説明

多層一軸延伸フィルム

【課題】従来よりもさらに偏光性能を高めつつ、同時に斜め方向に入射した光に対して斜め方向の入射角による透過偏光の色相ずれが解消され、さらに耐熱寸法安定性にも優れた、反射偏光機能を有する多層一軸延伸フィルムを提供すること。
【解決手段】第1層と第2層とが交互に積層された251層以上の多層一軸延伸フィルムであり、該第1層は(i)ジカルボン酸成分としてナフトエ酸成分を含む特定のジカルボン酸成分を5モル%以上50モル%以下、およびナフタレンジイル基を有するジカルボン酸成分を含有し、(ii)ジオール成分として炭素数2〜4のアルキレン基を有するジオール成分を含有するポリエステルからなる層で、該第2層は80℃以上のガラス転移温度を有する共重合量5モル%以上85モル%以下の共重合ポリエステルからなる平均屈折率1.50以上1.60以下かつ光学等方性の層であり、85℃での熱収縮率が1.5%以下である多層一軸延伸フィルムにより達成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一定の偏光成分を選択的に反射し、該偏光成分と垂直方向の偏光成分を選択的に透過する多層一軸延伸フィルムに関するものである。さらに詳しくは、一定の偏光成分を選択的に反射し、該偏光成分と垂直方向の偏光成分を選択的に透過する偏光性能に優れ、かつ斜め方向に入射した光に対して部分的な反射が発生することなく透過偏光の色相ずれが解消され、耐熱寸法安定性にも優れた多層一軸延伸フィルムに関するものである。
【背景技術】
【0002】
屈折率の低い層と屈折率の高い層とを交互に積層したフィルムは、層間の構造的な光干渉によって、特定波長の光を選択的に反射または透過する光学干渉フィルムとすることができる。また、このような多層フィルムは、膜厚を徐々に変化させたり、異なる反射ピークを有するフィルムを貼り合せたりすることで金属を使用したフィルムと同等の高い反射率を得ることができ、金属光沢フィルムや反射ミラーとして使用することもできる。さらには、このような多層フィルムを1方向にのみ延伸することで、特定の偏光成分のみを反射する偏光反射フィルムとしても使用できる。これらを液晶ディスプレイなどに使用することで、液晶ディスプレイなどの輝度向上フィルムとして使用できることが知られている。
【0003】
一般に層厚が0.05〜0.5μmの異なる屈折率を持った層で構成される多層フィルムは、一方の層を構成する層と他方の層を構成する層の屈折率差と膜厚および積層数により、特定の波長の光を反射する増反射といった現象がみられる。一般にその反射波長は、下記の式で示される。
λ=2(n×d+n×d
(上式中、λは反射波長(nm)、n、nはそれぞれの層の屈折率、d、dはそれぞれの層の厚み(nm)を表わす)
【0004】
例えば特許文献1に示されている通り、一方の層に正の応力光学係数をもった樹脂を使用することで、1軸方向に延伸することによりかかる層の屈折率を複屈折化させて異方性を持たせ、フィルム面内の延伸方向における層間の屈折率差を大きくし、一方でフィルム面内の延伸方向と直交方向における層間の屈折率差を小さくする方法により、特定の偏光成分のみを反射することができる。
この原理を利用して、例えば一方向の偏光を反射し、その直交方向の偏光を透過するといった反射偏光フィルムを設計することができ、そのときの望ましい複屈折性は下記の式で表される。
1X>n2X、n1Y=n2Y
(上式中、n1X、n2Xはそれぞれの層における延伸方向の屈折率、n1Y、n2Yはそれぞれの層における延伸方向に直交する方向の屈折率を表す)
【0005】
また、特許文献2には、屈折率の高い層にポリエチレン−2,6−ナフタレンジカルボキシレート(以下、2,6−PENと称することがある)を使用し、屈折率の低い層に熱可塑性エラストマーやテレフタル酸を30mol%共重合したPENを使用した多層フィルムが例示されている。これは、一方の層に正の応力光学係数を有する樹脂を使用し、他方の層に応力光学係数が非常に小さい(延伸による複屈折の発現が極めて小さい)樹脂を使用することで、特定の偏光のみを反射する反射偏光フィルムを例示したものである。
また、特許文献3にはポリエチレン−2,6−ナフタレンジカルボキシレートを高屈折率層とし、不活性粒子を含む多層積層フィルムが記載されているが、広波長域において一方の偏光を高反射させる反射偏光フィルムの概念は提案されていない。
【0006】
このように、屈折率の高い層に2,6−PENを用いることは従来より知られているが、屈折率の高い層に2,6−PENを用いた反射偏光機能を有する多層一軸延伸フィルムでは、延伸後のPEN層における延伸方向に直交する方向(Y方向)の屈折率とフィルム厚み方向(Z方向)の屈折率に差異が生じる。そのため延伸倍率を大きくして延伸方向(X方向)の層間の屈折率差を大きくし、偏光性能を高めようとすると、それに伴いZ方向の層間の屈折率差が大きくなり、斜め方向に入射した光に対する部分的な反射により透過光の色相ずれが生じるため、さらに延伸倍率を高めて偏光度を高めることが困難であった。
【0007】
また、特許文献4には、632.8nmでの屈折率1.58以下およびガラス転移温度90℃以上のコポリエチレンナフタレートを含むポリマーおよび該ポリマーを面内複屈折の低い層に用いる多層フィルムが提案されているが、高屈折率層に用いるPEN系ポリマーとして、従来型のホモPENまたはテレフタル酸共重合PENが用いられている状況である。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平4−268505号公報
【特許文献2】特表平9−506837号公報
【特許文献3】国際公開第01/47711号パンフレット
【特許文献4】特表2008−517139号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、従来の多層フィルムが有する上記の課題を解消し、従来よりもさらに偏光性能を高めつつ、同時に斜め方向に入射した光に対して斜め方向の入射角による透過偏光の色相ずれが解消され、さらに耐熱寸法安定性にも優れた、反射偏光機能を有する多層一軸延伸フィルムを提供することにある。
【課題を解決するための手段】
【0010】
本発明は、以下の知見に基づく。即ち、高屈折率層を構成する第1層の樹脂として従来から用いられていたポリエチレン−2,6−ナフタレンジカルボキシレートは、一軸延伸により、延伸方向(X方向)の屈折率は増大するものの、Y方向では延伸前後でほとんど屈折率が変化せず、一方Z方向は屈折率が低下する特徴を有する。そのため、延伸倍率を大きくして延伸方向(X方向)の層間の屈折率差を大きくし、偏光性能を高めようとすると、それに伴いZ方向の層間の屈折率差が大きくなる。また、延伸後のZ方向の層間の屈折率を一致させようとすると今度はY方向の層間の屈折率差が大きくなる。そのため、偏光性能の向上と斜め方向の入射光に対する透過偏光の色相ずれ抑制の両立が難しい。
【0011】
本発明者らは、高屈折率層を構成する第1層の樹脂として、ポリエチレン−2,6−ナフタレンジカルボキシレートに代えて、6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を含有する屈折率の高いポリエステルを用いると、一軸延伸後の第1層のX方向とY方向の屈折率差を大きくすることができることに加え、Y方向とZ方向の両方向について層間の屈折率差を小さくすることができる結果、本発明の課題である偏光性能の向上と斜め方向の入射角による透過偏光の色相ずれ解消の両立化が可能となること、同時に本発明の高屈折率層のポリエステルは延伸時の応力が低いため耐熱寸法安定性が高くなることが期待されたにも係らず、低屈折率層に用いるポリマーも耐熱寸法安定性に影響することを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明の目的は、以下の発明により達成される。
1. 第1層と第2層とが交互に積層された251層以上の多層一軸延伸フィルムにおいて、
1)該第1層は、ジカルボン酸成分とジオール成分とのポリエステルからなる層であり、
(i)ジカルボン酸成分は5モル%以上50モル%以下の下記式(A)で表される成分および50モル%以上95モル%以下の下記式(B)で表される成分を含有し、
【化1】

(式(A)中、Rは炭素数2〜4のアルキレン基を表わす)
【化2】

(式(B)中、Rはナフタレンジイル基を表わす)
(ii)ジオール成分は90モル%以上100モル%以下の下記式(C)で表される成分を含有し、
【化3】

(式(C)中、Rは炭素数2〜4のアルキレン基を表わす)
2)該第2層は、80℃以上のガラス転移温度を有する共重合量5モル%以上85モル%以下の共重合ポリエステルからなり、平均屈折率1.50以上1.60以下かつ光学等方性の層であって、
3)該多層一軸延伸フィルムの85℃、30分の条件における熱収縮率が1.5%以下であることを特徴とする多層一軸延伸フィルム。
【0013】
また、本発明によれば、上記の多層一軸延伸フィルムを用いた下記の輝度向上用部材、液晶ディスプレイ用複合部材、液晶ディスプレイ装置、偏光板、および、液晶ディスプレイ装置用光学部材も提供される。
2. 第2層を構成する共重合ポリエステルが脂環族ジオールを共重合成分とする共重合ポリエチレンテレフタレートである前項1に記載の多層一軸延伸フィルム。
3. 共重合ポリエチレンテレフタレートを構成する共重合成分がスピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種である前項2に記載の多層一軸延伸フィルム。
4. 第2層を構成する共重合ポリエステルが脂環族ジカルボン酸または脂環族ジオールの少なくとも1種を共重合成分とする共重合ポリエチレンナフレフタレートである前項1に記載の多層一軸延伸フィルム。
5. 共重合ポリエチレンナフレフタレートを構成する共重合成分がシクロヘキサンジカルボン酸、デカヒドロナフタレンジカルボン酸、スピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種である前項4に記載の多層一軸延伸フィルム。
6. フィルム面内における該多層一軸延伸フィルムの第1層と第2層の1軸延伸方向(X方向)の屈折率差が0.10〜0.45であって、1軸延伸方向に直交する方向(Y方向)における第1層と第2層との屈折率差、およびフィルム厚み方向(Z方向)における第1層と第2層との屈折率差がそれぞれ0.05以下である前項1〜5のいずれかに記載の多層一軸延伸フィルム。
7. フィルム面を反射面とし、X方向を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ90%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ15%以下である、前項1〜6のいずれかに記載の多層一軸延伸フィルム。
8. 前項1〜7のいずれかに記載の多層一軸延伸フィルムからなる反射型偏光板。
9. 第1の偏光板、液晶セルおよび第2の偏光板が順次配置され、第1の偏光板が前項8記載の反射型偏光板である液晶ディスプレイ装置用光学部材。
10. 光源と前項9記載の液晶ディスプレイ装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶ディスプレイ装置。
【発明の効果】
【0014】
本発明の多層一軸延伸フィルムは、従来の反射偏光フィルムで見られた斜め方向の入射角による透過偏光の色相ずれが解消され、しかも従来よりも高い偏光性能を有しており、さらに耐熱寸法安定性にも優れる。そのため、輝度向上フィルムや液晶セルと貼り合せる偏光板として用いた場合に、一例として他の部材と貼り合せる際に加熱工程を含む場合であっても加熱によるフィルムの変形がなく、高い輝度向上率が得られ、かつ高視野角で色相ずれの少ない視認性に優れた液晶ディスプレイを提供することができる。
【図面の簡単な説明】
【0015】
【図1】本発明の液晶ディスプレイ装置の第1態様の概略断面図である。
【図2】本発明の液晶ディスプレイ装置の第2態様の概略断面図である。
【発明を実施するための形態】
【0016】
[多層一軸延伸フィルム]
本発明の多層一軸延伸フィルムは、第1層と第2層とが交互に積層され、251層以上を有し、少なくとも1軸方向に延伸されたフィルムである。ここで第1層は第2層より屈折率の高い層、第2層は第1層より屈折率の低い層をそれぞれ表す。
本発明の特徴は、多層一軸延伸フィルムを構成する第1層と第2層において、第1層に特定の共重合成分を有することを特徴とする屈折率の高いポリエステルを用い、かつ第2層に80℃以上155℃以下のガラス転移温度を有する、平均屈折率1.50以上1.60以下で光学等方性の共重合ポリエステルを用いることにある。なお、ここで光学等方性とは、延伸方向(X方向)、その直交方向(Y方向)およびフィルム厚み方向(Z方向)それぞれの屈折率差がいずれも0.05以下であることをいう。
【0017】
後述する特定のポリエステルを用いて第1層を構成することにより、延伸後の第1層のX方向とY方向の屈折率差を従来より大きくすることが可能となり、かつY方向とZ方向の両方向について層間の屈折率差を小さくすることが初めて可能となる。このように、従来、反射偏光機能を有する多層フィルムの第1層に用いられることが知られていなかった本発明の特定のポリエステルを第1層に用い、さらに後述する第2層の共重合ポリエステルと組み合わせて多層の一軸延伸フィルムにすることにより、これまで困難であった、偏光性能の向上と斜め方向の入射光に対する透過偏光の色相ずれ抑制の両立化が可能となる。
【0018】
さらに本発明で用いる第1層用のポリエステルは延伸時の応力が低く、また第2層に延伸後も光学等方性を有しつつガラス転移温度の高い、第1層よりも低屈折率の共重合ポリエステルを用いることにより、85℃で高い耐熱寸法安定性をも備えるものである。
ここで、延伸方向(X方向)の屈折率はn、延伸方向と直交する方向(Y方向)の屈折率はn、フィルム厚み方向(Z方向)の屈折率はnと記載することがある。
以下、さらに本発明の多層一軸延伸フィルムについて詳述する。
【0019】
(第1層)
本発明において、第1層を構成するポリエステル(以下、芳香族ポリエステル(I)と称することがある)は以下のジカルボン酸成分とジオール成分との重縮合によって得られる。
【0020】
(ジカルボン酸成分)
本発明の芳香族ポリエステル(I)を構成するジカルボン酸成分(i)として、5モル%以上50モル%以下の下記式(A)で表される成分、および50モル%以上95モル%以下の下記式(B)で表される成分の、少なくとも2種の芳香族ジカルボン酸成分が用いられる。ここで、各芳香族ジカルボン酸成分の含有量は、ジカルボン酸成分の全モル数を基準とする含有量である。
【0021】
【化4】

(式(A)中、Rは炭素数2〜4のアルキレン基を表わす)
【0022】
【化5】

(式(B)中、Rはナフタレンジイル基を表わす)
【0023】
式(A)で表される成分について、式中、Rは炭素数2〜4のアルキレン基である。かかるアルキレン基として、エチレン基、トリメチレン基、イソプロピレン基、テトラメチレン基が挙げられ、特にエチレン基が好ましい。
式(A)で表される成分の含有量の下限値は、好ましくは7モル%、より好ましくは10モル%、さらに好ましくは15モル%である。また、式(A)で表される成分の含有量の上限値は、好ましくは45モル%、より好ましくは40モル%、さらに好ましくは35モル%である。従って、式(A)で表される成分の含有量は、好ましくは5モル%以上45モル%以下、より好ましくは7モル%以上40モル%以下、さらに好ましくは10モル%以上35モル%以下、特に好ましくは15モル%以上30モル%以下である。
【0024】
式(A)で表される成分は、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸から誘導される成分が好ましい。これらの中でも式(A)におけるRの炭素数が偶数のものが好ましく、特に6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸から誘導される成分が好ましい。
【0025】
かかる芳香族ポリエステル(I)は、ジカルボン酸成分が5モル%以上50モル%以下の式(A)で表される成分を含有することを特徴とする。式(A)で示される成分の割合が下限値に満たない場合は、延伸によるY方向の屈折率の低下が生じないため、延伸フィルムにおけるY方向の屈折率nとZ方向の屈折率nの差異が大きくなり、斜め方向の入射角で入射した偏光による色相ずれが改善し難い。また、式(A)で示される成分の割合が上限値を超える場合は、非晶性の特性が大きくなり、延伸フィルムにおけるX方向の屈折率nとY方向の屈折率nとの差異が小さくなるため、反射偏光フィルムとして十分な性能を発揮しない。
このように、式(A)で表される成分を含有するポリエステルを用いることで、反射偏光フィルムとしての偏光性能を従来より高めつつ、斜め方向の入射角による色相ずれも生じない多層一軸延伸フィルムを製造することができる。
【0026】
また、式(B)で表される成分について、式中、Rはナフタレンジイル基である。
式(B)で表される成分は、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸が好ましく、特に2,6−ナフタレンジカルボン酸が好ましい。
式(B)で表される成分の含有量の下限値は、好ましくは55モル%、より好ましくは60モル%、さらに好ましくは65モル%である。また、式(B)で表される成分の含有量の上限値は、好ましくは93モル%、より好ましくは90モル%、さらに好ましくは85モル%である。従って、式(B)で表される成分の含有量は、好ましくは55モル%以上95モル%以下、より好ましくは60モル%以上93モル%以下、さらに好ましくは65モル%以上90モル%以下、特に好ましくは70モル%以上85モル%以下である。
【0027】
式(B)で示される成分の割合が下限値に満たない場合は、非晶性の特性が大きくなり、延伸フィルムにおけるX方向の屈折率nとY方向の屈折率nとの差異が小さくなるため、反射偏光フィルムとして十分な性能を発揮しない。また、式(B)で示される成分の割合が上限値を超える場合は、式(A)で示される成分の割合が相対的に少なくなるため、延伸フィルムにおけるY方向の屈折率nとZ方向の屈折率nの差異が大きくなり、斜め方向の入射角で入射した偏光による色相ずれが改善し難い。
このように、式(B)で表される成分を含有するポリエステルを用いることで、X方向に高屈折率を示すと同時に1軸配向性の高い複屈折率特性を実現できる。
【0028】
(ジオール成分)
本発明の芳香族ポリエステル(I)を構成するジオール成分(ii)として、90モル%以上100モル%以下の下記式(C)で表されるジオール成分が用いられる。ここで、ジオール成分の含有量は、ジオール成分の全モル数を基準とする含有量である。
【0029】
【化6】

(式(C)中、Rは炭素数2〜4のアルキレン基を表わす)
【0030】
式(C)中、Rは炭素数2〜4のアルキレン基であり、例えばエチレン基、プロピレン基、イソプロピレン基、テトラメチレン基等が挙げられる。式(C)で表されるジオール成分としては、エチレングリコール、トリメチレングリコール、テトラメチレングリコール等が好ましく、特にエチレングリコールが好ましい。
式(C)で表されるジオール成分の含有量は、好ましくは95モル%以上100モル%以下、より好ましくは98モル%以上100モル%以下である。式(C)で示されるジオール成分の割合が下限値に満たない場合は、前述の1軸配向性が損なわれる。
【0031】
(芳香族ポリエステル(I))
芳香族ポリエステル(I)において、式(A)で表される成分と式(C)で表されるジオール成分で形成される繰り返し単位((A)−(C))の含有量は、全繰り返し単位の5モル%以上50モル%以下であり、好ましくは5モル%以上45モル%以下、さらに好ましくは10モル%以上40モル%以下である。
芳香族ポリエステル(I)を構成する他のエステル単位として、エチレン−2,6−ナフタレンジカルボキシレート、トリメチレン−2,6−ナフタレンジカルボキシレート、ブチレン−2,6−ナフタレンジカルボキシレートなどのアルキレン−2,6−ナフタレンジカルボキシレート単位が挙げられる。これらの中でも高屈折率性などの点からエチレン−2,6−ナフタレンジカルボキシレート単位が好ましい。
芳香族ポリエステル(I)として、特に、式(A)で表されるジカルボン酸成分が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸であり、式(B)で表されるジカルボン酸成分が2,6−ナフタレンジカルボン酸であり、ジオール成分がエチレングリコールであるポリエステルが好ましい。
【0032】
芳香族ポリエステル(I)は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度が0.4〜3dl/gであることが好ましく、さらに好ましくは0.4〜1.5dl/g、特に好ましくは0.5〜1.2dl/gである。
芳香族ポリエステル(I)の融点は、好ましくは200〜260℃の範囲、より好ましくは205〜255℃の範囲、さらに好ましくは210〜250℃の範囲である。融点はDSCで測定して求めることができる。
【0033】
該ポリエステルの融点が上限値を越えると、溶融押出して成形する際に流動性が劣り、吐出などが不均一化しやすくなることがある。一方、融点が下限値に満たないと、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなり、また本発明の屈折率特性が発現し難い。
一般的に共重合体は単独重合体に比べて融点が低く、機械的強度が低下する傾向にある。しかし、本発明のポリエステルは、酸成分として式(A)の成分および式(B)の成分を含有する共重合体であり、式(A)の成分のみを有する単独重合体に比べて融点が低いものの機械的強度は同程度であるという優れた特性を有する。
【0034】
芳香族ポリエステル(I)のガラス転移温度(以下、Tgと称することがある。)は、好ましくは60〜120℃、より好ましくは80〜118℃、さらに好ましくは85〜118℃の範囲にある。Tgがこの範囲にあると、耐熱性および寸法安定性に優れたフィルムが得られる。かかる融点やガラス転移温度は、共重合成分の種類と共重合量、そして副生物であるジアルキレングリコールの制御などによって調整できる。
かかる芳香族ポリエステル(I)の製造方法は、例えばWO2008/153188号パンフレットの第9頁に記載されている方法に準じて製造することができる。
【0035】
(第1層の屈折率)
芳香族ポリエステル(I)を1軸延伸した場合、X方向の屈折率nは延伸により増加する方向にあり、Y方向の屈折率nとZ方向の屈折率nはともに延伸に伴い低下する方向にあり、しかも延伸倍率によらずnとnの屈折率差が非常に小さいことを特徴としている。
また第1層は、かかる特定の共重合成分を含む芳香族ポリエステル(I)を用いて1軸延伸を施すことにより、X方向の屈折率nが1.70〜1.90の高屈折率特性を有する。第1層におけるX方向の屈折率がかかる範囲にあることにより、第2層との屈折率差が大きくなり、十分な反射偏光性能を発揮することができる。
またY方向の1軸延伸後の屈折率nとZ方向の1軸延伸後の屈折率nの屈折率差は、具体的には0.05以下であり、好ましくは0.03以下、特に好ましくは0.01以下である。これら2方向の屈折率差が非常に小さいことにより、偏光光が斜め方向の入射角で入射しても色相ずれが生じない効果を奏する。
【0036】
芳香族ポリエステル(I)が1軸延伸により上述のような屈折率特性を発現するメカニズムとして、延伸によるX方向の高屈折率化には芳香族成分である式(A)で表される成分と式(B)で表される成分が主として影響する。また延伸によるY方向の屈折率低下については、式(A)で表される成分が主として影響し、式(A)で表される成分に含まれる2つの芳香環がアルキレン鎖を介してエーテル結合でつながっている分子構造であるため、1軸延伸したときにこれら芳香環が面方向でない方向に回転しやすくなり、第1層のY方向の屈折率特性が発現していると考えられる。また、本発明における芳香族ポリエステル(I)のジオール成分は脂肪族成分であるため、ジオール成分が第1層の屈折率特性に与える影響は上述のジカルボン酸成分に較べて小さい。
【0037】
一方、第1層を構成するポリエステルがポリエチレン−2,6−ナフタレンジカルボキシレートの場合、1軸方向の延伸倍率によらず、Y方向の屈折率nは一定で低下がみられないのに対し、Z方向の屈折率nは1軸延伸倍率の増加に伴い屈折率が低下する。そのため、Y方向の屈折率nとZ方向の屈折率nの差が大きくなり、偏光光が斜め方向の入射角で入射した際に色相ずれが生じやすくなる。
【0038】
(第2層)
本発明において、1軸延伸多層積層フィルムの第2層は、80℃以上のガラス転移温度を有する共重合量5モル%以上85モル%以下の共重合ポリエステルからなり、平均屈折率が1.50以上1.60以下で光学等方性の層である。
ここで平均屈折率とは、第2層を構成するポリエステルを単独で溶融させ、ダイより押出して未延伸フィルムを作成し、多層一軸延伸フィルムの製膜条件と同一条件で製膜して得られたフィルムのX方向、Y方向、Z方向それぞれの方向における屈折率について、メトリコン製プリズムカプラを用いて波長633nmで測定し、それらの平均値を平均屈折率として規定したものである。また、光学等方性とは、これらX方向、Y方向、Z方向の屈折率の2方向間の屈折率差がいずれも0.05以下、好ましくは0.03以下であることをいう。
【0039】
第2層を構成するポリエステルの平均屈折率は1.50以上1.60以下であり、好ましくは1.53以上1.60以下、より好ましくは1.55以上1.60以下、さらに好ましくは1.58以上1.60以下である。第2層がかかる平均屈折率を有し、しかも延伸によって各方向の屈折率差の小さい光学等方性材料であることにより、第1層と第2層の層間における延伸後のX方向の屈折率差が大きく、その結果、高い偏光性能が得られる。同時に、層間のY方向の屈折率差およびZ方向の屈折率差が共に極めて小さい屈折率特性を得ることができ、その結果、偏光性能と斜め方向の入射角よる色相ずれの両立が可能となる。
【0040】
本発明における第2層の共重合ポリエステルは、80℃以上のガラス転移温度を備えることを要し、好ましくは90℃以上155℃以下、さらに好ましくは90℃以上120℃以下である。
第2層のポリエステルのガラス転移温度が下限に満たないと、延伸後の熱収縮率を抑制できず、ディスプレイとして連続使用した場合に収縮により偏光性能の低下招く。本発明の範囲内で第2層のポリエステルのガラス転移温度はより高い方が好ましい。一方で、ガラス転移温度が高すぎると延伸時に第2層のポリエステルも延伸による複屈折性が生じることがあり、延伸方向において第1層との屈折率差が小さくなり、反射性能が低下することがある。
【0041】
特に耐熱寸法安定性については、第2層にかかるガラス転移温度を有する共重合ポリエステルを用いることにより、第2層自体の耐熱寸法安定性を高めることができ、さらに高屈折率層側のポリマーが延伸時の応力が低い特性を備えることから、1軸延伸方向(X方向)およびその直交方向(Y方向)ともに85℃、30分の加熱条件で1.5%以下という高い耐熱寸法安定性を有する、高い反射偏光特性の多層一軸延伸フィルムを得ることができる。
【0042】
本発明において、第2層の共重合ポリエステルの共重合量は、ポリエステルの繰り返し単位を100モル%とした場合の従たる共重合成分の割合を示す。また、従たる成分とは、ジオール成分における最も割合の高い成分と、ジカルボン酸成分における最も割合の高い成分とを除く成分の合計量を表わす。例えば、本発明の表1の実施例において、CHDC35SPG70PENと記載された共重合ポリエステルは、ジカルボン酸成分100モル%に対してシクロヘキサンジカルボン酸が35モル%、ナフタレンジカルボン酸成分が65モル%であり、ジオール成分100モル%に対してスピログリコールが70モル%、エチレングリコールが30モル%であり、ジカルボン酸成分の従たる成分であるシクロヘキサンジカルボン酸が35モル%とジオール成分の従たる成分であるエチレングリコール30モル%を合計した65モル%を共重合量としている。
【0043】
かかるガラス転移温度、屈折率特性および光学等方性を同時に備える共重合ポリエステルの中でも、1軸延伸における製膜性、および第1層との屈折率差の観点から、ポリエステルを構成する全繰り返し単位を基準として共重量が5〜85モル%、好ましくは10〜70モル%の共重合ポリエチレンテレフタレート、共重合ポリエチレンナフタレンジカルボキシレートなどの共重合ポリエステルが好ましく例示される。
【0044】
ガラス転移温度の向上のために剛直性の高い芳香族成分を導入することが多いが、かかる成分はガラス転移温度の向上に伴い屈折率も上昇することが多い。そのため、本発明において、脂環族ジカルボン酸、脂環族ジオールなどの脂環族成分を共重合成分として導入することが好ましい。
【0045】
また、共重合ポリエチレンテレフタレートの中でも、脂環族ジオールを共重合成分とする共重合ポリエチレンテレフタレートを用いることが好ましい。テレフタル酸に由来する芳香族基量を減らすことなく、エチレングリコールの一部を脂環族ジオールに置換することにより、かかる範囲のガラス転移温度を備えつつ本発明の屈折率特性も備えることができる。かかる脂環族ジオールとして、スピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を用いることが好ましい。
【0046】
また、共重合ポリエチレンナフタレンジカルボキシレートの中でも、脂環族ジカルボン酸または脂環族ジオールの少なくとも1種を共重合成分とする共重合ポリエチレンナフレフタレートを用いることが好ましく、かかる共重合成分を含むことにより、前述のガラス転移温度を備えることができる。これら共重合成分として、シクロヘキサンジカルボン酸、デカヒドロナフタレンジカルボン酸、スピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種を用いることが好ましい。スピログリコール成分の例としては3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなどがあげられる。
これらの共重合成分を含む共重合ポリエステルは、モノマーの共重合成分同士をエステル交換反応またはエステル化反応後、重縮合させる方法で得られたものであってもよく、また複数のポリエステルをブレンドして得られるポリエステルであってもよい。
【0047】
(第1層と第2層の層間の屈折率特性)
フィルム面内における第1層と第2層のX方向の屈折率差は0.10〜0.45であることが好ましく、より好ましくは0.20〜0.40、さらに好ましくは0.25〜0.30である。X方向の屈折率差がかかる範囲にあることにより、反射特性を効率よく高めることができ、より少ない積層数で高い反射率を得ることができる。
また、第1層と第2層のY方向の屈折率差および第1層と第2層のZ方向の屈折率差は、それぞれ0.05以下であることが好ましい。Y方向およびZ方向それぞれの層間の屈折率差がともに上述の範囲にあることにより、偏光が斜め方向の入射角で入射した際に色相ずれを抑制することができる。
【0048】
(積層数)
本発明の多層一軸延伸フィルムは、上述の第1層および第2層を交互に合計251層以上積層したものである。かかる積層数を備えることにより、延伸方向を含む入射面に対して平行な偏光成分の平均反射率特性について、波長400〜800nmにわたり一定の高い平均反射率を得ることができる。
かかる積層数はかかる範囲内であれば特に限定されないが、積層数が増えるに従い、反射軸方向に平行な偏光についてより高い反射率が得られ、好ましくは301層以上、より好ましくは401層以上、さらに好ましくは501層以上である。
【0049】
また、501層以上の積層数の多層一軸延伸フィルムを得るためのより好ましい方法として、300層以下の範囲で交互積層状態の溶融物を得、かかる層構成を保持したまま、積層方向と垂直方向に1:1の比率になるように分割し、積層数(ダブリング数)が2〜4倍になるように再度積層する方法で積層数を増やすことができる。
積層数の上限値は、生産性およびフィルムのハンドリング性など観点から2001層に制限される。積層数の上限値は、本発明の平均反射率特性が得られれば生産性やハンドリング性の観点からさらに積層数を減らしてもよく、例えば1001層、901層であってもよい。
【0050】
(各層厚み)
第1層および第2層は、層間の光干渉によって選択的に光を反射するために、各層の厚みは0.01μm以上0.5μm以下であることが好ましい。各層の厚みは透過型電子顕微鏡を用いて撮影した写真をもとに求めることができる。
本発明の多層一軸延伸フィルムが示す反射波長帯は、可視光域から近赤外線領域であることが好ましく、上記層厚の範囲とするとよい。層厚みが0.5μmを超えると反射帯域が赤外線領域になり、反射偏光フィルムとして有用性が得られないことがある。一方、層厚みが0.01μm未満であると、ポリエステル成分が光を吸収し反射性能が得られなくなることがある。
第1層の各層の厚みは、好ましくは0.01μm以上0.1μm以下である。また第2層の各層の厚みは、好ましくは0.01μm以上0.3μm以下である。
【0051】
(最大層厚みと最小層厚みの比率)
本発明の多層一軸延伸フィルムは、第1層および第2層におけるそれぞれの最大層厚みと最小層厚みの比率がいずれも2.0以上5.0以下であることが好ましく、より好ましくは2.0以上4.0以下、さらに好ましくは2.0以上3.5以下、特に好ましくは2.0以上3.0以下である。
かかる層厚みの比率は、具体的には最小層厚みに対する最大層厚みの比率で表わされる。第1層、第2層におけるそれぞれの最大層厚みと最小層厚みは、透過型電子顕微鏡を用いて撮影した写真をもとに求めることができる。
【0052】
多層一軸延伸フィルムは、層間の屈折率差、層数、層の厚みによって反射する波長が決まるが、積層された第1層および第2層のそれぞれが一定の厚みでは、特定の波長のみしか反射することができず、延伸方向(X方向)を含む入射面に対して平行な偏光成分の平均反射率特性について、波長400〜800nmといった幅広い波長帯にわたり、均一に平均反射率を高めるのが難しいことがある。また、最大層厚みと最小層厚みの比率が上限値を超える場合は、反射帯域が広がりすぎ、延伸方向(X方向)を含む入射面に対して平行な偏光成分の反射率が低下することがある。
【0053】
第1層および第2層は、段階的に変化してもよく、連続的に変化してもよい。このように積層された第1層および第2層のそれぞれが変化することで、より広い波長域の光を反射することができる。
本発明の多層一軸延伸フィルムの積層方法は特に限定されないが、例えば、第1層用ポリエステルを138層、第2層用共重合ポリエステルを137層に分岐させた、第1層と第2層が交互に積層され、その流路が連続的に2.0〜5.0倍までに変化する多層フィードブロック装置を使用する方法が挙げられる。
【0054】
(第1層と第2層の平均層厚み比)
本発明の多層一軸延伸フィルムは、第1層の平均層厚みに対する第2層の平均層厚みの比が1.5倍以上5.0倍以下の範囲であることが好ましい。第1層の平均層厚みに対する第2層の平均層厚みの比の下限値は、より好ましくは2.0である。また、第1層の平均層厚みに対する第2層の平均層厚みの比の上限値は、より好ましくは4.0であり、さらに好ましくは3.5である。
第1層の平均層厚みに対する第2層の平均層厚みの比がかかる範囲にあることにより、反射波長の半波長で生じる2次反射を有効に利用できるため、第1層および第2層それぞれの最大層厚みと最小層厚みの比率を最小限に抑えることができ、光学特性の観点から好ましい。また、このように第1層と第2層の厚み比を変化させることにより、層間の密着性を維持したまま、また使用する樹脂を変更することなく、得られたフィルムの機械特性も調整することができ、フィルムが裂けにくくなる効果も有する。
一方、第1層の平均層厚みに対する第2層の平均層厚みの比がかかる範囲からはずれる場合、反射波長の半波長で生じる2次反射が小さくなってしまい、反射率が低下することがある。
【0055】
(厚み調整層)
本発明の多層一軸延伸フィルムは、かかる第1層、第2層以外に、層厚みが2μm以上の厚み調整層を第1層と第2層の交互積層構成の一部に有していてもよい。かかる厚みの厚み調整層を第1層と第2層の交互積層構成の一部に有することにより、偏光機能に影響を及ぼすことなく、第1層および第2層を構成する各層厚みを均一に調整しやすくなる。かかる厚みの厚み調整層は、第1層、第2層のいずれかと同じ組成、またはこれらの組成を部分的に含む組成であってもよく、層厚みが厚いため、反射特性には寄与しない。
【0056】
(一軸延伸フィルム)
本発明における多層一軸延伸フィルムは、目的とする反射偏光フィルムとしての光学特性を満足するために、少なくとも1軸方向に延伸されている。本発明における1軸延伸には、1軸方向にのみ延伸したフィルムの他、2軸方向に延伸されたフィルムであって、一方向に、より延伸されたフィルムも含まれる。1軸延伸方向(X方向)は、フィルム長手方向、幅方向のいずれの方向であってもよい。また、2軸方向に延伸されたフィルムであって、一方向により延伸されたフィルムの場合は、より延伸される方向(X方向)はフィルム長手方向、幅方向のいずれの方向であってもよく、延伸倍率の低い方向は、1.05〜1.20倍程度の延伸倍率にとどめることが偏光性能を高める点で好ましい。2軸方向に延伸され、一方向により延伸されたフィルムの場合、偏光や屈折率との関係での「延伸方向」とは、より延伸された方向を指す。
延伸方法としては、棒状ヒータによる加熱延伸、ロール加熱延伸、テンター延伸など公知の延伸方法を用いることができるが、ロールとの接触によるキズの低減や延伸速度などの観点から、テンター延伸が好ましい。
【0057】
(フィルム厚み)
本発明の多層一軸延伸フィルムは、フィルム厚みが15μm以上150μm以下であることが好ましく、より好ましくは25μm以上100μm以下、さらに好ましくは30μm以上80μm以下である。
【0058】
[平均反射率]
本発明の多層一軸延伸フィルムは、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ90%以上であることが好ましい。
またフィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ15%以下であることが好ましい。
ここで、入射面とは反射面と垂直の関係にあり、かつ入射光線と反射光線を含む面を指す。また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分は、一般的にP偏光とも称される。また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分は、一般的にS偏光とも称される。さらに入射角とは、フィルム面の垂直方向に対する入射角を表す。
【0059】
フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分(P偏光)について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率は、さらに好ましくは95%以上100%以下であり、特に好ましくは97%以上100%以下である。
かかる入射角でのP偏光成分に対する波長400〜800nmの平均反射率が下限値に満たない場合、反射偏光フィルムとしての偏光反射性能が十分に高くないことがあり、また反射した光の色相ずれが生じてディスプレイとした場合に着色が生じることがある。また、かかる範囲内でより該平均反射率が高い方がより偏光反射性能が高まる。
P偏光成分に対するこのような高い平均反射率特性を有し、さらにS偏光成分に対して後述する反射率特性をも備えることにより、本発明の液晶ディスプレイ装置の第1態様における輝度向上用部材として好適に用いることができる。
【0060】
また、かかる平均反射率の範囲において、P偏光成分に対する平均反射率がさらに入射角0度および50度に対して95%以上であることにより、P偏光の透過量を従来よりも抑え、S偏光を選択的に透過させる高い偏光性能が発現され、従来の吸収型偏光板に匹敵する高い偏光性能が得られ、本発明の液晶ディスプレイ装置の第2態様のように、単独で液晶セルと貼り合せる偏光板として用いることができる。同時に、透過軸と直交方向のP偏光がフィルムに吸収されずに高度に反射されることにより、かかる光を再利用させる輝度向上フィルムとしての機能も兼ね備えることができる。また、入射角50度でのP偏光についても平均反射率がこのように高いことにより、高い偏光性能が得られるとともに、斜め方向に入射した光の透過が高度に抑制されるため、かかる光による色相ずれが抑制される。
【0061】
フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分(S偏光)について入射角0度での該入射偏光に対する波長400〜800nmの平均反射率は、より好ましくは12%以下、さらに好ましくは5%以上12%以下であり、特に好ましくは8%以上12%以下である。
【0062】
また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分について入射角50度での該入射偏光に対する波長400〜800nmの平均反射率は、より好ましくは13%以下、さらに好ましくは5%以上12.5%以下であり、特に好ましくは8%以上12%以下である。
かかる入射角でのS偏光成分に対する波長400〜800nmの平均反射率が上限値を越える場合、反射偏光フィルムとしての偏光透過率が低下することがあり、液晶ディスプレイなどの輝度向上フィルムや液晶セルに貼り合せる偏光板としての十分な性能を発現しないことがある。
【0063】
一方、かかる範囲内でより該偏光反射率が低い方がよりS偏光成分の透過率が高くなるものの、下限値より低くすることは組成や延伸との関係で難しいことがある。特に、上述のP偏光に対する高い平均反射率とともに、S偏光に対する反射率がより好ましい範囲内にあると、光源と反対側に透過されるS偏光量の増大により、従来の吸収型偏光板に匹敵する高い偏光性能が得られ、本発明の液晶ディスプレイ装置の第2態様のように、単独で液晶セルと貼り合せる偏光板として好適に用いることができ、好ましい。
かかるP偏光成分についての平均反射率特性を得るためには、各層厚み、積層数に加え、第1層および第2層を構成するポリマー成分として上述の特性を有するポリマーを用い、かつ延伸方向(X方向)に一定の延伸倍率で延伸して第1層のフィルム面内方向を複屈折率化させることにより、延伸方向(X方向)における第1層と第2層の屈折率差を大きくすることによって達成される。
【0064】
また、S偏光成分についての平均反射率特性を得るためには、第1層および第2層を構成するポリマー成分として上述の特性を有するポリマーを用い、かつ該延伸方向と直交する方向(Y方向)に延伸しないか、低延伸倍率での延伸にとどめることにより、該直交方向(Y方向)における第1層と第2層の屈折率差を極めて小さくすることによって達成される。
【0065】
[色相]
本発明における多層一軸延伸フィルムは、斜め方向の入射光に対する色相の変化量が小さいことが好ましく、具体的には、JIS規格Z8729に準じてCIE表色系におけるx、y値の少なくとも一方について0〜80度視野での最大変化量が0.03未満であることが好ましく、さらにx,yの両方ともに最大変化が0.03未満であることが好ましい。かかる範囲を超える最大変化量の場合、斜め方向の入射角による透過偏光の色相ずれが大きく、輝度向上フィルムとして用いた場合に高視野角での色相ずれが大きくなり、視認性が低下することがある。
色相変化量をかかる範囲にするためには、第1層、第2層を構成するポリマーとしてそれぞれ上述の特定のポリエステルを用い、延伸により上述のX方向、Y方向、Z方向の屈折率の関係にすることにより達成される。
【0066】
[熱収縮率特性]
本発明の多層一軸延伸フィルムは、85℃、30分の条件における熱収縮率が1.5%以下であることが好ましく、さらに好ましくは1.0%以下である。かかる熱収縮率特性は、1軸延伸方向、その直交方向の両方向における特性である。
本発明は反射偏光性能を有する多層一軸延伸フィルムでありながら、延伸方向およびその直交方向の両方とも耐熱寸法安定性が高いことにより、加熱工程処理後、あるいは使用環境が高温環境も含む場合であっても収縮により偏光性能の低下招くことがなく、高い偏光性能を維持できる。
かかる耐熱寸法安定性を得る方法として、高屈折率層側に延伸時の応力が低い特性を有する芳香族ポリエステル(I)を用い、低屈折率側に前述の高いガラス転移温度を有する共重合ポリエステルを用いる方法が挙げられる。
【0067】
[ヘーズ特性]
本発明の多層一軸延伸フィルムは、ヘーズ値が1.0%以下であることが好ましく、さらに0.5%以下であることが好ましい。かかるヘーズ値特性を有することにより、S偏光の透過率が高まり、より高い偏光度を得ることができる。かかるヘーズ値は、第2層のポリエステルとしてガラス転移温度の高い共重合ポリエステルを用いること、また本発明の多層一軸延伸フィルムを構成する各層が滑剤などの添加剤を含まないか、含む場合は層重量を基準として0.1重量%以下の範囲内にすることによって得ることができる。
【0068】
[ヒートシール層]
本発明の多層一軸延伸フィルムは、第1層と第2層との交互積層の少なくとも一方の最外層面上にさらにヒートシール層(以下、保護層と称することがある)を設けることができる。ヒートシール層を有することにより、例えば液晶ディスプレイの部材として他の部材と積層させる際に、加熱処理により、ヒートシール層を介して部材同士を貼り合せることができる。
かかるヒートシール層として、該交互積層の最外層の融点と同程度か該融点以下の熱可塑性樹脂を用いることが好ましいが、交互積層と同時に形成できる利点として、第2層と同じ共重合ポリエステルを用いることが好ましい。またヒートシール層厚みは3〜10μmであることが好ましい。かかる層を設けることにより、部材同士を強固に接着することができる。
【0069】
なお、前述の厚み調整層を交互積層の最外層面上に設ける場合、上述の特性を備えている場合はヒートシール層としても機能する。また、前述の厚み調整層が交互積層の最外層面に存在する場合、厚み調整層上にさらにヒートシール層を設けてもよい。
ヒートシール層として第2層と同じ共重合ポリエステルを用いる場合、かかるヒートシール層は層厚みが3〜10μmであり、このような交互積層を構成する層の最大厚みである0.5μmに比して4倍以上の厚みの層は、波長400〜800nmの波長帯での反射率に寄与しない層であり、第1層と第2層の交互積層とは区別される。また、ヒートシール層としての特性を損なわない範囲で、第1層および第2層のブレンド物を使用しても問題ない。
【0070】
[輝度向上用部材]
本発明の多層一軸延伸フィルムは、P偏光成分を選択的に高反射し、該偏光成分と垂直方向のS偏光成分を選択的に高透過させ、かつ斜め方向に入射した光についての透過偏光の色相ずれが解消される。そのため、液晶ディスプレイの輝度向上フィルムとして好適に使用することができ、加工して輝度向上用部材にすることができる。特に従来よりも高い偏光性能を有することから、輝度向上用部材として用いた場合に高い輝度向上率が得られ、かつ高視野角で色相ずれの少ない視認性に優れた液晶ディスプレイを提供することができる。また、本発明の多層一軸延伸フィルムは、反射偏光性能を有する多層の一軸延伸フィルムでありながら、延伸方向およびその直交方向のいずれも高い耐熱安定性を有しているため、従来であれば、耐熱寸法安定性を付与するために耐熱寸法安定性の高い樹脂からなる層をフィルムの両面に用いる必要があったところ、かかる層を用いることなく高い耐熱安定性を備えることができる。
【0071】
[輝度向上用部材を含む液晶ディスプレイ装置]
本発明の多層一軸延伸フィルムを輝度向上用部材として用いる場合、図1に示すような第1態様の構成で液晶ディスプレイ装置に用いることができる。
具体的には、液晶ディスプレイの光源5と、偏光板1/液晶セル2/偏光板3で構成される液晶パネル6との間に輝度向上用部材4を配置する態様の液晶ディスプレイ装置が例示される。
【0072】
[液晶セル貼合せ用反射型偏光板]
本発明の多層一軸延伸フィルムは、液晶セルと貼り合せる反射型偏光板として用いることができる。
具体的には、本発明の多層一軸延伸フィルムのうち、P偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ95%以上であり、S偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ12.5%以下である多層一軸延伸フィルムを、液晶セルと貼り合せる反射型偏光板として用いることができる。
かかる反射率特性を有する偏光板は、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消される。また、液晶セルとの貼り合せにおいて粘着層を介して加熱により貼り合せることが多く、かかる工程を経た後も寸法変化が小さいため、本発明の高い偏光性能が維持される。
【0073】
[液晶ディスプレイ装置用光学部材]
本発明には、本発明の多層一軸延伸フィルムからなる第1の偏光板、液晶セルおよび第2の偏光板がこの順で積層された液晶ディスプレイ装置用光学部材も発明の一態様として含まれる(本発明において、液晶ディスプレイ装置の第2態様と称することがある)。かかる光学部材は、液晶パネルとも称される。かかる光学部材は図2における11に相当し、第1の偏光板は9、液晶セルは8、第2の偏光板は7に相当する。
従来は液晶セルの両側の偏光板として、吸収型偏光板を少なくとも有することにより、高い偏光性能が得られていたところ、本発明の多層一軸延伸フィルムを用いた偏光板であれば、従来の多層一軸延伸フィルムでは到達できなかった高偏光性能が得られるため、従来の吸収型偏光板に代えて液晶セルと貼り合せて用いることができるものである。
【0074】
すなわち、本発明の特徴は、第1の偏光板として本発明の多層一軸延伸フィルムからなる偏光板を液晶セルの一方において単独で用いることにある。本発明の多層一軸延伸フィルムを複数積層して第1の偏光板としてもよい。本発明の多層一軸延伸フィルムを他のフィルムと積層した積層体を第1の偏光板として用いてもよいが、好ましくは本発明の多層一軸延伸フィルムと吸収型偏光板とが積層された構成は除かれる。
液晶セルの種類は特に限定されず、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)など、任意のタイプのものを用いることができる。
【0075】
また、第2の偏光板の種類は特に限定されず、吸収型偏光板、反射型偏光板のいずれも用いることができる。第2の偏光板として反射型偏光板を用いる場合、本発明の多層一軸延伸フィルムからなる反射型偏光板を用いることが好ましい。
本発明の液晶ディスプレイ装置用光学部材は、第1の偏光板、液晶セル、および第2の偏光板がこの順で積層されることが好ましく、これらの各部材同士は直接積層されてもよく、また粘着層や接着層と称される層間の接着性を高める層(以下、粘着層と称することがある)、保護層などを介して積層されてもよい。
【0076】
[液晶ディスプレイ装置用光学部材の形成]
液晶セルに偏光板を配置する方法としては、両者を粘着層によって積層することが好ましい。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとするものを適宜選択して用いることができる。特に、アクリル系粘着剤のように透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を有し、耐候性や耐熱性等に優れるものが好ましい。また、粘着層は異なる組成又は種類の層を複数設けてもよい。
液晶セルと偏光板とを積層する際の作業性の観点において、粘着層は、予め偏光板、あるいは液晶セルの一方または両方に付設しておくことが好ましい。粘着層の厚みは、使用目的や接着力等に応じて適宜決定でき、一般には1〜500μmであり、5〜200μmが好ましく、特に10〜100μmが好ましい。
【0077】
(離型フィルム)
また、粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的として離型フィルム(セパレータ)が仮着されてカバーされることが好ましい。これにより、通例の取扱状態で粘着層に接触することを防止できる。離型フィルムとしては、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などを、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの剥離剤でコート処理したものを用いうる。
【0078】
[液晶セル貼合せ用反射型偏光板を含む液晶ディスプレイ装置]
本発明には、光源と本発明の液晶ディスプレイ装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶ディスプレイ装置も発明の一態様として含まれる。
図2に本発明の第2態様である液晶ディスプレイ装置の概略断面図を示す。液晶ディスプレイ装置は光源10および液晶パネル11を有し、さらに必要に応じて駆動回路等を組込んだものである。液晶パネル11は、液晶セル8の光源10側に第1の偏光板9を備える。また、液晶セル8の光源側と反対側、すなわち、視認側に第2の偏光板7を備えている。液晶セル8としては、例えばVAモード、IPSモード、TNモード、STNモードやベンド配向(π型)などの任意なタイプのものを用いうる。
【0079】
本発明の液晶ディスプレイ装置は、液晶セル8の光源側に、高偏光性能を有する本発明の液晶セル貼合せ用反射型偏光板からなる第1の偏光板9を配置することによって、従来の吸収型偏光板に代えて液晶セルと貼り合せて用いることができる。
本発明の偏光板は、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備えるため、光源10と第1の偏光板9との間にさらに輝度向上フィルムとよばれる反射型偏光板を用いる必要がなく、輝度向上フィルムと液晶セルに貼り合せる偏光板の機能を一体化させることができるため、部材数を減らすことができる。
【0080】
さらに本発明の液晶ディスプレイ装置は、第1の偏光板として本発明の偏光板を用いることにより、斜め方向に入射した光についても、斜め方向に入射したP偏光成分をほとんど透過させず、同時に斜め方向に入射したS偏光成分については反射を抑えて透過させるため、斜め方向に入射した光に対する透過光の色相ずれが抑制される特徴を有する。そのため、液晶ディスプレイ装置として投射した映像のカラーのままで視認できる。
また、通常は図2に示すように、液晶セル8の視認側に第2の偏光板7が配置される。第2の偏光板7は特に制限されず、吸収型偏光板など公知のものを用いることができる。外光の影響が非常に少ない場合には、第2の偏光板として第1の偏光板と同じ種類の反射型偏光板を用いてもかまわない。また、液晶セル8の視認側には、第2の偏光板以外にも、例えば光学補償フィルム等の各種の光学層を設けることができる。
【0081】
[液晶セル貼合せ用反射型偏光板を含む液晶ディスプレイ装置の形成]
本発明の液晶ディスプレイ装置用光学部材(液晶パネル)と光源とを組合せ、さらに必要に応じて駆動回路等を組込むことによって本発明の第2態様の液晶ディスプレイ装置が得られる。また、これら以外にも液晶ディスプレイ装置の形成に必要な各種部材を組合せることができるが、本発明の液晶ディスプレイ装置は光源から射出される光を第1の偏光板に入射させるものであることが好ましい。
一般に液晶ディスプレイ装置の光源は、直下方式とサイドライト方式に大別されるが、本発明の液晶ディスプレイ装置においては、方式の限定なく使用可能である。
【0082】
このようにして得られた液晶ディスプレイ装置は、例えば、パソコンモニター,ノートパソコン,コピー機等のOA機器、携帯電話,時計,デジタルカメラ,携帯情報端末(PDA),携帯ゲーム機等の携帯機器、ビデオカメラ,テレビ,電子レンジ等の家庭用電気機器、バックモニター,カーナビゲーションシステム用モニター,カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター,医療用モニター等の介護・医療機器等、種々の用途に用いることができる。
【0083】
[多層一軸延伸フィルムの製造方法]
つぎに、本発明の多層一軸延伸フィルムの製造方法について詳述する。
本発明の多層一軸延伸フィルムは、第1層を構成する芳香族ポリエステルと第2層を構成する共重合ポリエステルとを溶融状態で交互に少なくとも251層以上重ね合わせた状態で押出し、多層未延伸フィルム(シート状物とする工程)とする。このとき、積層された251層以上の積層物は、各層の厚みが段階的または連続的に2.0倍〜5.0倍の範囲で変化するように積層される。
【0084】
このようにして得られた多層未延伸フィルムは、製膜方向、またはそれに直交する幅方向の少なくとも1軸方向(フィルム面に沿った方向)に延伸される。延伸温度は、第1層のポリエステルのガラス転移点の温度(Tg)〜Tg+50℃の範囲が好ましい。このときの延伸倍率は2〜10倍であることが好ましく、さらに好ましくは2.5〜7倍、さらに好ましくは3〜6倍、特に好ましくは4.5〜5.5倍である。延伸倍率が大きい程、第1層および第2層における個々の層の面方向のバラツキが、延伸による薄層化により小さくなり、多層一軸延伸フィルムの光干渉が面方向に均一になり、また第1層と第2層の延伸方向の屈折率差が大きくなるので好ましい。このときの延伸方法は、棒状ヒータによる加熱延伸、ロール加熱延伸、テンター延伸など公知の延伸方法を用いることができるが、ロールとの接触によるキズの低減や延伸速度などの観点から、テンター延伸が好ましい。また、かかる延伸方向と直交する方向(Y方向)にも延伸処理を施し、2軸延伸を行う場合は、1.05〜1.20倍程度の延伸倍率にとどめることが好ましい。Y方向の延伸倍率をこれ以上高くすると、偏光性能が低下することがある。また、延伸後にさらに熱固定処理を施すことが好ましい。
【0085】
本発明において、例えば501層以上の多層一軸延伸フィルムを得るためのより好ましい方法として、300層以下の範囲で交互積層状態の溶融物を得、かかる層構成を保持したまま、積層方向と垂直方向に1:1の比率になるように分割し、積層数(ダブリング数)が2〜4倍になるように再度積層する方法で積層数を増やすことができる。かかるダブリング処理を行う場合、公知の方法で行うことができ、得られた積層状態の溶融体をキャストドラム上にキャストして多層未延伸フィルムを得た後は、上述の延伸工程を経て多層一軸延伸フィルムを得ることができる。
【実施例】
【0086】
実施例をもって、本発明をさらに説明する。なお、実施例中の物性や特性は、下記の方法にて測定または評価した。
【0087】
(1)ポリエステルおよびフィルムの融点(Tm)およびガラス転移点(Tg)
ポリエステル試料またはフィルムサンプルを10mgサンプリングし、DSC(TAインスツルメンツ社製、商品名:DSC2920)を用い、20℃/minの昇温速度で、融点およびガラス転移点を測定する。
【0088】
(2)樹脂の特定ならびに共重合成分および各成分量の特定
フィルムサンプルの各層について、H−NMR測定より樹脂の成分ならびに共重合成分および各成分量を特定した。
【0089】
(3)各層の厚み
フィルムサンプルをフィルム長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断し、5nm厚の薄膜切片にした。透過型電子顕微鏡(日立S−4300)を用いて加速電圧100kVにて観察撮影し、写真から各層の厚みを測定した。
また、得られた各層の厚みをもとに、第1層における最小層厚みに対する最大層厚みの比率、第2層における最小層厚みに対する最大層厚みの比率をそれぞれ求めた。
また、得られた各層の厚みをもとに、第1層の平均層厚み、第2層の平均層厚みをそれぞれ求め、第1層の平均層厚みに対する第2層の平均層厚みを算出した。
なお、最外層の厚み調整層は第1層と第2層から除外した。また交互積層中に2μm以上の厚み調整層が存在する場合は、かかる層も第1層と第2層から除外した。
【0090】
(4)フィルム全体厚み
フィルムサンプルをスピンドル検出器(安立電気(株)製K107C)にはさみ、デジタル差動電子マイクロメーター(安立電気(株)製K351)にて、異なる位置で厚みを10点測定し、平均値を求めフィルム厚みとした。
【0091】
(5)各方向の屈折率および平均屈折率
各層を構成する個々のポリマーについて、それぞれ溶融させてダイより押出し、キャスティングドラム上にキャストしたフィルムを作成し、得られたフィルムを多層延伸フィルムの製膜条件と同じ条件で製膜して延伸フィルムを用意した。得られた延伸フィルムについて、それぞれ延伸方向(X方向)とその直交方向(Y方向)、厚み方向(Z方向)のそれぞれの屈折率(それぞれn、n、nとする)を、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定して求め、平均屈折率については、n、n、nの平均値を求めた。
【0092】
(6)反射率、反射波長
分光光度計((株)島津製作所製、MPC−3100)を用い、光源側に偏光フィルタを装着し、各波長でのアルミ蒸着したミラーとの相対鏡面反射率を波長400nmから800nmの範囲で測定する。このとき、偏光フィルタの透過軸をフィルムの延伸方向(X方向)と合わせるように配置した場合の測定値をP偏光とし、偏光フィルタの透過軸をフィルムの延伸方向と直交するように配置した場合の測定値をS偏光とした。それぞれの偏光成分について、400−800nmの範囲での反射率の平均値を平均反射率とした。
測定にあたり、各具体例に記載された多層一軸延伸フィルムサンプルを用い、0度入射時の反射率特性はフィルムサンプルのフィルム面に対して垂直方向より測定光を入射させた0度入射角で測定を行った。また50度入射時の反射率特性は、フィルムサンプルのフィルム面に対する垂直方向を0度として、入射面内で0度から50度傾けた位置で測定偏光が入射するよう、光源に対してフィルムサンプルの位置を調整して測定した。
【0093】
(7)熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに80℃のオーブンで30分間熱処理を実施し、熱処理後の標点間隔を測定して、1軸延伸方向およびその直交方向において、下記式にて熱収縮率を算出した。
熱収縮率(%)=((熱処理前標点間距離−熱処理後標点間距離)/熱処理前標点間距離)×100
【0094】
(8)フィルムヘーズ
JIS−K7136に従い、ヘーズ測定器(日本電色工業社製NDH―2000)を用いて測定した。
【0095】
(9)輝度向上効果、色相
パソコンの表示ディスプレイとして得られた液晶表示装置を用い、パソコンにより白色表示したときの液晶表示装置の画面の正面輝度をオプトデザイン社製FPD視野角測定評価装置(ErgoScope88)で測定し、比較例1に対する輝度の上昇率、およびカラーを算出し、輝度向上効果を下記の基準で評価した。
◎: 輝度向上効果が160%以上
○: 輝度向上効果が150%以上、160%未満
△: 輝度向上効果が140%以上、150%未満
×: 輝度向上効果が140%未満
あわせて画面の正面を0度とし、0度〜80度の全方位視野角での色相xの最大変化およびyの最大変化を下記の基準で評価した。
◎: x、yともに最大変化が0.03未満
○: x、yのいずれかの最大変化が0.03未満
×: x、yともに最大変化が0.03以上
【0096】
(10)コントラスト評価(偏光度)
パソコンの表示ディスプレイとして得られた液晶表示装置を用い、パソコンにより白色および黒画面を表示したときの液晶表示装置の画面の正面輝度をオプトデザイン社製FPD視野角測定評価装置(ErgoScope88)で測定し、白画面より明輝度を、また黒画面より暗輝度をそれぞれ求め、明輝度/暗輝度より求められるコントラストを以下の基準で評価した。
◎: コントラスト(明輝度/暗輝度) 500以上
○: コントラスト(明輝度/暗輝度) 200以上500未満
△: コントラスト(明輝度/暗輝度) 100以上200未満
×: コントラスト(明輝度/暗輝度) 100未満
【0097】
(11)耐久性評価
パソコンの表示ディスプレイとして得られた液晶表示装置を用い、バックライトを連続3000hr点灯後、液晶パネルを取り出して、外観を肉眼で観察し、下記基準に基づき評価を行った。
評価基準:
◎ 加熱後のフィルムの外観に全く変化が見られない
○ 加熱後のフィルムに、目視では変化が認められるが、0.5mm未満の高さの計測不能な凹凸が見られる
△ 加熱後のフィルムに、1mm未満の高さの凹凸が見られる
× 加熱後のフィルムに、1mm以上の高さの凹凸が見られる。
【0098】
[参考例]
(偏光子の作成)
ポリビニルアルコールを主成分とする高分子フィルム[クラレ製 商品名「9P75R(厚み:75μm、平均重合度:2,400、ケン化度99.9モル%)」]を周速の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてポリビニルアルコールフィルムを膨潤させつつ搬送方向に1.2倍に延伸した後、30℃のヨウ化カリウム濃度0.03重量%、ヨウ素濃度0.3重量%の水溶液中で1分間浸漬することで、染色しながら搬送方向に、全く延伸していないフィルム(原長)を基準として3倍に延伸した。次に60℃のホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%の水溶液中に30秒間浸漬しながら、搬送方向に原長基準で6倍に延伸した。次に、得られた延伸フィルムを70℃で2分間乾燥することで偏光子を得た。なお、偏光子の厚みは30μm、水分率は14.3重量%であった。
【0099】
(接着剤の作成)
アセトアセチル基を有するポリビニルアルコール系樹脂(平均重合度1200、ケン化度98.5モル%、アセトアセチル化度5モル%)100重量部に対して、メチロールメラミン50重量部を30℃の温度条件下で純水に溶解し、固形分濃度3.7重量%の水溶液を調製した。この水溶液100重量部に対して、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度10重量%で含有する水溶液18重量部を加えて接着剤水溶液を調製した。接着剤溶液の粘度は9.6mPa・sであり、pHは4〜4.5の範囲であり、アルミナコロイドの配合量は、ポリビニルアルコール系樹脂100重量部に対して74重量部であった。
【0100】
(吸収型偏光板の作成)
厚み80μm、正面レターデーション0.1nm、厚み方向レターデーション1.0nmの光学等方性素子(富士フィルム製商品名「フジタック ZRF80S」の片面に、上記のアルミナコロイド含有接着剤を、乾燥後の厚みが80nmとなるように塗布し、これを上記の偏光子の片面に両者の搬送方向が平行となるようにロール・トゥー・ロールで積層した。続いて、偏光子の反対側の面にも同様にして光学等方性素子(富士フィルム製商品名「フジタック ZRF80S」)の片面に上記のアルミナコロイド含有接着剤を乾燥後の厚みが80nmとなるように塗布したものを、これらの搬送方向が平行となるようにロール・トゥー・ロールで積層した。その後55℃で6分間乾燥させて偏光板を得た。この偏光板を「偏光板X」とする。
【0101】
(液晶パネルの作成)
IPSモードの液晶セルを備え、直下型のバックライトを採用した液晶テレビ(LG電子製 INFINIA 22LE5300 2010年製)から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板および光学補償フィルムを取り除いて、該液晶セルのガラス面(表裏)を洗浄した。続いて、上記液晶セルの光源側の表面に、上記の偏光板Xを元の液晶パネルに配置されていた光源側偏光板の吸収軸方向と同様の方向となるように、アクリル系粘着剤を介して偏光板Xを液晶セルに配置した。
次いで、液晶セルの視認側の表面に、上記の偏光板Xを、元の液晶パネルに配置されていた視認側偏光板の吸収軸方向と同様の方向となるように、アクリル系粘着剤を介して偏光板Xを液晶セルに配置した。このようにして、液晶セルの一方主面に偏光板X、他方主面に偏光板Xが配置された液晶パネルを得た。
【0102】
(液晶表示装置の作成)
上記の液晶パネルを、元の液晶表示装置に組込み、液晶表示装置の光源を点灯させ、パソコンにて白画面および黒画面を表示して、液晶表示装置の輝度を評価した。
【0103】
[実施例1]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸、そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gで、酸成分の85モル%が2,6−ナフタレンジカルボン酸成分(表中、PENと記載)、酸成分の15モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分(表中、ENAと記載)、グリコール成分がエチレングリコールである芳香族ポリエステルを得、第1層用ポリエステルとした。
また、第2層用ポリエステルとして、トリシクロデカンジメタノール、エチレングリコールおよびテレフタル酸とを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.60dl/gで、ジオール成分の30モル%がトリシクロデカンジメタノール成分(表中、TCDMと記載)、ジオール成分の70モル%がエチレングリコール成分、酸成分がテレフタル酸である芳香族ポリエステルを得、第2層用ポリエステルとした。
【0104】
準備した第1層用ポリエステルおよび第2層用ポリエステルを、それぞれ170℃で5時間乾燥後、第1、第2の押出機に供給し、300℃まで加熱して溶融状態とし、第1層用ポリエステルを138層、第2層用ポリエステルを137層に分岐させた後、第1層と第2層が交互に積層され、かつ第1層と第2層におけるそれぞれの最大層厚みと最小層厚みが最大/最小で2.2倍まで連続的に変化するような多層フィードブロック装置を使用して、第1層と第2層が交互に積層された総数275層の積層状態の溶融体とし、その積層状態を保持したまま、その両側に第3の押出機から第2層用ポリエステルと同じポリエステルを3層ダイへと導き、総数275層の積層状態の溶融体の両側に厚み調整層をさらに積層した。かかる両端層(厚み調整層)は、全体の18%なるよう第3の押出機の供給量を調整した。ついで、かかる積層状態(以下、1ユニットと称することがある)を保持したまま、積層方向と垂直方向に1:1の比率になるように分割し、積層数(ダブリング数)が2倍になるように再度積層し、その積層状態を保持したままダイへと導き、キャスティングドラム上にキャストして、第1層と第2層の平均層厚み比が1.0:2.6になるように調整し、多層未延伸フィルムを作成した。
この多層未延伸フィルムを135℃の温度で幅方向に5.2倍に延伸し、130℃で3秒間熱固定処理を行った。得られたフィルムの全体厚みは66μm、第1の層と第2の層の交互積層(光学干渉層)部分の層数は550層であった。
【0105】
(液晶パネルの形成)
前記参考例において、光源側の第1の偏光板として偏光板Xに代えて、得られた反射偏光フィルムを用いた以外は比較例1と同様にして、液晶セルの光源側主面に得られた反射偏光フィルム(第1の偏光板)、視認側主面に偏光板X(第2の偏光板)が配置された液晶パネルを得た。
【0106】
(液晶表示装置の作成)
上記の液晶パネルを元の液晶表示装置に組込み、液晶表示装置の光源を点灯させ、パソコンにて白画面および黒画面の輝度を評価した。
このようにして得られた多層一軸延伸フィルムの各層の樹脂構成、各層の特徴を表1に、また多層一軸延伸フィルムの物性および液晶表示装置の物性を表2に示す。
【0107】
[実施例2〜11]
表1に示すとおり、各層の樹脂組成または層厚みを変更した以外は実施例1と同様にして、多層一軸延伸フィルムを得た。その際、第1層を構成するポリマーのTgに合わせて延伸温度および熱固定温度を調整した。得られた多層一軸延伸フィルムの物性を表2に示す。
【0108】
[実施例12]
1ユニットの積層状態を得たあとの積層数(ダブリング数)を3倍に変更した以外は実施例1と同様にして多層一軸延伸フィルムを得た。得られた多層一軸延伸フィルムの物性を表2に示す。
【0109】
[実施例13]
1ユニットの積層状態を得たあとの積層(ダブリング)を行わなかった以外は実施例1と同様にして多層一軸延伸フィルムを得た。得られた多層一軸延伸フィルムの物性を表2に示す。
【0110】
[比較例1]
第1層用ポリエステルを固有粘度(オルトクロロフェノール、35℃)0.62dl/gのポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)に変更し、1ユニットの積層状態を得たあとの積層(ダブリング)を行わなかった以外は実施例1と同様にして多層一軸延伸フィルムを得た。得られた多層一軸延伸フィルムの物性を表2に示す。
【0111】
[比較例2]
表1に示すとおり、第2層用ポリエステルを固有粘度(オルトクロロフェノール、35℃)0.62dl/gのテレフタル酸45mol%共重合ポリエチレン−2,6−ナフタレンジカルボキシレート(TA45PEN)に変更した以外は比較例1と同様にして多層一軸延伸フィルムを得た。得られた多層一軸延伸フィルムの物性を表2に示す。
【0112】
【表1】

【0113】
【表2】

【0114】
なお、表1中のポリエステルの組成は以下の通りである。
【0115】
【表3】

【0116】
C2NA: 6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸
NDC: 2,6−ナフタレンジカルボン酸
EG: エチレングリコール
PEN: ポリエチレン−2,6−ナフタレンジカルボキシレート
TMG: トリメチレングリコール
PTN: ポリトリメチレン−2,6−ナフタレンジカルボキシレート
BD: 1,4−ブタンジオール
PBN: ポリブチレン−2,6−ナフタレンジカルボキシレート
C3NA: 6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸
TA: テレフタル酸
PET: ポリエチレンテレフタレート
TCDM: トリシクロデカンジメタノール
SPG: スピログリコール
CHDC: シクロヘキサンジカルボン酸
DHQE: デカヒドロナフタレンジカルボン酸
IA: イソフタル酸
【産業上の利用可能性】
【0117】
本発明の多層一軸延伸フィルムは、輝度向上フィルムや液晶セルと貼り合せる偏光板、液晶ディスプレイに利用することができる。
【符号の説明】
【0118】
1 偏光板
2 液晶セル
3 偏光板
4 輝度向上用部材
5 光源
6 液晶パネル
7 第2の偏光板
8 液晶セル
9 第1の偏光板
10 光源
11 液晶パネル

【特許請求の範囲】
【請求項1】
第1層と第2層とが交互に積層された251層以上の多層一軸延伸フィルムにおいて、
1)該第1層は、ジカルボン酸成分とジオール成分とのポリエステルからなる層であり、
(i)ジカルボン酸成分は5モル%以上50モル%以下の下記式(A)で表される成分および50モル%以上95モル%以下の下記式(B)で表される成分を含有し、
【化1】

(式(A)中、Rは炭素数2〜4のアルキレン基を表わす)
【化2】

(式(B)中、Rはナフタレンジイル基を表わす)
(ii)ジオール成分は90モル%以上100モル%以下の下記式(C)で表される成分を含有し、
【化3】

(式(C)中、Rは炭素数2〜4のアルキレン基を表わす)
2)該第2層は、80℃以上のガラス転移温度を有する共重合量5モル%以上85モル%以下の共重合ポリエステルからなり、平均屈折率1.50以上1.60以下かつ光学等方性の層であって、
3)該多層一軸延伸フィルムの85℃、30分の条件における熱収縮率が1.5%以下であることを特徴とする多層一軸延伸フィルム。
【請求項2】
第2層を構成する共重合ポリエステルが脂環族ジオールを共重合成分とする共重合ポリエチレンテレフタレートである請求項1に記載の多層一軸延伸フィルム。
【請求項3】
共重合ポリエチレンテレフタレートを構成する共重合成分がスピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種である請求項2に記載の多層一軸延伸フィルム。
【請求項4】
第2層を構成する共重合ポリエステルが脂環族ジカルボン酸または脂環族ジオールの少なくとも1種を共重合成分とする共重合ポリエチレンナフレフタレートである請求項1に記載の多層一軸延伸フィルム。
【請求項5】
共重合ポリエチレンナフレフタレートを構成する共重合成分がシクロヘキサンジカルボン酸、デカヒドロナフタレンジカルボン酸、スピログリコール、トリシクロデカンジメタノールおよびシクロヘキサンジメタノールからなる群から選ばれる少なくとも1種である請求項4に記載の多層一軸延伸フィルム。
【請求項6】
フィルム面内における該多層一軸延伸フィルムの第1層と第2層の1軸延伸方向(X方向)の屈折率差が0.10〜0.45であって、1軸延伸方向に直交する方向(Y方向)における第1層と第2層との屈折率差、およびフィルム厚み方向(Z方向)における第1層と第2層との屈折率差がそれぞれ0.05以下である請求項1〜5のいずれかに記載の多層一軸延伸フィルム。
【請求項7】
フィルム面を反射面とし、X方向を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ90%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率がそれぞれ15%以下である、請求項1〜6のいずれかに記載の多層一軸延伸フィルム。
【請求項8】
請求項1〜7のいずれかに記載の多層一軸延伸フィルムからなる反射型偏光板。
【請求項9】
第1の偏光板、液晶セルおよび第2の偏光板が順次配置され、第1の偏光板が請求項8記載の反射型偏光板である液晶ディスプレイ装置用光学部材。
【請求項10】
光源と請求項9記載の液晶ディスプレイ装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶ディスプレイ装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2013−7789(P2013−7789A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−138821(P2011−138821)
【出願日】平成23年6月22日(2011.6.22)
【出願人】(000003001)帝人株式会社 (1,209)
【Fターム(参考)】