説明

多値変調光送受信装置および多値変調光送受信方法

【課題】複数の変調方式に対応する光受信回路を容易に実現し、低消費電力で高速な多値変調光送受信装置および方法を得る。
【解決手段】ディジタル信号処理光トランシーバ(20)は、通信路からの光受信信号を、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離する受信フロントエンド(30)と、4チャネルの信号に対して信号点判定を行い、信号点が2点しか存在しない場合には変調方式が2相位相変調であると判断し、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルを選択して信号処理を施し、信号点が4点存在する場合には変調方式が4相位相変調であると判断し、X偏波、Y偏波それぞれのIチャネル成分とQチャネル成分の4チャネルを選択して信号処理を施すディジタル信号処理部(50)とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信システムなどのディジタル通信装置に適用される多値変調光送受信装置および多値変調光送受信方法に関するものである。
【背景技術】
【0002】
情報データおよびオーバヘッドを含むデータフレームに誤り訂正(FEC:Forward Error Correction)符号を付加して構成されたFECフレームを光信号として送受信する従来の多値変調光送受信装置および多値変調光送受信方法に適用される光変調方式としては、例えば、以下のものが挙げられる。
On Off Keying(OOK)
2相位相変調(Binary Phase Shift Keying:BPSK) 4相位相変調(Quadrature Phase Shift Keying:QPSK)
差動4相位相変調(Differential QPSK:DQPSK)
【0003】
また、それぞれの光変調方式に対して、偏波直交多重を行うことで、より高ビットレートなデータを通信することが可能である(例えば、非特許文献1、2参照)。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】ITU−T Recommendation G.709
【非特許文献2】OIF−VSR5−01.0
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来技術には、以下のような課題がある。
従来の多値変調光送受信装置および多値変調光送受信方法において、複数の変調方式の使用に対応する場合には、それぞれの変調方式に適合する回路が必要であった。このため、高速な多値変調光送受信装置および多値変調光送受信方法を得るためには、回路構成が複雑となり、消費電力も増大してしまうといった問題があった。
【0006】
本発明は、前記のような課題を解決するためになされたものであり、複数の変調方式に適合する光受信回路を容易に実現し、低消費電力で高速な多値変調光送受信装置および多値変調光送受信方法を得ることを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る多値変調光送受信装置は、フレーマとディジタル信号処理光トランシーバとを有し、情報データおよびオーバヘッドを含むデータフレームに誤り訂正符号を付加して構成されたFECフレームを光信号として送受信する光伝送装置に用いられる多値変調光送受信装置であって、ディジタル信号処理光トランシーバは、通信路からの光受信信号を、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離する受信フロントエンドと、受信フロントエンドから受信した4チャネルの信号に対して信号点判定を行い、信号点が2点しか存在しない場合には変調方式が2相位相変調であると判断し、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルを選択して信号処理を施すことで受信信号を生成し、信号点が4点存在する場合には変調方式が4相位相変調であると判断し、X偏波、Y偏波それぞれのIチャネル成分とQチャネル成分の4チャネルを選択して信号処理を施すことで受信信号を生成するディジタル信号処理部とを有するものである。
【0008】
また、本発明に係る多値変調光送受信方法は、フレーマとディジタル信号処理光トランシーバとを有し、情報データおよびオーバヘッドを含むデータフレームに誤り訂正符号を付加して構成されたFECフレームを光信号として送受信する光伝送装置に用いられる多値変調光送受信方法であって、通信路からの光受信信号を、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離し、分離した4チャネルの信号に対して信号点判定を行い、信号点が2点しか存在しない場合には変調方式が2相位相変調であると判断し、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルを選択して信号処理を施すことで受信信号を生成し、信号点が4点存在する場合には変調方式が4相位相変調であると判断し、X偏波、Y偏波それぞれのIチャネル成分とQチャネル成分の4チャネルを選択して信号処理を施すことで受信信号を生成するものである。
【発明の効果】
【0009】
本発明に係る多値変調光送受信装置および多値変調光送受信方法によれば、受信フロントエンドでは、多値変調の方式や偏波多重の有無に関わらず、その構成を同一とし、後段でのディジタル信号処理部での信号処理のみを異なる構成とし、後段の回路の入力部に1:2DEMUXなどの簡単な回路を追加することで、あらゆる変調方式に対応することを可能とすることにより、複数の変調方式に対応する光受信回路を容易に実現し、低消費電力で高速な多値変調光送受信装置および多値変調光送受信方法を得ることができる。
【図面の簡単な説明】
【0010】
【図1】本発明の実施の形態1に係る誤り訂正を用いたディジタル通信システムを示す構成図である。
【図2】本発明の実施の形態1における光伝送装置の詳細を示す構成図である。
【図3】本発明の実施の形態2における光伝送装置の詳細を示す構成図である。
【発明を実施するための形態】
【0011】
以下、本発明の多値変調光送受信装置および多値変調光送受信方法の好適な実施の形態につき図面を用いて説明する。
【0012】
実施の形態1.
図1は、本発明の実施の形態1に係る誤り訂正(Forward Error Correction)を用いたディジタル通信システムを示す構成図である。以下の説明においては、このようなディジタル通信システムのことを、単に「光通信システム」と称す。図1における光通信システムは、2つの光伝送装置1a、1b、および通信路2で構成されている。
【0013】
図2は、本発明の実施の形態1における光伝送装置1a、1bの詳細を示す構成図である。図2における光伝送装置1a(1b)は、OTUk(k=0,1,2,3,4・・・)(Optical channel Transport Unit―k)フレーマ10およびディジタル信号処理光トランシーバ20を備えている。そして、OTUkフレーマ10は、OTUkフレーム生成11およびマルチレーン分配12を備えた送信部と、マルチレーン同期13およびOTUkフレーム終端14を備えた受信部とで構成されている。ここで、OTUkフレーム生成11は、硬判定FECエンコーダ11aを有しており、OTUkフレーム終端14は、硬判定FECデコーダ14aを有している。
【0014】
一方、ディジタル信号処理光トランシーバ20は、マルチレーン同期21、軟判定FECエンコーダ22、マルチレーン分配23、プリコーダ24、多重化25、D/A変換26、およびE/O変換27を備えた光送信部と、受信フロントエンド30、A/D変換40、およびディジタル信号処理部50を備えた光受信部とで構成されている。
【0015】
ここで、受信フロントエンド30は、偏波ビームスプリッタ31(PBS31)、ローカルオシレータ32(LO32)、偏波ビームスプリッタ33(PBS33)、90°光ハイブリッド34、O/E変換35、およびAMP36を備えている。また、ディジタル信号処理部50は、多重分離&適応等化フィルタ51、1:2DEMUX52a、52b、セレクタ53a、53b(SEL53a、53b)、マルチレーン同期54、軟判定FECデコーダ55、およびマルチレーン分配56を備えている。
【0016】
次に、図2に示す光伝送装置1a(1b)の動作について説明する。まず始めに、OTUkフレーマ10の動作について説明する。OTUkフレーム生成11は、硬判定FECエンコーダ11aを有しており、クライアント送信信号をデータフレームとしてのOTUkフレームにマッピングし、フレーム同期や保守制御に必要な情報を付加して光伝送フレームを生成し、マルチレーン分配12へ出力する。
【0017】
マルチレーン分配12は、OTUkフレーム生成11で生成されたOTUkフレームを複数のレーンに分配して、SFI(Serdes Framer Interface)送信信号をディジタル信号処理光トランシーバ20へ出力する。
【0018】
一方、マルチレーン同期13は、ディジタル信号処理光トランシーバ20からのSFI受信信号に対して複数レーン間の同期をとって、OTUkフレームをOTUkフレーム終端14へ出力する。
【0019】
OTUkフレーム終端14は、硬判定FECデコーダ14aを有しており、マルチレーン同期13により同期がとられたOTUkフレームに対して、フレーム同期や保守制御に必要な情報を終端し、クライアント受信信号をOTUkフレームからデマッピングし、クライアント受信信号を出力する。
【0020】
次に、ディジタル信号処理光トランシーバ20の動作について説明する。マルチレーン同期21は、OTUkフレーマ10からのSFI送信信号に対して複数レーン間の同期をとったSFI送信信号を軟判定FECエンコーダ22へ出力する。
【0021】
軟判定FECエンコーダ22は、FEC符号化手段であり、マルチレーン同期21により同期がとられたSFI送信信号を、軟判定用の誤り訂正符号により符号化する。マルチレーン分配23は、軟判定符号化された信号を複数のレーンに分配する。プリコーダ24は、多値光信号を生成する。
【0022】
多重化25は、プリコーダ24の出力を多重化する。D/A変換26は、多重化25の出力信号をD/A変換する。E/O変換27は、D/A変換26からの電気信号であるアナログ信号を、光信号に変換して光送信信号を通信路2に出力する。
【0023】
一方、受信フロントエンド30は、通信路2からの光受信信号を電気のアナログ信号に変換する。具体的には、この受信フロントエンド30は、通信路2から受信した光信号のX偏波とY偏波を分離するPBS31と、コヒーレント受信を行うためのLO32と、LOを偏波分離するPBS33と、偏波分離された光信号とLOの信号を混合する90°光ハイブリッド34と、受信した光信号を電気信号に変換するO/E変換35と、O/E変換された信号を増幅するAMP36とで構成されている。さらに、A/D変換40は、AMP36を介して受信したアナログ信号をqビットの軟判定受信データに変換する。
【0024】
次に、ディジタル信号処理部50は、A/D変換後の信号に対してディジタル信号処理を施し、SFI受信信号を生成し、OTUkフレーマ10に出力する。具体的には、このディジタル信号処理部50内の多重分離&適応等化フィルタ51は、qビットの軟判定受信データを多重分離し、多重分離した信号をディジタル信号処理して、受信信号の歪みを補正する。
【0025】
1:2DEMUX52a、52bは、それぞれ多重分離&適応等化フィルタ51の出力を2分配する。SEL53a、53bは、それぞれ1:2DEMUX52a、52bにより2分配された信号と、分配されていない多重分離&適応等化フィルタ51からの出力信号のいずれか一方を選択する。
【0026】
マルチレーン同期54は、複数のレーン間の同期を取って各レーンのスキュー調整と、レーン入れ替えを行う。軟判定FECデコーダ55は、レーン毎にqビットの軟判定受信データの軟判定復号を行う。さらに、マルチレーン分配56は、SFI受信信号をOTUkフレームへ出力する。
【0027】
このような一連動作を踏まえ、本実施の形態1における多値変調光送受信装置および多値変調光送受信方法の技術的特徴について説明する。図2に示すように、ディジタル信号処理光トランシーバ20内の光受信部は、受信フロントエンド30、A/D変換40、およびディジタル信号処理部50で構成されている。そして、受信フロントエンド30では、多値変調の方式や偏波多重の有無に関わらず、その構成を同一としている。
【0028】
その一方で、後段のディジタル信号処理部50では、多値変調の方式や偏波多重の有無により、異なる信号処理を実施できる構成としている。すなわち、多重分離&適応等化フィルタ51とマルチレーン同期54との間に、2つの1:2DEMUX52a、52bと、2つのSEL53a、53bを設けることで、あらゆる変調方式に対応することを可能としている。この結果、複数の変調方式に対応する光受信回路を容易に実現し、低消費電力で高速な多値変調光送受信装置および多値変調光送受信方法を実現している。
【0029】
より詳細に説明すると、光受信信号は、受信フロントエンド30にて、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離される。一方、ディジタル信号処理部50内の多重分離&適応等化フィルタ51では、変調方式に応じて、受信した4チャネルの信号の信号点判定が行われる。
【0030】
この時、変調方式が2相位相変調の場合には、信号点が2点しか存在しないため、受信信号を回転することにより、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルが出力されることになる。
【0031】
一方、変調方式が4相位相変調の場合には、信号点が4点存在するため、X偏波、Y偏波それぞれに対してIチャネル成分と、Qチャネル成分が生成され、4チャネルが出力される。
【0032】
このように、受信フロントエンド30では、多値変調の方式や偏波多重の有無に関わらず、その構成は同一となり、構成が異なるのは、後段のディジタル信号処理部50での信号処理である。すなわち、後段の回路の入力部に1:2DEMUX52a、52bとSEL53a、53bといった簡単な回路を追加することで、変調方式に応じた適切な信号を選択して信号処理を行うことができ、あらゆる変調方式に対応することを可能としている。
【0033】
なお、X偏波、Y偏波、Iチャネル、Qチャネルのレーンの状態は、多重分離&適応等化フィルタ51での処理により、入れ替わることがある。入れ替わった場合は、マルチレーン同期54にて、OTUkフレームのMFASの情報から補正することが可能である。
【0034】
以上のように、実施の形態1によれば、受信フロントエンドの構成については、使用する変調方式に関わらず、常に4チャネル(レーン)分を処理している。その一方で、後段のディジタル信号処理部では、DP―BPSKの場合には2チャネル分が出力され、DP−QPSKの場合には4チャネル分が出力される。そして、さらに後段のOTN−MLDや誤り訂正復号部において、変調方式に関わらず4チャネル動作を実現するべく、1:2DEMUX部およびSEL部を加えることにより、回路の共通化を図っている。この結果、低消費電力で多様な変調方式をサポートする光受信部を構成することが可能となる。
【0035】
実施の形態2.
先の実施の形態1では、ディジタル信号処理部50内で、1:2DEMUX52a、52bと、SEL53a、53bを、多重分離&適応等化フィルタ51とマルチレーン同期54との間に設けた構成とした場合について説明した。これに対して、本実施の形態2では、ディジタル信号処理部50内の構成が先の実施の形態1とは異なり、先の実施の形態1と同様の効果を得る多値変調光送受信装置および多値変調光送受信方法について説明する。
【0036】
図3は、本発明の実施の形態2における光伝送装置1a、1bの詳細を示す構成図である。基本的な構成は、先の実施の形態1における図2の構成と同様であり、ディジタル信号処理部50内の構成だけが異なっている。そこで、この相違点を中心に、以下に説明する。
【0037】
本実施の形態2におけるディジタル信号処理部50は、多重分離&適応等化フィルタ51、1:2DEMUX52a、52b、2レーン用のマルチレーン同期54aと軟判定FECデコーダ55a、4レーン用のマルチレーン同期54bと軟判定FECデコーダ55b、およびマルチレーン分配56を備えている。
【0038】
先の実施の形態1では、多重分離&適応等化フィルタ51とマルチレーン同期54との間に、2つの1:2DEMUX52a、52bと、2つのSEL53a、53bを設けることで、あらゆる変調方式に対応することを可能としていた。これに対して、本実施の形態2では、マルチレーン同期(54a、54b)と軟判定FECデコーダ(55a、55b)を、2レーン対応のブロックと4レーン対応のブロックに分けて個別に設けることで、先の図2に示したSEL53a、53bを不要とすることができる。
【0039】
偏波多重4相位相変調のように4レーン全てを使用する変調方式を採用した場合には、4レーン対応のブロックで処理を行う。一方、偏波多重2相位相変調のように2レーンのみを使用する変調方式を採用した場合には、2レーン対応のブロックで処理を行う。このような処理を行うことで、あらゆる変調方式に対応することが可能となる。
【0040】
また、図3では、1:2DEMUX52a、52bを、それぞれ第1レーンと第3レーンに配置している。しかしながら、先に述べたように、多重分離&適応等化フィルタ51では、どのレーンにどの信号が出力されるか分からないという不確定要素がある。このため、第1レーンから第4レーンまでの全てに1:2DEMUXを配置して、マルチレーン同期(2レーン)54aに入力し、マルチレーン同期でのレーン入れ替えを実施する際に、必要な2レーンを選択して処理を行うようにしてもよい。
【0041】
以上のように、実施の形態2によれば、先の実施の形態1とは異なる構成を備えたディジタル信号処理部を用いることによっても、先の実施の形態1と同様の効果を得ることができる。すなわち、受信フロントエンドの構成については、使用する変調方式に関わらず、常に4チャネル(レーン)分を処理している。その一方で、後段のディジタル信号処理部では、DP―BPSKの場合には2レーン対応のブロックで処理され、DP−QPSKの場合には4レーン対応のブロックで処理される構成とすることで、回路の共通化を図っている。この結果、低消費電力で多様な変調方式をサポートする光受信部を構成することが可能となる。
【符号の説明】
【0042】
1a、1b 光伝送装置、2 通信路、10 OTUkフレーマ、11 OTUkフレーム生成、11a 硬判定FECエンコーダ、12 マルチレーン分配、13 マルチレーン同期、14 OTUkフレーム終端、14a 硬判定FECデコーダ、20 ディジタル信号処理光トランシーバ、21 マルチレーン同期、22 軟判定FECエンコーダ、23 マルチレーン分配、24 プリコーダ、25 多重化、26 D/A変換、27 E/O変換、30 受信フロントエンド、31 偏波ビームスプリッタ(PBS)、32 ローカルオシレータ(LO)、33 偏波ビームスプリッタ(PBS)、34 90°光ハイブリッド、35 O/E変換、36 AMP、40 A/D変換、50 ディジタル信号処理部、51 多重分離&適応等化フィルタ、52a、52b 1:2DEMUX、53a、53b セレクタ、54、54a、54b マルチレーン同期、55、55a、55b 軟判定FECデコーダ、56 マルチレーン分配。

【特許請求の範囲】
【請求項1】
フレーマとディジタル信号処理光トランシーバとを有し、情報データおよびオーバヘッドを含むデータフレームに誤り訂正符号を付加して構成されたFECフレームを光信号として送受信する光伝送装置に用いられる多値変調光送受信装置であって、
前記ディジタル信号処理光トランシーバは、
通信路からの光受信信号を、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離する受信フロントエンドと、
前記受信フロントエンドから受信した前記4チャネルの信号に対して信号点判定を行い、信号点が2点しか存在しない場合には変調方式が2相位相変調であると判断し、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルを選択して信号処理を施すことで受信信号を生成し、信号点が4点存在する場合には変調方式が4相位相変調であると判断し、X偏波、Y偏波それぞれのIチャネル成分とQチャネル成分の4チャネルを選択して信号処理を施すことで受信信号を生成するディジタル信号処理部と
を有することを特徴とする多値変調光送受信装置。
【請求項2】
請求項1に記載の多値変調光送受信装置において、
前記FECフレームは、OTUkフレームであることを特徴とする多値変調光送受信装置。
【請求項3】
フレーマとディジタル信号処理光トランシーバとを有し、情報データおよびオーバヘッドを含むデータフレームに誤り訂正符号を付加して構成されたFECフレームを光信号として送受信する光伝送装置に用いられる多値変調光送受信方法であって、
通信路からの光受信信号を、X偏波成分のIチャネルとQチャネル、Y偏波成分のIチャネルとQチャネルの計4チャネルに分離し、分離した前記4チャネルの信号に対して信号点判定を行い、信号点が2点しか存在しない場合には変調方式が2相位相変調であると判断し、X偏波のIチャネル成分とY偏波のIチャネル成分の2チャネルを選択して信号処理を施すことで受信信号を生成し、信号点が4点存在する場合には変調方式が4相位相変調であると判断し、X偏波、Y偏波それぞれのIチャネル成分とQチャネル成分の4チャネルを選択して信号処理を施すことで受信信号を生成することを特徴とする多値変調光送受信方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−77686(P2011−77686A)
【公開日】平成23年4月14日(2011.4.14)
【国際特許分類】
【出願番号】特願2009−225084(P2009−225084)
【出願日】平成21年9月29日(2009.9.29)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度、総務省、「超高速光伝送システム技術の研究開発(デジタルコヒーレント光送受信技術)」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】