説明

塗布膜形成方法および塗布膜形成装置

【課題】着弾精度が要求される塗布膜形成プロセスにおいて、塗布膜形成装置周辺の環境条件に影響を受けずに所望する位置に高精度で塗布膜を形成し、かつ装置コストを低減させることができる塗布膜形成方法を提供する。
【解決手段】本発明に係る塗布膜形成方法は、塗布対象物上の所定領域を覆う塗布膜を、液体を塗布することによって形成する際、上記所定領域の中心位置とは異なる位置座標に、複数個のパターン構造をそれぞれの位置座標が互いに異なるように形成し、少なくとも2個の上記パターン構造のエッジが1つの液溜りの内になるように、塗布対象物上の一部分に液体を塗布して当該液溜りを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機能性材料を含む液体を任意の箇所に局所的に塗布し、乾燥させることで塗布膜を作製する塗布膜形成方法、および塗布膜形成装置に関する。
【背景技術】
【0002】
近年、インクジェットのような液体塗布手法は非接触、高オンデマンド性などの優れた特性から、液晶用のカラーフィルタパネル形成などデジタルファブリケーション製造分野にも転用されており、産業における主要技術としてその用途は多岐にわたる。
【0003】
その一例として、インク吐出装置により微量液体(インク)を噴射し、基板上に直接微細なパターンを印字するインクジェットパターン形成技術が挙げられる。この技術は、高精度のパターン形成が可能であるだけでなく、従来のフォトリソグラフィー技術による真空プロセスを用いたパターン形成方法に代わる脱真空プロセスを実現可能とする技術としても注目が高まっている。
【0004】
このようなインクジェットパターン形成技術として、例えば特許文献1に記載されているゲート絶縁膜形成プロセスがある。このプロセスでは、絶縁性材料を含有したインク液を、ゲート線とソース線とが交差する領域、若しくは保持容量線が形成される領域に滴下することにより、所定箇所のみに絶縁膜を形成する。
【0005】
また、インクジェットパターン形成技術は、ダストの付着等を原因とした成膜不良を修正するための技術としても広く用いられている。このように修復を目的とするインクジェットパターン形成技術の一例が、特許文献2に記載されている。電子基板上の配線を補修する特許文献2に記載のプロセスでは、インク液をインクジェットヘッドから基板等の塗布対象物の所定箇所に向けて単数もしくは複数の液滴を順次着弾させることで、局所的にインク液を塗布する。この塗布工程の後、ヒーターやホットプレート等によって塗布液滴を乾燥させる乾燥工程を経ることで所定箇所のみに選択的に塗布膜を形成する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開2004−086487号パンフレット(2004年10月7日公開)
【特許文献2】特開2005−166750号公報(2005年6月23日)
【発明の概要】
【発明が解決しようとする課題】
【0007】
上述した特許文献1に記載されているゲート絶縁膜の形成、または特許文献2に記載されている電子基板上の配線補修を目的とした場合、機能性材料を含んだインク液を、例えばゲート線とソース線とが交差する領域や保持容量線が形成される領域あるいは配線の断線領域などの所定箇所に選択的に塗布して膜形成を行なう。このような塗布膜形成プロセスにおいて、例えばゲート絶縁膜の形成の場合、小型機種や近年増加傾向にある高精細パターン機種ではゲート線とソース線とが交差する領域間の距離が短いものが多く、塗布膜形成を実施する周辺には例えば正常画素の半導体層が形成されているなどが考えられる。この半導体層上に機能性材料を含む塗布膜が形成されると、半導体の駆動特性に影響を与えるといった問題が発生する。
【0008】
このような問題を回避するためには、塗布膜形成位置を厳格に規定する必要があり、塗布膜形成装置には高い塗布精度が求められる。しかしながら、インクジェットによる塗布膜形成装置の塗布精度は、例えばインクジェットヘッドから吐出する液滴の高い着弾精度や、インクジェットヘッドを固定・移動するキャリッジやガントリ、塗布対象物を搭載するステージなどの位置決め精度など、塗布膜形成に必要な装置の積み重ねの精度に依存するため、塗布精度の高い塗布膜形成装置はコストの増大を招く。
【0009】
また、塗布膜形成装置自体は高い塗布精度を有する装置構成であったとしても、装置の設置環境、例えば、クリーンルームのようにクリーン化やルーム内温度一定化のために定常的に一定方向に乾燥空気を循環させているような環境では、インクジェットヘッドから吐出した液滴は気流の影響を受けて液滴がよれ、結果として塗布精度が低下する。それを補い塗布膜形成装置が高い塗布精度を保持するためには、塗布膜形成装置の設置環境を考慮する、すなわち設置する環境毎に例えば塗布液滴の着弾位置や基板を保持するステージ位置などの補正データを取得し、塗布膜形成装置の設置環境や塗布対象物が変化するたびにその都度調整する必要がある。
【課題を解決するための手段】
【0010】
本発明は、上記の問題点に鑑みなされたものであり、その目的は、着弾精度が要求される塗布膜形成プロセスにおいて、塗布膜形成装置周辺の環境条件に影響を受けずに所望する位置に高精度で塗布膜を形成し、かつ装置コストを低減させることができる塗布膜形成方法および塗布膜形成装置を提供することである。
【0011】
すなわち、本発明に係る塗布膜形成方法は、上記の課題を解決するために、
塗布対象物上の一部分に液体を塗布して、当該塗布液が乾燥することで塗布対象物上の所定領域を覆う塗布膜を形成する塗布膜形成方法において、
塗布対象物上における上記所定領域の中心位置とは異なる位置座標に、凹形状、凸形状もしくは凹凸形状を有する複数個のパターン構造をそれぞれの位置座標が互いに異なるように形成するパターン構造形成工程と、
上記パターン構造形成工程の後に、パターン構造形成工程によって形成された少なくとも2個の上記パターン構造のエッジが1つの液溜りの内に在るように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成する液体塗布工程と、を含み、
少なくとも第1の溶媒と当該第1の溶媒とは異なる第2の溶媒とを混合した主溶媒が体積比で30%以上かつ100%未満占めている分散媒であって、当該第1の溶媒と当該第2の溶媒との20℃における蒸気圧差が100Pa以上であって第1の溶媒が第2の溶媒よりも蒸気圧が高く、かつ、第2の溶媒が第1の溶媒よりも20℃における表面張力が1mN/m以上高く構成された当該分散媒に機能性材料を分散させてなる液体を、上記液体塗布工程の上記液体として用いることを特徴としている。
【0012】
上記の構成によれば、低表面張力かつ高蒸気圧側の第1の溶媒の効果によって塗布と同時に塗布液体は大きく濡れ広がるが、高蒸気圧の第1の溶媒の蒸発とともに高表面張力かつ低蒸気圧側の第2の溶媒の乾燥挙動が支配的となる。第2の溶媒は高表面張力であるため、濡れ広がった液は塗布位置の中央に集まるような乾燥挙動を示す。この際、濡れ広がった液体の内側に上記パターン構造が存在すると、乾燥挙動の過程において上記パターン構造のエッジに塗布液が保持される。この状態で乾燥が進行すると、当該エッジを中心もしくは或るパターン構造のエッジと別のパターン構造のエッジとの間の中点を中心とした塗布膜が形成される。このため、塗布液自体のセルフアライメントによって、塗布膜形成位置を補正することができ、塗布膜の形成箇所は、濡れ広がった塗布液を保持する上記パターン構造の形成位置によって一義的に決定することができる。そのため、塗布膜形成装置に高精度の塗布精度が要求されず、塗布膜形成装置に安価で比較的精度が悪いステージなどを採用することができるようになり、装置コストを低減させることができる。
【0013】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、上記パターン構造として、
塗布対象物上の或る構造体の一部を担っていて、且つ、上記液体を所定位置に位置決めするための兼用パターン構造と、
上記液体を所定位置に位置決めするためだけの専用パターン構造とを形成し、
上記液体塗布工程では、上記兼用パターン構造のエッジおよび上記専用パターン構造のエッジが1つの液溜りの内になるように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成することが好ましい。
【0014】
上記の構成によれば、液体の内側に上記専用パターン構造および上記兼用パターン構造が存在すると、乾燥挙動の過程において上記専用パターン構造および上記兼用パターン構造のエッジに塗布液が保持される。この状態で乾燥が進行すると、当該エッジを中心、もしくは、或る上記専用パターン構造のエッジと或る上記兼用パターン構造のエッジとの間の中点を中心とした塗布膜が形成される。このため、塗布液自体のセルフアライメントによって、塗布膜形成位置を補正することができ、塗布膜の形成箇所は、濡れ広がった塗布液を保持する上記専用パターン構造および上記兼用パターン構造の形成位置によって一義的に決定することができる。そのため、塗布膜形成装置に高精度の塗布精度が要求されず、塗布膜形成装置に安価で比較的精度が悪いステージなどを採用することができるようになり、装置コストを低減させることができる。
【0015】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記液体には、0.025重量%未満の範囲で界面活性剤が含まれていることが好ましい。
【0016】
上記の構成によれば、塗布液体に前述した規定量内の界面活性剤を添加することにより、塗布液の乾燥を抑えるとともに、塗布液と塗布対象物との濡れ性を向上させることで塗布対象物上をより広範囲まで濡れ広がることが可能となり、本発明に係る塗布膜形成方法を実施するための塗布膜形成装置に要求される塗布精度をより低減させることができる。また、添加剤により塗布液の濡れ広がり状態や乾燥挙動をフレキシブルにコントロールすることもでき、プロセス制御性を向上することができる。さらに、濡れ広がりや溶媒乾燥速度等に寄与する液体塗布環境の影響を低減することができる。
【0017】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記液体塗布工程の後に、上記液溜りの溶媒を自発的に乾燥させる乾燥工程を更に含むことが好ましい。
【0018】
上記の構成によれば、上記液溜りの溶媒を自発的に乾燥させるため、強制的に乾燥させる場合と比較して溶媒乾燥が穏やかに進んで、塗布液体自体がセルフアライメントする時間を充分に確保することができ、所定領域への塗布膜形成をより確実なものとすることができる。
【0019】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、上記所定領域の中心位置を通る任意の直線を対称軸として線対称となる位置にそれぞれ上記パターン構造を形成することが好ましい。
【0020】
上記の構成によれば、上記所定領域の中心位置を通る直線を対称軸とする線対称形にパターン構造を形成することによって、対称軸に対して垂直方向の上記所定領域の位置座標と、対称軸に対して垂直方向のパターン構造の位置座標とが一致するため、パターン構造の対称軸に対して垂直方向の塗布膜形成位置のズレを防ぐことができる。
【0021】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、上記所定領域の中心位置を対称点とする点対称となる位置にそれぞれ上記パターン構造を形成することが好ましい。
【0022】
上記の構成によれば、塗布液を保持したパターン構造のエッジ間の中点を中心(点対称の対称点)として溶媒乾燥が進行するが、点対称位置にパターン構造を形成することによって、溶媒乾燥の中心位置を塗布目標とすることができ、塗布目標位置に対してズレなく塗布膜を形成することができる。
【0023】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、上記パターン構造を形成すると同時に、上記液溜りの外に在って、且つ、塗布対象物上に形成される或る構造体の一部を担うパターン部を形成することが好ましい。
【0024】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、導電性材料を用いて上記凸形状のパターン構造を形成し、当該パターン構造の形成と並行して当該導電性材料を用いて塗布対象物上に配線を形成することが好ましい。
【0025】
上記の構成によれば、塗布対象物に配線パターンを形成する工程と同時にパターン構造の形成を行なうため、配線を形成する工程と、パターン構造形成工程とを別々に設ける必要がない。よって、塗布膜形成タクトを向上させることができる。
【0026】
また、本発明に係る塗布膜形成方法は、上記の構成に加えて、
上記パターン構造形成工程では、レーザー光を照射することによって上記パターン構造を形成することが好ましい。
【0027】
上記の構成によれば、任意の箇所に短時間かつ簡便にパターン構造を形成することができる。
【0028】
また、本発明に係る塗布膜形成装置は、上記の課題を解決するために、
上記した塗布膜形成方法を実現するための塗布膜形成装置であって、
上記パターン構造を形成するためのパターン構造形成手段と、
上記塗布対象物上を観察することによって、上記パターン構造の形成位置を特定するための形成位置特定手段と、
上記液体を塗布するための液体塗布手段と、
上記塗布対象物を載置し、上記液体塗布手段と上記塗布対象物の相対位置を任意に変更するための相対位置移動手段とを備えていることを特徴としている。
【0029】
上記の構成によれば、パターン構造形成手段を具備していることから、予めパターンを備えていない塗布対象物においても、前記塗布膜形成手法を適用することができる。
【発明の効果】
【0030】
本発明に係る塗布膜形成方法は、以上のように、
塗布対象物上の一部分に液体を塗布して、当該塗布液が乾燥することで塗布対象物上の所定領域を覆う塗布膜を形成する塗布膜形成方法において、
塗布対象物上における上記所定領域の中心位置とは異なる位置座標に、凹形状、凸形状もしくは凹凸形状を有する複数個のパターン構造をそれぞれの位置座標が互いに異なるように形成するパターン構造形成工程と、
上記パターン構造形成工程の後に、パターン構造形成工程によって形成された少なくとも2個の上記パターン構造のエッジが1つの液溜りの内になるように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成する液体塗布工程と、を含み、
少なくとも第1の溶媒と当該第1の溶媒とは異なる第2の溶媒とを混合した主溶媒が体積比で30%以上かつ100%未満占めている分散媒であって、当該第1の溶媒と当該第2の溶媒との20℃における蒸気圧差が100Pa以上であって第1の溶媒が第2の溶媒よりも蒸気圧が高く、かつ、第2の溶媒が第1の溶媒よりも20℃における表面張力が1mN/m以上高く構成された当該分散媒に機能性材料を分散させてなる液体を、上記液体塗布工程の上記液体として用いることを特徴としている。
【0031】
また、本発明に係る塗布膜形成装置は、以上のように、
上記した塗布膜形成方法を実現するための塗布膜形成装置であって、
上記パターン構造を形成するためのパターン構造形成手段と、
上記塗布対象物上を観察することによって、上記パターン構造の形成位置を特定するための形成位置特定手段と、
上記液体を塗布するための液体塗布手段と、
上記塗布対象物を載置し、上記液体塗布手段と上記塗布対象物の相対位置を任意に変更するための相対位置移動手段とを備えていることを特徴としている。
【0032】
これにより、着弾精度が要求される塗布膜形成プロセスにおいて、塗布膜形成装置周辺の環境条件に影響を受けずに所望する位置に高精度で塗布膜を形成し、かつ装置コストを低減させることができる塗布膜形成方法、および塗布膜形成装置を提供することができる。
【図面の簡単な説明】
【0033】
【図1】本発明の一実施形態における塗布膜形成方法に用いられる塗布膜形成装置の概略構成図である。
【図2】本発明の一実施形態における塗布膜形成方法のフロー図である。
【図3】アクリルガラス基板上でのインクの乾燥挙動の模式図である。
【図4】パターン形成実施後のアクリルガラス基板上でのインクの乾燥挙動の模式図である。
【図5】基板上に形成したパターンのパターンエッジ近傍のインクの挙動およびインクに働く力の模式図である。
【図6】パターンエッジにインクが保持された後の乾燥挙動の模式図である。
【図7】第1の主溶媒(IPA)の混合体積比率と濡れ広がり径と塗布膜径の差L(アクリルガラス上にインク液体を塗布した時の濡れ広がり径D、自然乾燥後に形成される塗布膜径Rとしたときに、L=D−R)との関係を示したグラフである。
【図8】主溶媒同士の蒸気圧差と濡れ広がり径と塗布膜径の差L(アクリルガラス上にインク液体を塗布した時の濡れ広がり径D、自然乾燥後に形成される塗布膜径Rとしたときに、L=D−R)との関係を示したグラフである。
【図9】主溶媒同士の表面張力差と濡れ広がり径と塗布膜径の差L(アクリルガラス上にインク液体を塗布した時の濡れ広がり径D、自然乾燥後に形成される塗布膜径Rとしたとき、L=D−R)との関係を示したグラフである。
【図10】インクへの添加剤の添加量と濡れ広がり径との関係を示したグラフである。
【図11】インクへの添加剤の添加量と濡れ広がり径と塗布膜径の差L(アクリルガラス上にインク液体を塗布した時の濡れ広がり径D、自然乾燥後に形成される塗布膜径Rとしたとき、L=D−R)との関係を示したグラフである。
【図12】塗布膜形成予定領域の中心を通過する任意の直線を対称軸とするような線対称関係のパターンを形成した場合に形成される塗布膜のイメージ図である。
【図13】塗布膜形成予定領域の中心を対称の中心とする点対称の位置に凹凸形状パターンを形成した場合に形成される塗布膜のイメージ図である。
【図14】本実施の一実施形態にかかる塗布対象基板の概略上面図である。
【図15】十分に大きな容量値を持つ補助容量を設けたアクティブマトリクス基板を作製するための、インクの塗布方法を示した模式図である。
【発明を実施するための形態】
【0034】
本発明に係る一実施形態について、図1から図15を参照して以下に説明する。
【0035】
本発明に係る塗布膜形成方法および塗布膜形成装置は、例えば、液晶パネルで用いられるTFT基板上に形成されたソース線とゲート線が交差する領域であったり、ソース線と保持容量線が交差する領域であったりに形成される絶縁膜を形成する、あるいは、形成した絶縁膜に欠陥がある場合にその欠陥を修復するために用いることができる。以下の実施形態では、ソース線とゲート線が交差する領域に設けられるゲート絶縁膜の欠陥部の修復工程を一例として挙げて説明するが、本発明に係る塗布膜形成方法および塗布膜形成装置は、これに限らず、インクジェットを用いてインク液体を塗布して塗布膜を形成する方法および装置として適用することができる。
【0036】
(1) 塗布膜形成装置の構成
図1は、本発明の一実施形態に係る膜形成装置の構成を示した外観図である。
【0037】
本実施形態の塗布膜形成装置1は、インクジェットヘッド10を備え、インクジェットヘッド10によりインク液体を基板20に向けて吐出して基板20の面にインク液体(液体)の塗布膜を形成する。そのため、塗布膜形成装置1は、図1に示すように、インクジェットヘッド10と、基板20を保持するステージ30と、吐出制御回路40と、観察用カメラ50(形成位置特定手段)、キャリッジ60(相対位置移動手段)、ガントリ70、および制御部80を備えている。また、塗布膜形成装置1には、図示しないレーザー照射装置(パターン構造形成手段)も設置されている。
【0038】
<インクジェットヘッド>
インクジェットヘッド10は、インク液体を吐出する吐出口を、ステージ30上に配置された基板20に対向させて、キャリッジ60に固定されている。インクジェットヘッド10は、吐出制御回路40に接続されており、吐出制御回路40から送信される吐出信号に応じてインク液体を吐出する。インクジェットヘッド10には、インク液体の吐出方法の相違により様々な方式のものが存在し、例えばピエゾ変換方式と熱変換方式などが挙げられる。本実施の形態においては、インクジェットヘッド10として、電圧を加えることにより変形するピエゾ素子の圧力でインク液体を射出するピエゾ変換方式のインクジェットヘッドを用いており、吐出制御回路40から送信される吐出信号としては、パルス電圧を用いている。
【0039】
なお、図1に示すように、本実施形態においては、基板20におけるインクジェットヘッド10と対向する面に対し垂直な方向をZ軸方向とし、基板20の長尺方向(長手方向)をX軸方向とし、X軸方向およびZ軸方向に対し垂直な方向をY軸方向とする。Y軸方向は、基板20の幅方向である。
【0040】
<ステージ>
基板20は、図示しないロボット等搬入出手段によりステージ30上に配置される。
【0041】
ステージ30には、例えばリニアスケールを持ったステージを採用することができる。この場合、ステージ30は、エンコーダのパルス信号によって、その移動が制御される。ステージ30は、制御部80に接続されている。
【0042】
<吐出制御回路>
吐出制御回路40は、インクジェットヘッド10におけるインク吐出を制御する。吐出制御回路40は、制御部80に接続されており、制御部80から送信された信号に応じて、吐出信号をインクジェットヘッド10へ送信する。吐出信号のパラメータは、吐出制御回路40内のメモリーに保持されている。また、吐出信号のパラメータ書き換えは、制御部80から送信されるパラメータ変更信号によって実施される。なお、パラメータ変更信号は、制御部80内で作成される。
【0043】
<観察用カメラ>
観察用カメラ50もまた、インクジェットヘッド10と同様に、キャリッジ60に固定されている。このため、塗布膜形成装置1にキャリッジ60が搭載された後、インクジェットヘッド10および観察用カメラ50との相対位置は変わらない。また、観察用カメラ50付近には、図示しないファイバーランプ等の照明手段が取り付けられている。そして、観察用カメラ50には、照明手段により照らされた基板20の反射像が撮像される。また、観察用カメラ50は、制御部80に接続されている。観察用カメラ50により撮像された画像は、制御部80内で画像処理される。そして、これにより、制御部80を通じて、基板20内のパターン(パターン構造)のサイズおよび形状を認識することができる。
【0044】
<キャリッジおよびガントリ>
キャリッジ60は、インクジェットヘッド10および観察用カメラ50を固定する部材である。また、ガントリ70は、キャリッジ60を保持する部材である。キャリッジ60は、ガントリ70に固定されている。ガントリ70は、ステージ30を幅方向(Y軸方向)に跨ぐように設けられている。換言すると、ガントリ70は、その長尺方向が基板20の長尺方向と直交するように配置されている。キャリッジ60は、ガントリ70の長尺方向(Y軸方向)に可動するようになっている。また、ステージ30は、その長尺方向(X軸方向)に可動するようになっている。これによって、インクジェットヘッド10および観察用カメラ50は、基板20上の任意の箇所の上方に配置されることになる。なお、本実施形態では、塗布膜形成装置1がステージ30とガントリ70との両方が移動可能になっている構成である場合について説明する。しかしながら、塗布膜形成装置1は、ステージ30とガントリ70とのどちらか片方が移動可能になっている構成であってもよい。
【0045】
<制御部>
制御部80には、ステージ30、キャリッジ60、および、ガントリ70が接続されており、これらの位置を制御する。また、制御部80は、パラメータ変更信号の作成や、上述した種々の制御を行なうとともに、後述する絶縁膜欠損部の検出を行なうための検出処理に関わる。
【0046】
制御部80には、例えばパソコン(PC)を使用することができる。
【0047】
<レーザー照射装置>
図示しない上記レーザー照射装置は、後述するように、基板に塗布されたインク液体を保持することができる構造を有するパターン(図2の(b)に示すパターン21(パターン構造)を、インク液体塗布前に基板上の任意の箇所に形成するための装置である。
【0048】
なお、本実施形態では、レーザー照射装置を用いて上記パターンを形成する構成について説明するが、本発明はこれに限定されるものではなく、基板に塗布されたインク液体を保持することができる凹形状、凸形状もしくは凹凸形状の構造を基板上に形成することができれば、その手法はレーザー照射に限られるものでない。例えば、導電性材料を用いた凸形状の上記パターンであってもよく、特に本実施形態のようにソース線およびゲート線を基板上に形成する場合には、そのソース線もしくはゲート線の形成工程と並行して、ソース線もしくはゲート線と同材料からなる凸形状の構造を上記パターンとして基板上に形成する構成であってもよい。
【0049】
本実施形態で用いるレーザー照射装置は、観察用カメラ50の照明光と同軸でレーザー光が照射される構成となっている(図2(b))。
【0050】
本実施の形態では、レーザー照射装置の発振媒体にはYAGを用い、発振方式としてパルス波形を使用したYAGパルスレーザーを用いている。また、レーザー照射装置には例えばKTP結晶のような非線形光学結晶を組み込んでおり、高調波を発生させることができ、レーザーの発振波長として266nm、532nm、1064nmの各波長を任意に選択して、発振させることができる。
【0051】
また、レーザー照射装置は図示しないレーザー照射用コントローラーに接続されており、レーザー照射装置に投入する電力や波形を調整することによって、発振波長、発振出力、発振波形、照射回数などの照射条件を任意に設定することができる。
【0052】
なお、本実施形態においては、YAGレーザーを使用したが、発振媒体、発振方式、発振出力、発振波長が異なるレーザー照射装置を使用してもよい。レーザー照射装置には例えばHOYA株式会社製レーザー発振器HSL−5500などを用いることができる。また、インクジェットヘッド10や観察用カメラ50と同様にレーザー照射装置をキャリッジに固定する構成でも良い。
【0053】
なおまた、レーザー照射用コントローラーの機能を、レーザー照射用コントローラーの代わりに上記制御部80が担っても良い。
【0054】
(2) 塗布膜形成方法
次に、本実施形態の塗布膜形成装置1を用いた、基板20上への塗布膜形成方法について図2を用いて説明する。図2は、本実施形態における塗布膜形成方法のフロー図である。
【0055】
本実施形態の塗布膜形成方法は、主に、レーザー照射により基板20上に凹形状パターンを形成するパターン形成工程(パターン構造形成工程)と、インク液体を基板20上に塗布する液体塗布工程と、基板上に塗布されたインク液体の自発的乾燥を行なう液体乾燥工程との3工程を含む。
【0056】
なお、本実施形態の膜形成方法では、インク液体を塗布する基板20として、液晶パネル等に用いるTFT基板の製造工程におけるゲート絶縁膜形成後(CVDによるゲート絶縁膜成膜後)の基板を用いる。また、インクジェットヘッド10から吐出するインク液体として、絶縁材料を含むインク液体を用いる。また、本実施形態の膜形成方法の一例として、絶縁膜欠損部の修正を目的とした膜形成方法について説明する。
【0057】
<絶縁膜欠損部の決定>
絶縁膜欠損部の修正にあたって、前段階として、まず、絶縁膜欠損部を有する基板20が、図示しないロボット等の搬入出手段によりステージ30上に配置される。このとき、基板20の画素サイズ、絶縁膜欠損部の位置情報等は、図示しない外部入力手段から制御部80へ転送される。
【0058】
次に、基板20の絶縁膜欠損部を観察用カメラ50で撮像し、制御部80にて撮像画像の画像処理を実施し、図示しない制御部80の表示部に表示する。これにより、基板20における絶縁膜欠損部のサイズおよび形状を認識することができ、インクジェットヘッド10によりインクを吐出・塗布する位置を決定することできる(図2(a))。
【0059】
絶縁膜欠損に起因するパネル不良のモードは、ゲート線−ソース線のリークに代表される上下配線のリークにより、線欠陥になることである。このため、絶縁膜修正を目的とした膜形成方法では、後の工程で上部に配線が形成されると想定される、絶縁膜欠損部の箇所に、絶縁材料を含む液体を塗布し、乾燥させることで膜を形成する。これにより、上下配線のリークを防ぐことができる。それゆえ、インクジェットヘッド10によりインクを吐出・塗布すべき位置(修正箇所)は、ゲート線や保持容量線とソース線とが交差する交差領域(クロス部)と、絶縁膜欠損部領域とが重なった位置である。
【0060】
<パターンの形成>
次に、制御部80に送信された塗布膜作製箇所の位置情報を基づき、図示しないレーザー照射装置が後述するパターン(パターン構造)形成位置上方に配置されるように、制御部80からガントリ70に動作信号が送信される。ガントリ70の移動動作終了後には、静定信号がガントリ70から制御部80に送信される。ガントリ70の静定信号を受信した制御部80は、レーザー照射開始信号を図示しないレーザー照射用コントローラーに送信する。レーザー照射信号を受信したレーザー照射用コントローラーは内部に保持された駆動条件を元に電気信号を作製し、電気信号をレーザー照射装置に送信する。電気信号を受信したレーザー照射装置はレーザー光90を基板20に向けて照射する。このレーザー照射によって、基板20上に凹形状のパターン21(パターン構造)が形成される(図2(b))。
【0061】
所定条件箇所への移動、レーザー照射を予め任意設定した回数繰り返すことで、基板20上へ任意数のパターン21が形成される。
【0062】
パターン21形成のためのレーザー照射条件(共振媒体、共振波形、共振強度など)は任意に設定することができ、基板上にサイズ直径1μm以上で、基板表面に対して垂直方向の深さ100nm程度を有する凹形状のパターン21を形成することができる条件とすれば良い。
【0063】
なお、パターン21の形成手法はレーザーに限らず、また、パターン21の形状も凹形状以外の凸形状でも凹凸形状でも良く、上記パターンとして、サイズ直径100nm以上、基板表面に対して垂直方向の深さ100nm以上(凸形状の場合は高さ)の構造を形成できる条件であれば任意に選択することができる。
【0064】
パターン形成完了後、観察用カメラ50にて基板20の任意の位置に形成されたパターン21の形状やサイズ、形成位置を観察する(図2(c))。パターン21の形成位置やパターン形状などに、例えばパターン21が後述する形成位置条件の範囲外に形成されているなどの異常が観察された場合、あるいは上記したパターン21の形成サイズに満たない場合などには、パターン21を形成した同位置座標あるいはパターン21形成条件に該当する他の位置座標にレーザーを照射し、再度パターン21を形成し直し(図2(b))、観察用カメラ50による観察(図2(c))を行なう。観察用カメラ50による観察の結果がパターン21の形成条件の範囲内に該当した場合には、パターン21の形成処理を完了し、パターン形成完了信号が制御部80に送信される。
【0065】
ここで、パターンを上述したように、ソース線もしくはゲート線と同一材料から同一工程で形成する場合には、ソース線もしくはゲート線の形成時に、絶縁膜の形成予定領域を考慮した位置座標に相当する位置にパターンを形成すれば良い。
【0066】
<インクの塗布>
上記パターン形成完了信号を受信した制御部80は、次に、図2(a)で取得した任意の塗布膜作製箇所の位置情報を基づき、機械設計値を元にインクジェットヘッド10が塗布膜作製箇所の上方に配置されるように、制御部80からガントリ70に動作信号が送信される。ガントリ70の移動動作終了後は、静定信号がガントリ70から制御部80に送信される。ガントリ70の静定信号を受信した制御部80は、吐出開始信号を吐出制御回路40に送信する。吐出開始信号を受信した吐出制御回路40は内部に保持された駆動条件を元に電気信号を作製し、電気信号をインクジェットヘッド10に送信し、インクジェットヘッド10からインク液体100が吐出される(図2(d))。吐出されたインク液体100は基板20上に着弾し、電気信号をインクジェットヘッド10に送信後、吐出制御回路40は吐出終了信号を制御部80に送信する。
【0067】
制御部80は上記吐出終了信号を受信後、次の吐出開始信号を送信し、図2(d)の操作をあらかじめ設定させた回数繰り返した後、基板20上に塗布したインク液体100の液溜りが形成したパターン21のエッジ部分に到達し、塗布膜の形状を形成するまで、任意の時間、基板上に塗布した液溜りを自然乾燥させる。これで、塗布膜が完成する。この際、例えばSOG材料のような絶縁材料など加熱することで性質改善や特性向上が期待させる材料インクを塗布する場合には、自然乾燥完了後に、任意に設定した乾燥/焼成条件によって追加乾燥や焼成を行っても良い。ここで、一例として乾燥手段を挙げておく。
【0068】
乾燥手段の一例としてエアヒーターがある。エアヒーターはインクジェットヘッド10と同様に、キャリッジ60に固定することができ、塗布膜形成装置1にキャリッジ60が搭載された後、インクジェットヘッド10とエアヒーターとの相対位置が変わらない状態を実現することができる。
【0069】
エアヒーターはその内部に抵抗発熱体とK型熱電対とを有している。上記K型熱電対は抵抗発熱体近傍に配置されるとともに、図示しない温度調整用コントローラーに接続されている。上記抵抗発熱体もまた、温度調整用コントローラーに接続されており、温度調整用コントローラーがK型熱電対から得られる起電流を読み取り、温度変換するとともにあらかじめ設定された温度になるよう、抵抗発熱体に印加する電流量を制御する。
【0070】
また、エアヒーターは気体配管に接続され、外部から例えば工場圧縮空気等の気体が供給される構成である。気体はエアヒーターの気体供給口から供給され、内部の抵抗発熱体で加熱されたのち、気体排出口から排出される。排出される気体の温度は、図示しないレギュレーター等の気体供給量調整手段と抵抗発熱体の温度により設定される。
【0071】
上記温度調整用コントローラーは、例えば制御部80などの外部制御手段に接続され、外部制御手段で温度条件が設定される。加熱の開始、終了については外部制御手段から温度調整用コントローラーに信号が送信され、その信号に基づいて端コントローラーが抵抗発熱体に流れる電流のオンオフを設定する。
【0072】
風量はエアヒーターに接続している図示しないレギュレーター等の風量調整手段により制御される。気体の供給については、例えば電磁弁等の自動開閉手段を制御部80などの外部制御手段に接続し、開閉を制御する。
【0073】
エアヒーターには、例えばインフリッヂ工業製スーパーエアヒーターMAXを用いることができる。
【0074】
なおエアヒーターではなく、基板全面を加熱するオーブンやホットプレートであってもよい。
【0075】
塗布膜110形成完了後、観察用カメラ50が塗布膜110を形成した箇所の略上方に配置されるように、ガントリ70が移動する(図2(e))。制御部80はガントリ70からの静定信号を受信後、観察用カメラ50によって基板20表面に形成された塗布膜110の画像から塗布膜形成位置情報や塗布膜サイズなどの情報を取得しその後、ガントリ70を元の位置に移動させる。基板20内の他配線間交差箇所に絶縁膜欠損部が存在する場合には、図2(a)〜図2(e)の作業を繰り替えし、塗布膜の形成処理を行なう。全ての配線間交差箇所への塗布膜形成処理の完了後、基板20は図示しないロボット等の搬入出手段によりステージ30から払い出される。
【0076】
<インク液体とパターンとの関係>
次に、本実施形態で使用されるインク液体100の特徴について説明する。
【0077】
まず図3は、上記パターン21を形成していない基板20(アルカリガラス製)上にインク液体100を塗布し、塗布膜110が形成される過程を示している。インクジェットでインク液体100を吐出し、その液溜りをカメラで観察すると、液滴着弾箇所を中心に広がったインク液体(図3(a))が、自然乾燥過程で液溜り中心部に集まる挙動が観察され(図3(b))、液溜りがさらに乾燥することにより塗布膜が形成される。これは、インク液体100が表面張力と蒸気圧が異なる成分を2つ以上含む混合溶媒からなり、その乾燥過程における混合溶媒の濃度差に起因とした現象と考えられる。
【0078】
具体的には、本実施形態で用いられるインク液体100が、後述するように低表面張力かつ高蒸気圧の第1の主溶媒と、高表面張力かつ低蒸気圧の第2の主溶媒とからなる2成分系の主溶媒で構成されている。まず、基板20上に塗布されたインク液体100は、低表面張力の第1の主溶媒の影響により、液滴着弾箇所を中心として基板20上に大きく濡れ広がる(図3(a))。この際、インク液体100が濡れ広がった直径を濡れ広がり径Dとする。濡れ広がり径Dは、例えば塗布液滴量や塗布液滴数などの吐出条件や後述するインク調整条件に応じて変化する。高蒸気圧の第1の主溶媒は、低蒸気圧の第2の主溶媒と比較して蒸発速度が速く、基板20上に塗布されたインク液体100の主溶媒構成成分は溶媒乾燥に伴い、徐々に第2の主溶媒が支配的となる。第2の主溶媒は第1の主溶媒と比較して表面張力が高いため、基板20上に一度濡れ広がったインク液体100は、第1の主溶媒の乾燥の進行に伴い、液滴着弾箇所を中心として中央付近に集まる挙動を示す(図3(b))。そのため、基板20上に形成される塗布膜110は図3(c)に示すように薄膜部と厚膜部から構成される断面形状となる。この際、形成された塗布膜110の厚膜部の直径を塗布膜直径Rとすると、図3(c)に記載するように薄膜部を含めた直径が濡れ広がり径Dとなり、厚膜部の直径が塗布膜直径Rとなる。
【0079】
次に、アクリルガラス製の基板20上に上記パターン21を形成した場合のインク液体100の挙動について説明する。図4は、3つのパターン21を形成した基板20上にインク液体100を塗布した際の塗布膜形成過程を示している。上述のようにパターン21を形成した基板20上においても、インク液体100は大きく濡れ広がり(図4(a))、第1の主溶媒の乾燥に伴い、第2の主溶媒が支配的となり、液滴着弾箇所を中心として中央に集まる挙動を示すが、インク液体100が濡れ広がり後に中央に集まる過程にパターン21が存在すると、インク液体100の物性に起因した後述するメカニズムによってパターン21のエッジにインク液体100が保持され(図4(b))、パターンエッジに保持された状態の塗布膜110が形成される(図4(c))。
【0080】
パターン21のエッジにてインク液体100が保持される現象について図5を用いて説明する。図5はパターンエッジにおけるインク液体100の挙動を示しており、図5では上記パターン21として一般的なゲート配線もしくは同工程・同材料で作成したパターン(Ti/Al/Tiによる3層構造)が基板20上に形成されている例を用いる。
【0081】
図5に示すように、パターン21のエッジに接触したインク液体100は、パターン21のエッジに接触したインクを引き離そうとする液−液間に働く表面張力120と、パターン21のエッジがインク液体100を引き付けようとする固−液間に働く分子間力に起因した密着力130との2つの相反する方向に働く力を受ける。この際、インク液体100間に働く力の強度の絶対値はわからないが、パターン21のエッジがインク液体100を引き付ける固−液間の密着力130がパターン21のエッジからインクを引き剥す表面張力120よりも大きいため、その結果としてパターン21のエッジにインク液体100が保持されていると考えられる。
【0082】
次に、パターン21のエッジにインク液体100が保持された後の乾燥挙動について説明する。図6は、パターン21のエッジにインク液体100が保持された後の乾燥挙動のイメージ図を示している。基板20上には2つのパターン21を形成している。
【0083】
上述のように、高蒸気圧側の第1の主溶媒の乾燥に伴い、第2の主溶媒の高い表面張力の影響を受け、液滴着弾箇所140を中心として徐々に中央に集まるが、この際パターン21と接触している箇所はパターン21のエッジにインク液体100が保持される(図6(a))。表面張力はインク液体100の表面積が最小になるように作用しているが、パターン21のエッジに保持されたインク液体100は強い固−液間の密着力を受け流動することができないため、インクの集合中心を液滴着弾箇所140からインク110を保持しているパターン21のエッジ間の中間部分150にインク集合の中心をシフトさせる。そのため、図6(b)に示すようなパターンエッジの中点を中心とした塗布膜が形成される。なお、インクはパターン21のエッジの或る接点で捕捉されるため、上記「パターンエッジの中点」とは、パターン21のエッジにインクが保持された接点間の中心位置(座標)のことを示す。本説明ではパターン21を2つ形成した場合について説明しているが、パターン形成数が3つ以上の基板20へインク液体100を塗布した場合も上記説明と同様の表面張力による作用が働き、インク液体100の集合中心がインク液体100を保持している全てのパターンエッジから等距離の位置へシフトする。そのため、基板20上に塗布したインク液体100による塗布膜の形成箇所は、基板20上でのパターン21の形成位置によって一義的に決定することができる。すなわち、塗布膜を形成するインク液体100にセルフアライメントの効果を発揮させることができる。
【0084】
<インクの組成>
本実施形態に用いるインク液体100は、シリカゾルと、アルコキシシランの部分加水分解物(有機マトリクス)との反応物からなる溶質成分(機能性材料)、および界面活性剤が、分散媒に分散または溶解してなる。以下、インクを構成する各成分について説明する。
【0085】
[シリカゾル]
本発明に用いられるシリカゾルは、水と有機溶媒との混合溶媒中、アルカリ触媒の存在下でアルコキシシランを加水分解重縮合して得られたものである。
【0086】
・ アルコキシシラン
アルコキシシランとしては、下記の一般式(1);
Si(OR’)4−n …(1)
(式中、R、R’は炭素数1〜8のアルキル基、アリール基またはアルケニル基を表わし、nは0〜3の整数である)
で表される。
【0087】
具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラオクチルオキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリイソプロポキシシラン、ジメチルジメトキシシラン、メチルトリブトキシシラン、オクチルトリエトキシシラン、フェニルトリメトキシシラン、ビニルトリメトキシシラン等が挙げられる。これらのアルコキシシランは単独で用いてもよく、2種以上組み合わせて用いてもよい。
【0088】
・ 有機溶媒
有機溶媒としては、アルコール類、ケトン類、エーテル類、エステル類を単独あるいは複数組み合わせて用いることができる。より具体的には、例えばメタノール、エタノール、ブロパノール、ブタノールなどのアルコール類、メチルセロソルブ、エチルセロソルブなどのエチレングリコールエーテル類、エチレングリコール、プロピレングリコールなどのグリコール類、酢酸メチル、酢酸エチル、乳酸メチルなどのエステル類等がある。
【0089】
・ アルカリ触媒
アルカリ触媒としては、アンモニア、アミン、アルカリ金属水酸化物、第4級アンモニウム化合物、アミン系カップリング剤など、水溶液中でアルカリ性を示す化合物が用いられ、反応混合物のpHが7〜12、好ましくは8〜11となるような量で用いる。
【0090】
・ 調製方法
シリカゾルの調製法をさらに具体的に例示すると、例えば、水−アルコール混合溶媒を撹拌しながら、この混合溶媒にアルコキシシランおよび、例えばアンモニア水のようなアルカリ触媒を添加し、加水分解させる。
【0091】
水は、アルコキシシランを構成するSi−OR基1モル当り5〜50モル、好ましくは5〜25モルとなるような量で用いられ、アンモニアは前記のpH範囲となる量で、アルコキシシランをSiO例えば0.01〜1.0モル/SiOモル、好ましくは0.05〜0.8モル/SiOモルとなるような量で用いられる。
【0092】
加水分解重縮合反応は、通常、常圧下、用いられる溶媒の沸点以下の温度で、好ましくは沸点より5〜10℃程度低い温度で行なわれるが、オートクレーブ等を用いて行なう場合には、この温度よりもさらに高い温度で行なうこともできる。
【0093】
上記のような条件で加水分解すると、アルコキシシランの重縮合が三次元的に進行し、シリカ粒子が生成、成長する。
【0094】
また、上記のように、例えば撹拌下の水−アルコール混合溶媒に、アルコキシシランとアンモニアとを添加し、水−アルコール混合溶媒の沸点以下の温度、例えば約100℃以下の温度で反応を進行させて、シリカ粒子を生成・成長させ、その後、上記温度を溶媒の沸点以上の温度、例えば約100℃以上の温度に昇温し、一定時間保持して加熱処理を行なってもよい。
【0095】
このような加熱処理を行なうと、アルコキシシランの重縮合が一層促進され、密度の大きいシリカ粒子が分散したシリカゾルが得られる。
【0096】
本発明において用いられるシリカゾルは、シリカ粒子の平均粒子径が5〜50nm、好ましくは10〜30nmの範囲にあることが好ましい。シリカ粒子の平均粒子径が小さすぎると、得られる絶縁膜形成用塗布液を用いた絶縁膜成形時に膜面にクラックが発生する傾向があり、一方、大きすぎても膜にボイドが多発し、緻密な膜が得られない場合がある。
【0097】
シリカ粒子は、シリカゾル中にSiOとして2〜50重量%、さらには5〜40重量%の範囲にあることが望ましい。
【0098】
シリカ粒子の濃度が50重量%を越えるとゲル化し易い傾向があり、シリカ粒子の濃度が2重量%未満の場合は絶縁膜形成用塗布液の濃度が低すぎて所望の厚さの絶縁膜が形成できない場合がある。
【0099】
[アルコキシシランの部分加水分解物(有機マトリクス)]
シリカゾルと反応させるアルコキシシランとしてはシリカゾルの調製に用いた上記一般式(1)で示されるアルコキシシランを用いるが、この時、シリカゾルの調製に用いたと同一のアルコキシシランでもよく、異なっていてもよい。
【0100】
本発明においては、シリカゾルと反応させるアルコキシシランはそのまま用いても良いが、常法に従って予め部分加水分解させた後、得られた部分加水分解物とシリカゾルとを混合することが好ましい。このようにすると、ゾルの凝集、ゲル化が起こり難くなる傾向がある。ここで、部分加水分解とは、上記一般式(1)のOR’基の少なくとも1個以上が加水分解によりOH基となり、加水分解重縮合物中にOR’残基を有する加水分解を意味する。
【0101】
アルコキシシランの部分加水分解を行なう際には、通常、水、有機溶媒、酸またはアルカリ触媒が用いられる。有機溶媒およびアルカリ触媒としては、前述したものが挙げられる。酸触媒としては、具体的には、塩酸、硝酸、硫酸などの無機酸、酢酸、シュウ酸などの有機酸または金属石ケンなどの水溶液中で酸性を示す化合物が用いられる。
【0102】
水は、アルコキシシランを構成するSi−OR基1モル当り、通常、0.1〜2モル、好ましくは0.5〜2モルの量で用いられる。酸触媒が用いられる場合には、反応液のpHが、通常、0.1〜6、好ましくは1〜3となるような量で、また、アルカリ触媒か用いられる場合には、反応液のpHが、通常、7〜10、好ましくは7〜8となるような量で用いられる。
【0103】
上記のような条件で得られるアルコキシシラン部分加水分解物の分子量(ポリスチレン換算分子量)は、100〜10,000、好ましくは500〜5,000であることが望ましい。
【0104】
[溶質成分]
なお、本発明においては、上記シリカゾルと、上記有機マトリクス成分とを混合し、反応させて溶質成分とする。シリカ粒子の表面で有機マトリクス成分を反応させることで、得られる絶縁膜は緻密で密着性、機械的強度、耐薬品性、耐湿性、絶縁性等に優れる。
【0105】
シリカゾルと、有機マトリクス成分との混合比は、シリカゾル中のSiO(A)の重量/有機マトリクス成分中のSiO(B)の重量=0.1〜10.0、好ましくは0.25〜4.0となるような重量比で混合させることが望ましい。
【0106】
成分(A)の量が多くなると、得られる絶縁膜は、耐熱性、耐湿性には優れるが、5μm以上の膜厚領域でクラックが発生しやすくなる傾向があり、一方、成分(B)の量が多くなると、得られる絶縁膜は耐熱性、耐湿性が不充分となる傾向がある。
【0107】
本発明においては、上記のようにシリカゾルと有機マトリクス成分とを混合した後、25〜100℃、好ましくは40〜80℃で、通常、0.5〜5時間、好ましくは1〜3時間加熱処理を行なう。このような処理によって本実施形態で用いる絶縁性のインクを得ることができる。なお、前記処理温度が低い場合は、シリカゾルと有機マトリクス成分との界面での重縮合反応が不十分となり、絶縁膜のクラック耐性膜厚が低下しやすくなる。処理温度が高すぎると、有機マトリクス成分の重縮合反応が進行し過ぎ、インク材料自身の安定性が不充分となることがある。
【0108】
[界面活性剤]
界面活性剤としては、イオン性界面活性剤(陽,陰,両性)や非イオン界面活性剤など、インクからの溶媒の乾燥速度を調整できるものならば何を用いてもよいが、膜の高絶縁性を保持するために非イオン性の界面活性剤を使用するのが好ましい。また、有機マトリクス成分との親和性の観点から、非イオン性界面活性剤の中でもポリシリコーン系界面活性剤(ポリエーテル変性、アミノ変性、エポキシ変性、アルコキシ変性等)を使用することが望ましい。特に本発明では、ポリエーテル変性シリコーン系界面活性剤が好適であり、さらに、この平均分子量が1,000〜100,000、さらには10,000〜80,000の範囲にあることが最も好ましい。平均分子量が1,000未満の場合は、溶質成分との親和性が強くなり膜表面に存在しにくくなり、溶媒揮発性の調整効果が低下してしまう。一方、この平均分子量が100,000を越えると、溶質成分との親和性が低くなりすぎて、ポリエーテル変性シリコーンによるインク中の凝集体あるいは絶縁膜中での偏析等が生じ、均一な絶縁膜を得ることができなくなることがある。
【0109】
また、インク中の界面活性剤の配合濃度は、液体全体に対して0.025重量%未満、さらには0.02〜0.1重量%の範囲にあることが好ましい。インク中の界面活性剤の濃度が少ないと、本発明の目標とした膜厚制御性の効果が得られないことがある。また、インク中の界面活性剤の濃度が多すぎると、絶縁膜と基板の密着性不良による膜の剥離が生じ易くなることがある。
【0110】
[分散媒]
本発明のインクは、上記反応物と、界面活性剤とが分散媒に分散または溶解している。分散媒としては、有機溶媒が適しており、大気圧下での沸点が220℃以下のものであれば特に制限はなく用いることができる。
【0111】
例えば、アルコール類、ケトン類、エーテル類、芳香族類等が挙げられ、より具体的には、例えば、エタノール、イソプロパノール、ブタノールなどのアルコール類、アセトン、メチルイソブチルケトンなどのケトン類、メチルセロソルブ、エチルセロソルブなどのエチレングリコールエーテル類、エチレングリコール、プロピレングリコール、プロピルプロピレングリコールなどのグリコール類等が挙げられる。
【0112】
さらには、分散媒に用いる2種類以上の有機溶媒の20℃における蒸気圧差が、100Pa以上あることが好ましい。蒸気圧差が小さすぎると、塗布後の濡れ広がった液体の内側に凹凸形状のパターンが存在しても、乾燥挙動の過程においてパターンエッジに塗布液体が保持されず、この状態で乾燥が進行すると、パターンエッジを中心もしくはパターンエッジ間の中点を中心とした塗布膜が形成されないことがある。
【0113】
また、混合溶媒中の主成分は少なくとも2種からなり、インクの体積に対する混合溶媒の体積が占める割合は、30%以上、かつ、100%未満となるように構成されている。これらの主成分間では、少なくとも1種の溶媒とそれ以外の溶媒種のうちいずれか1種の溶媒において、表面張力の差が1mN/m以上あることが望ましい。
【0114】
また、混合溶媒中の主成分が占める割合は、50重量を超えていればよく、主成分が2種類以上からなる場合には、それらの合計が混合溶媒中の50重量%を超えていればよい。
【0115】
また、インク中の溶質成分の濃度は固形分として5〜50重量%、さらには10〜30重量%の範囲にあることが好ましい。溶質成分の濃度が大きすぎると、インクの粘度が高くなり、経時安定性が不充分となることがある。溶質成分の濃度が少ないと、基材塗布や乾燥時間が不必要に長くなり、絶縁膜の形状制御が行ないにくくなる。
【0116】
溶剤の蒸気圧については、有機化合物辞典(有機合成化学協会編、講談社(1985))または Dangerous Properties of Industrial Materials 6th ed. (N.I. Sax他編、Van Nostrand Reinhold Company(1984))に記載の数値を用いた。インクの表面張力については、自動表面張力計(協和界面科学株式会社製,CBVP-A3)を用いて、20℃で測定した。インクの粘度については、粘度計(東機産業(株)製 VISCONIC TVE−22LT型)を用いて25℃で測定した。
【0117】
<インクの一具体例>
インクの一具体例を挙げると、例えば、50重量%(インクの体積に対して50%)のプロピルプロピレングリコール(沸点145℃(0.1MPa)、蒸気圧227Pa(20℃),表面張力25mN/m(20℃),比重0.923)と、25重量%(インクの体積に対して25%)のへキシレングリコール(沸点198℃(0.1MPa)、蒸気圧2.7Pa(20℃),表面張力27mN/m(20℃))とからなる混合溶媒に、界面活性剤として0.02重量%(インクの体積に対して0.02体積%)のポリエーテル変性シリコーン界面活性剤を混合した分散媒を用いて、溶質成分(前述した、シリカゾルとアルコキシシラン加水分解物との反応物)の濃度が25重量%になるようなインク構成とし、このインクの粘度は17mPa・s、表面張力は26mN/mであった。
【0118】
<主溶媒の混合体積比の影響>
次に主溶媒の混合体積比の影響について説明する。
【0119】
図7に第1の主溶媒の混合体積比率と濡れ広がり径と塗布膜径の差L(アクリルガラス基板上にインク液体を塗布した時の濡れ広がり径をD、自然乾燥後に形成される塗布膜径をRとし、L=D−Rによって算出する)との関係を示す。この際、濡れ広がり径Dと塗布膜径Rとの間隔距離は、光学顕微鏡を用いて濡れ広がり径および塗布膜径を測定し、Lの値を算出している。図7より、分散媒の主成分中の第1の主溶媒の混合体積比率が30%に満たない場合あるいは単成分溶媒(100%)の場合には、Lの値は0すなわち上述の乾燥挙動を示さない。一方、分散媒の主成分中の第1の主溶媒の混合体積比が30%以上かつ100%未満の場合では、Lの絶対値は異なるものの上述のインク乾燥挙動を示すことがわかる。第1の主溶媒が30%未満の場合には、第1の主溶媒の蒸発速度が速いため塗布直後から蒸発が始まっており、塗布液滴が濡れ広がりきった際には、第2の主溶媒が既に支配的な状態になっているためだと考えられる。このことから、分散媒の主成分中の第1の主溶媒の混合体積比は少なくとも30%以上かつ100%未満に調整することが望ましい。
【0120】
次に、主溶媒の選択方法について説明する。図8は、主溶媒間の蒸気圧差に対する濡れ広がり径と塗布膜径の差Lとの関係を、図9は主溶媒間の表面張力差に対する濡れ広がり径と塗布膜径の差Lとの関係を示す。主溶媒間の蒸気圧差は、第1および第2の主溶媒の飽和蒸気圧曲線を用いて、塗布環境温度を変化させることによって調整しており、分散媒の主成分中の第1の主溶媒の混合体積比は50%としている。図8および図9の結果より、主溶媒間に蒸気圧差100Pa以上かつ1mN/m以上の表面張力差がある場合に、上述の乾燥挙動を示すことがわかる。すなわち、溶媒間に100Pa以上の蒸気圧差を形成することで、乾燥溶媒成分に偏りを持たせ、かつ1mN/m以上の表面張力差を設けることでインクを中央に集合させる効果を発現させることができる。これらの差は、溶媒が20℃のときの条件である。
【0121】
本実施形態では第1の主溶媒としてプロピルプロピレングリコール、第2の主溶媒としてヘキシレングリコールを選択しているが、100Pa以上の蒸気圧差および1mN/m以上の表面張力差を有する溶媒であれば任意に2種類を選択しても良い。ただし、選択する溶媒においてその効果の程度、例えば乾燥速度などが異なる。そのため、用途に合わせて使用する溶媒種類や混合比、蒸気圧差、表面張力差などを上述した条件を満たした上で適切に調整することがより望ましい。
【0122】
また、本実施形態では、溶質として絶縁材料を選択しているが、例えば誘電材料、金属材料、蛍光材料など他の機能性材料を溶質として選択しても良い。
【0123】
さらに、本実施の形態では説明の簡便化のためインク液体100の主溶媒を2成分としているが、乾燥や表面張力の制御あるいは作製塗布膜の形状制御などのために、主溶媒を3成分以上にしても良い。仮に主溶媒を3成分とした場合にも、この3成分は塗布液体中の30体積%以上、100体積%未満を占める。また、3成分のうちの1成分が他のいずれかの成分との比較において、20℃における蒸気圧差が100Pa以上あり、20℃における表面張力の差が1mN/m以上である条件を満たせば良い。
【0124】
また、溶媒の乾燥制御や濡れ広がりの改善のために、インク液体100の溶媒に界面活性剤をはじめとする添加剤を添加しても良い。しかしながら、添加剤の添加量によっては、インク液体100の乾燥挙動が変わる。図10はインク液体中の添加剤添加量と濡れ広がり径の関係、図11はインク液体中の添加剤添加量に対する濡れ広がり径と塗布膜径の差L(アクリルガラス上にインク液体を塗布した時の濡れ広がり径D、自然乾燥後に形成される塗布膜径Rとしたときの濡れ広がり径と塗布膜径の差、L=D−R)を示したグラフである。この際のインク液体中の主溶媒の混合体積比は50%としている。図10および図11より、インク液体中の添加剤添加量を増加させるに伴い、インク液体100の濡れ広がり径が増加する一方、添加剤を増加させると濡れ広がり径と塗布膜径の差が小さくなり、添加剤をインク液体に対して0.03重量%以上添加した場合には、L=0すなわち濡れ広がり径と塗布膜厚径が一致する。前述したように本塗布膜形成方法では、基板上に塗布した液溜りの乾燥過程で、低蒸気圧側の主溶媒が顕著に蒸発することで、次第に高蒸気圧、高表面張力の主溶媒が支配的となり、濡れ広がり径と塗布膜径に差が生じるが、添加剤をインク液体に対して0.03重量%以上添加すると、乾燥過程での低蒸気圧側の主溶媒の蒸発がほぼ抑制された状態で液溜りからの塗布膜形成が完了したためであると考えられる。したがって、本塗布膜形成方法にて塗布膜を形成するには、添加剤の添加量はインク液体に対して0.025重量%以下にすることが望ましい。
【0125】
<パターンの形成位置>
次に、本実施の形態における塗布膜形成装置1を用いた、基板20上へのパターン21の形成位置について説明する。
【0126】
上述したようにパターンエッジにインク液体100を保持させるためには、パターンエッジがインク液体100と接触させる必要があり、パターンエッジがインク液体100と接触するには、パターン21はインク液体100の濡れ広がり径Dよりも内側に形成する必要がある。そのため、インク着弾中心からパターンエッジまでの最小距離をdとすると、インクの濡れ広がり径Dとの関係は、
D/2>d
となる。
【0127】
この際、パターン形成位置が塗布膜径Rよりも小さい場合には、形成したパターン21は、インク液体100と接触しているものの、形成される塗布膜の内部に存在することになるため、パターンエッジにインク液体100を保持し、乾燥過程における上述の集合中心シフトの効果を発現することができない。そのため、形成される塗布膜径Rよりもインクの着弾中心からパターンエッジまでの最小距離dを大きくする必要があり、
d>R/2
となる。そのため、パターン21はR<2d<Dの関係を満たす任意の位置に形成する必要がある。
【0128】
次に、パターンの形成位置と塗布膜の形成位置との関係について説明する。前述したように塗布膜の形成位置は基板20上に形成したパターン21の形成位置によって一義的に決定される。そのため、例えば図12は塗布膜形成予定領域中心160を通る直線を対称軸170として線対称となる位置に凹凸形状のパターン21を形成した場合、図13は塗布膜形成予定箇所の中心を点対称とする位置に凹凸形状のパターン21を形成した場合の形成塗布膜のイメージを示したものであるが、本塗布膜形成方法を用いて作製した塗布膜の形成位置の中心は、基板上に作製したパターン21のパターン21のエッジ間の中心となるため、図12(a)に示すように塗布膜形成予定領域の中心160を通過する任意の直線を対称軸170とするような線対称関係のパターン21を形成すると、図12(b)に示すような塗布膜が形成される。この場合には、凹凸形状パターンの対称軸170と同方向に対しては塗布膜形成予定箇所の中心座標とは相違が生じる可能性があるが、対称軸170と垂直方向の座標に対しては一致する。そのため、図12(a)のように塗布膜形成予定領域の中心160を通る直線を対称軸170として線対称となる位置に凹凸形状のパターン21を形成した場合には、塗布膜形成予定領域の中心座標に対して少なくとも一方向の座標が一致した塗布膜を形成することができる。
【0129】
一方、図13(a)のように塗布膜形成予定領域の中心160を対称点とする点対称の位置に凹凸形状のパターン21を形成した場合には、塗布膜形成予定領域の中心座標がパターン21のエッジ間の中点と一致する。そのため、塗布膜形成予定箇所の中心座標に対して位置ズレのない塗布膜(図13(b))を形成することができる。
【0130】
以上から、凹凸形状のパターン21の形成位置は、塗布膜形成位置の位置ズレ許容精度に応じて設定することが望ましい。
【0131】
なお、本実施形態ではパターン21の形成速度、処理タクト等の利便性が非常に良いためレーザー照射によるパターン形成を行っているが、例えばフォトリソグラフィーやエッチングなどのパターン形成方法を用いて予め塗布膜形成位置の周囲にパターンを形成する方法などを用いてもよい。また、複数のパターンをそれぞれ異なる手法で形成しても良い。すなわち、レーザー照射とエッチングとを組み合わせても良い。
【0132】
なお、本実施の形態では、インクジェットによる絶縁膜修復プロセスについて説明したが、これに限定されるものではなく、例えば特開2007−225860号公報で開示された、走査配線と信号配線の交差部に形成される容量を低減し、十分に大きな容量値を持つ補助容量を設けたアクティブマトリクス基板の製造プロセスにも適応できる。
【0133】
特開2007−225860号公報によれば、有機材料を含む絶縁材料により形成された第1絶縁層を形成する方法として、スピンコートやスリットコートにより有機SOG材料を塗布し、プリベーク、ポストベークの後、ゲート電極に重なる部分等の所定の部分をエッチングにより除去する方法が開示されている。
【0134】
しかしながら、特開2007−225860号公報に開示された構造のアクティブマトリクス基板を作製するためには、除去する工程はかならずしも必要なわけではなく、選択的に必要箇所にのみ第1絶縁層が形成できればよい。つまり、必要箇所にのみ第1絶縁層が形成する方法として、本実施の形態で説明したインクジェットによる絶縁膜形成方法が適応できる。
【0135】
以下に、走査配線と信号配線の交差部に形成される容量を低減し、十分に大きな容量値を持つ補助容量を設けたアクティブマトリクス基板を作製する工程に、本実施の形態で説明した絶縁膜形成方法を適応した例について説明する。なお、本実施の形態では走査配線と信号配線の交差部に形成される容量を低減し、十分に大きな容量値を持つ補助容量を設けたアクティブマトリクス基板として、保持容量線(補助容量線)とソース線(信号線)が交差する領域の容量(寄生容量)を低減させるための、絶縁膜(絶縁層)を形成する方法について図14を用いて説明する。図14は本実施形態にかかる塗布対象基板210の概略上面図である。
【0136】
図14に示すように塗布対象基板210として、特開2007−225860号公報に開示されたように、フォトリソグラフィー技術を用いて作製されたゲート線211、保持容量線212が形成された基板(絶縁膜、および半導体層が形成されていない基板)を用い、インクジェットヘッド10から吐出する液体として、本実施の形態で説明した絶縁材料を含むインクを用いる。液体を塗布する装置は、本実施の形態で説明した塗布膜形成装置1を用いることができる。なお、塗布対象基板には、本実施の形態で説明したインク液体100を保持するための凹凸パターン213を、後工程で形成されるソース線216と保持容量線が交差する領域214に対して、本実施の形態で説明したパターン形成条件内の所定位置に形成する。つまり、ここで形成されるインク液体100を保持するためのパターン213は、ゲート線と同じ材料からなり、ガラス面に対して凸部を有するパターンになる。
【0137】
次に、塗布対象基板210に対し、本実施の形態で説明したインク液体100を塗布する方法を、図15を用いて説明する。図15は十分に大きな容量値を持つ補助容量を設けたアクティブマトリクス基板を作製するための、インク液体100の塗布方法を示した模式図である。
【0138】
図15(a)に示すように、ステージ30、キャリッジ60、およびガントリ70を移動させながら、基板面の所定のエリアにインクを塗布する。この際インク液体100は、インクジェットヘッド10のインク液体100を吐出速度や、ステージ30、キャリッジ60、ガントリ70の移動精度等の様々な影響を受け、所望の位置からずれた位置に着弾する(図15(b))。しかしながら、予め塗布対象基板210に作製したパターン213により、インク液体100が乾燥過程においてパターン213のエッジで保持され、絶縁膜215が形成される(図15(c))。このように、本実施の形態で説明した塗布膜形成方法を用いることで、インク液体100の着弾位置に関係なく、パターン213の形成位置に依存した塗布膜を形成することができる。特に、本実施の形態で説明したように、フォトリソグラフィー技術を用いてパターン213を形成することで、塗布膜を形成したい所望の箇所に対し高精度のパターン213を形成することができ、結果として高精度で塗布膜を形成することができる。
【0139】
以上のように、本実施の形態で説明した塗布膜形成方法を用いることで、液晶パネルにおけるTFT基板への塗布プロセスのように、高い塗布精度が要求される塗布膜形成プロセスにおいて、セルフアライメント効果を発揮することで、所望する位置に高精度に塗布膜を形成することができる。
【0140】
(3)本実施形態の作用効果
以上のように、本実施形態に係る塗布膜形成方法を用いれば、基板上における塗布膜の形成予定領域の中心位置とは異なる位置座標に、凹形状、凸形状もしくは凹凸形状を有する複数個のパターンをそれぞれの位置座標が互いに異なるように形成するパターン形成工程と、パターン形成工程の後に、パターン形成工程によって形成された少なくとも2個の上記パターンのエッジが1つの液溜りの内になるように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成する液体塗布工程とを含んでいる。そして、少なくとも第1の溶媒と当該第1の溶媒とは異なる第2の溶媒とを混合した主溶媒が体積比で30%以上かつ100%未満占めている分散媒であって、当該第1の溶媒と当該第2の溶媒との20℃における蒸気圧差が100Pa以上であって第1の溶媒が第2の溶媒よりも蒸気圧が高く、かつ、第2の溶媒が第1の溶媒よりも20℃における表面張力が1mN/m以上高く構成された当該分散媒に機能性材料を分散させてなる液体を、上記液体塗布工程の上記液体として用いている。この方法によれば、低表面張力かつ高蒸気圧側の第1の溶媒の効果によって塗布と同時に塗布液体は大きく濡れ広がるが、高蒸気圧の第1の溶媒の蒸発とともに高表面張力かつ低蒸気圧側の第2の溶媒の乾燥挙動が支配的となる。第2の溶媒は高表面張力であるため、濡れ広がった液は塗布位置の中央に集まるような乾燥挙動を示す。この際、濡れ広がった液体の内側に上記パターンが存在すると、乾燥挙動の過程において上記パターンのエッジに塗布液が保持される。この状態で乾燥が進行すると、当該エッジを中心もしくは或るパターンのエッジと別のパターンのエッジとの間の中点を中心とした塗布膜が形成される。このため、塗布液自体のセルフアライメントによって、塗布膜形成位置を補正することができ、塗布膜の形成箇所は、濡れ広がった塗布液を保持する上記パターン構造の形成位置によって一義的に決定することができる。そのため、塗布膜形成装置に高精度の塗布精度が要求されず、塗布膜形成装置に安価で比較的精度が悪いステージなどを採用することができるようになり、装置コストを低減させることができる。
【0141】
したがって、本発明に係る塗布膜形成方法および塗布膜形成装置によれば、着弾精度が要求される塗布膜形成プロセスにおいて、塗布膜形成装置周辺の環境条件に影響を受けずに所望する位置に高精度で塗布膜を形成し、かつ装置コストを低減させることができる塗布膜形成方法および塗布膜形成装置を提供することができる。
【0142】
なお、本実施形態では、説明の簡便化のためインクジェットによる絶縁膜修復プロセスについて説明したが、これに限定されるものではなく、例えばゲート絶縁膜を形成する方法に適用することができる。すなわち、インクジェットにより絶縁材料を含む液体を、ゲート線とソース線とが交差する領域、若しくは保持容量が形成される領域に滴下することにより、選択的に絶縁膜を形成する方法に、本実施形態の膜形成方法を適用することができる。この場合、例えば、液晶パネル等に用いるTFT基板の製造工程において、ガラス基板に対しゲート線としての下配線が形成された基板(絶縁膜、および半導体層が形成されていない基板)を液体塗布対象の基板として、図1に示したインクジェットヘッド10から吐出する液体として、絶縁膜の絶縁材料を含むインクを用いる。
【0143】
なおまた、本発明に係る塗布膜形成方法は、1つの液溜りの内側に位置するパターンとして、ゲート線およびソース線の少なくとも一方を利用してもよい。
【0144】
なおまた上記パターン形成工程において、インク液体と接触しないパターンを形成してもよい。このパターンは、例えばゲート線に相当する。すなわち、パターン形成工程において形成されるパターンのうちの一部は、塗布対象基板上において別の構造体あるいは当該構造体の一部を担っている、インク液体と接触しないパターンであってもよい。
【0145】
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
【産業上の利用可能性】
【0146】
本発明は、液晶パネルのTFT基板のように、高さと形成領域に制約がある層間絶縁膜を形成する方法、装置に適応することができ、広く利用することができる。
【符号の説明】
【0147】
1 塗布膜形成装置
10 インクジェットヘッド(液体塗布手段)
20 基板
21 パターン、パターンエッジ(パターン構造)
30 ステージ
40 吐出制御回路
50 観察用カメラ(形成位置特定手段)
60 キャリッジ(相対位置移動手段)
70 ガントリ
80 制御部
90 レーザー光
100 インク液体
110 塗布膜(インク液体)
140 液滴着弾箇所
150 中間部分
160 中心
160 塗布膜形成予定領域中心
170 対称軸
210 塗布対象基板(塗布対象物)
211 ゲート線(配線)
212 保持容量線
213 パターン
214 領域
215 絶縁膜
216 ソース線

【特許請求の範囲】
【請求項1】
塗布対象物上の一部分に液体を塗布して、当該塗布液が乾燥することで塗布対象物上の所定領域を覆う塗布膜を形成する塗布膜形成方法において、
塗布対象物上における上記所定領域の中心位置とは異なる位置座標に、凹形状、凸形状もしくは凹凸形状を有する複数個のパターン構造をそれぞれの位置座標が互いに異なるように形成するパターン構造形成工程と、
上記パターン構造形成工程の後に、パターン構造形成工程によって形成された少なくとも2個の上記パターン構造のエッジが1つの液溜りの内になるように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成する液体塗布工程と、を含み、
少なくとも第1の溶媒と当該第1の溶媒とは異なる第2の溶媒とを混合した主溶媒が体積比で30%以上かつ100%未満占めている分散媒であって、当該第1の溶媒と当該第2の溶媒との20℃における蒸気圧差が100Pa以上であって第1の溶媒が第2の溶媒よりも蒸気圧が高く、かつ、第2の溶媒が第1の溶媒よりも20℃における表面張力が1mN/m以上高く構成された当該分散媒に機能性材料を分散させてなる液体を、上記液体塗布工程の上記液体として用いることを特徴とする塗布膜形成方法。
【請求項2】
上記パターン構造形成工程では、上記パターン構造として、
塗布対象物上の或る構造体の一部を担っていて、且つ、上記液体を所定位置に位置決めするための兼用パターン構造と、
上記液体を所定位置に位置決めするためだけの専用パターン構造とを形成し、
上記液体塗布工程では、上記兼用パターン構造のエッジおよび上記専用パターン構造のエッジが1つの液溜りの内になるように、塗布対象物上の一部分に上記液体を塗布して当該液溜りを形成することを特徴とする請求項1に記載の塗布膜形成方法。
【請求項3】
上記液体には、0.025重量%未満の範囲で界面活性剤が含まれていることを特徴とする請求項1または2に記載の塗布膜形成方法。
【請求項4】
上記液体塗布工程の後に、上記液溜りの溶媒を自発的に乾燥させる乾燥工程を更に含むことを特徴とする請求項1から3までの何れか1項に記載の塗布膜形成方法。
【請求項5】
上記パターン構造形成工程では、上記所定領域の中心位置を通る任意の直線を対称軸として線対称となる位置にそれぞれ上記パターン構造を形成することを特徴とする請求項1から4までの何れか1項に記載の塗布膜形成方法。
【請求項6】
上記パターン構造形成工程では、上記所定領域の中心位置を対称点とする点対称となる位置にそれぞれ上記パターン構造を形成することを特徴とする請求項1から5までの何れか1項に記載の塗布膜形成方法。
【請求項7】
上記パターン構造形成工程では、上記パターン構造を形成すると同時に、上記液溜りの外に在って、且つ、塗布対象物上に形成される或る構造体の一部を担うパターン部を形成することを特徴とする請求項1から6までの何れか1項に記載の塗布膜形成方法。
【請求項8】
上記パターン構造形成工程では、導電性材料を用いて上記凸形状のパターン構造を形成し、当該パターン構造の形成と並行して当該導電性材料を用いて塗布対象物上に配線を形成することを特徴とする請求項1から7までの何れか1項に記載の塗布膜形成方法。
【請求項9】
上記パターン構造形成工程では、レーザー光を照射することによって上記パターン構造を形成することを特徴とする請求項1から6までの何れか1項に記載の塗布膜形成方法。
【請求項10】
請求項1から9までの何れか1項に記載の塗布膜形成方法を実現するための塗布膜形成装置であって、
上記パターン構造を形成するためのパターン構造形成手段と、
上記塗布対象物上を観察することによって、上記パターン構造の形成位置を特定するための形成位置特定手段と、
上記液体を塗布するための液体塗布手段と、
上記塗布対象物を載置し、上記液体塗布手段と上記塗布対象物の相対位置を任意に変更するための相対位置移動手段とを備えていることを特徴とする塗布膜形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2012−16664(P2012−16664A)
【公開日】平成24年1月26日(2012.1.26)
【国際特許分類】
【出願番号】特願2010−155773(P2010−155773)
【出願日】平成22年7月8日(2010.7.8)
【出願人】(000005049)シャープ株式会社 (33,933)
【出願人】(000190024)日揮触媒化成株式会社 (458)
【Fターム(参考)】