に記載の基板処理方法。
【請求項3】
前記冷却工程は、前記基板上の液滴を凍結させる凍結工程を含み、
前記加熱工程は、前記基板上の液滴を解凍させる解凍工程を含む、請求項2に記載の基板処理方法。
【請求項4】
前記温度変化工程は、前記液滴の冷却と加熱とを交互に複数回行う繰り返し工程を含む、請求項2または3に記載の基板処理方法。
【請求項5】
前記冷却工程は、前記基板上の液滴を凍結させる凍結工程を含み、
前記加熱工程は、前記基板上の液滴を蒸発させる蒸発工程を含み、
前記基板処理方法は、前記液滴供給工程、凍結工程、および蒸発工程をこの順番で複数回行う工程を含む、請求項4に記載の基板処理方法。
【請求項6】
前記冷却工程は、前記基板上の液滴を選択的に冷却する選択的冷却工程を含み、
前記加熱工程は、前記基板上の液滴を選択的に加熱する選択的加熱工程を含む、請求項2〜5のいずれか一項に記載の基板処理方法。
【請求項7】
前記液滴供給工程が行われる前に、前記基板の主面において異物が付着している汚染部分を特定する汚染状態測定工程をさらに含み、
前記液滴供給工程は、前記汚染部分だけに液滴を供給する工程を含む、請求項1〜6のいずれか一項に記載の基板処理方法。
【請求項8】
前記液滴供給工程は、前記基板の主面内の予め定められた部分に液滴を供給する特定部分供給工程を含む、請求項1〜6のいずれか一項に記載の基板処理方法。
【請求項9】
前記液滴供給工程は、基板を腐食させる腐食液の液滴を基板の主面内の一部の領域だけに供給する工程を含む、請求項1〜8のいずれか一項に記載の基板処理方法。
【請求項10】
基板を保持する基板保持手段と、
前記基板保持手段に保持されている基板の主面内の一部の領域だけに液滴を供給する液滴供給手段と、
前記基板保持手段に保持されている基板上の液滴の温度を変化させる温度変化手段とを含む、基板処理装置。
【請求項11】
前記温度変化手段は、前記基板上の液滴を冷却する冷却手段と、前記基板上の液滴を加熱する加熱手段とを含む、請求項10に記載の基板処理装置。
【請求項12】
前記冷却手段は、前記基板上の液滴を凍結させる凍結手段を含み、
前記加熱手段は、前記基板上の液滴を解凍させる解凍手段を含む、請求項11に記載の基板処理装置。
【請求項13】
前記冷却手段および加熱手段によって前記液滴の冷却と加熱とを交互に複数回実行させる制御手段をさらに含む、請求項11または12に記載の基板処理装置。
【請求項14】
前記冷却手段は、前記基板上の液滴を凍結させる凍結手段を含み、
前記加熱手段は、前記基板上の液滴を蒸発させる蒸発手段を含み、
前記制御手段は、前記液滴供給手段、凍結手段、および蒸発手段によって、基板への液滴の供給、前記液滴の凍結、および前記液滴の蒸発をこの順番で複数回実行させる、請求項13に記載の基板処理装置。
【請求項15】
前記冷却手段は、冷却剤を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する冷却ノズルを含み、
前記加熱手段は、加熱剤を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する加熱ノズル、前記基板保持手段に保持されている基板に赤外線を照射する赤外線照射手段、および前記基板保持手段に保持されている基板の主面上の液滴だけに接触可能な発熱部材のうちの少なくとも一つを含む、請求項11〜14のいずれか一項に記載の基板処理装置。
【請求項16】
前記液滴供給手段は、液滴を吐出する液滴ノズルと、前記液滴ノズルを移動させる液滴ノズル移動手段とを含み、
前記基板処理装置は、前記基板保持手段に保持されている基板の主面において異物が付着している汚染部分を特定する汚染状態測定手段と、前記汚染状態測定手段からの出力に基づいて前記液滴ノズル移動手段を制御することにより、前記液滴ノズルからの液滴の供給位置を前記汚染部分に位置させる制御手段とをさらに含む、請求項10〜15のいずれか一項に記載の基板処理装置。
【請求項17】
前記液滴供給手段は、前記基板保持手段に保持されている基板の主面内の予め定められた部分に液滴を供給するように構成されている、請求項10〜15のいずれか一項に記載の基板処理装置。
【請求項18】
前記液滴供給手段は、基板の主面を腐食させる腐食液の液滴を前記基板保持手段に保持されている基板の主面内の一部の領域だけに供給する、請求項10〜17のいずれか一項に記載の基板処理装置。
【請求項19】
前記液滴供給手段は、液体を滴下させるピペットを含む、請求項10〜18のいずれか一項に記載の基板処理装置。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図3E】
image rotate

【図3F】
image rotate

【図4】
image rotate


【公開番号】特開2013−77596(P2013−77596A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2011−214934(P2011−214934)
【出願日】平成23年9月29日(2011.9.29)
【出願人】(000207551)大日本スクリーン製造株式会社 (2,640)
【Fターム(参考)】