説明

多結晶シリコン破砕物の製造方法

【課題】多結晶シリコンを所望の大きさの塊に破砕して、最大目的寸法の管理ができるとともに、破砕時に微粉の発生を抑えることができる、多結晶シリコン破砕物の製造方法を提供する。
【解決手段】平行な軸線回りに互いに逆回転する一対のロール間に塊状の多結晶シリコンを挟み込むことにより破砕する破砕工程を有し、各ロール3には、外周面上に複数の破砕歯5が半径方向外方に突出して設けられ、各破砕歯5は、先端面15が球面状に形成されるとともに、側面16が円錐面状又は円柱面状に形成されており、破砕工程は、両ロール3の対向部間における破砕歯5の先端面15どうしの対向距離Gに対する投入される破砕前の多結晶シリコンの最大辺の長さの比で特定される破砕比を1.0以上1.5未満に設定して破砕する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体用シリコン等の原料である多結晶シリコンを塊状に破砕して多結晶シリコン破砕物を製造する方法に関する。
【背景技術】
【0002】
半導体チップに使用されるシリコンウエハは、例えばチョクラルスキー(CZ)法により製造された単結晶シリコンから作製される。そして、このCZ法による単結晶シリコンの製造には、例えば、シーメンス法によって棒状に形成された多結晶シリコンを塊状に破砕したものが用いられる。
この多結晶シリコンの破砕は、図7に示すように、多結晶シリコンのロッドRを数mm〜数cmの大きさの塊Cにするものであり、ロッドRを熱衝撃等によって適宜の大きさに砕いた後に、ハンマーで直接叩き割る方法が一般的であるが、作業者の負担が大きく、棒状の多結晶シリコンから所望の大きさの塊を得るには非効率である。
【0003】
特許文献1には、棒状の多結晶シリコンをロールクラッシャーで破砕して塊状のシリコンを得る方法が開示されている。このロールクラッシャーは、一つのロールをハウジング内に収容したシングルロールクラッシャーであり、そのロール表面には複数の歯が形成され、これら歯とハウジングの内壁面との隙間に多結晶シリコンを挟むことによって連続的に衝撃を与えて棒状の多結晶シリコンを破砕する。
【0004】
一方、特許文献2及び特許文献3には、粗く破砕された塊状の多結晶シリコンを破砕する破砕装置が提案されている。これらの装置は、二つのロールを備え、各ロールの隙間に塊状の多結晶シリコンを挟んで破砕するダブルロールクラッシャーである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−122902号公報
【特許文献2】特表2009−531172号公報
【特許文献3】特開2006−192423号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、この種のロールクラッシャーにおいては、特許文献1ではロールとハウジングの内壁面との間、特許文献2及び特許文献3では両ロールの間の間隙が、得られる破砕物の最大目的寸法として設定される。しかしながら、これらのロールとハウジングの内壁面との間や両ロール間の間隙に、破砕された塊状の多結晶シリコンが押し込まれ、すり潰されるために、多結晶シリコンの微粉が発生される割合が多くなっている。したがって、多結晶シリコンを所望の大きさにする際の破砕効率が低いものとなっている。
【0007】
本発明は、このような事情に鑑みてなされたもので、多結晶シリコンを所望の大きさの塊に破砕して、最大目的寸法の管理ができるとともに、破砕時に微粉の発生を抑えることができる、多結晶シリコン破砕物の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の多結晶シリコン破砕物の製造方法は、平行な軸線回りに互いに逆回転する一対のロール間に塊状の多結晶シリコンを挟み込むことにより破砕する破砕工程を有し、各ロールには、外周面上に複数の破砕歯が半径方向外方に突出して設けられ、各破砕歯は、先端面が球面状に形成されるとともに、側面が円錐面状又は円柱面状に形成されており、前記破砕工程は、両ロールの対向部間における前記破砕歯の先端面どうしの対向距離に対する投入される破砕前の多結晶シリコンの最大辺の長さの比で特定される破砕比を1.0以上1.5未満に設定して破砕することを特徴とする。
【0009】
この多結晶シリコン破砕物の製造方法では、ロールを回転しながら破砕歯によって多結晶シリコンを連続的に打撃して、効率良く破砕することができる。また、破砕歯の先端面が球面状に形成されていることから、破砕歯の先端と多結晶シリコンとは点接触状態となり、また、その破砕歯の側面も円錐面状又は円柱面状に形成されているので、破砕歯の側面が多結晶シリコンに接触する際には線接触状態となる。したがって、破砕歯と多結晶シリコンとは点接触又は線接触状態となるから、多結晶シリコンが破砕歯により押しつぶされて微細粉が生じることが防止される。また、破砕比を上記範囲に設定することにより、投入される多結晶シリコンが過剰に押しつぶされることがないので、微細粉が生じることが防止されるとともに、適切な大きさの塊を得ることができる。
【0010】
また、本発明の多結晶シリコン破砕物の製造方法は、前記破砕工程を複数回繰り返して行われる製造方法であって、各破砕工程の間に、多結晶シリコン破砕物を大小のサイズに分級する分級工程を有し、該分級工程により分級されたサイズの大きい多結晶シリコン破砕物を2回目以降の破砕工程で破砕するとともに、該2回目以降の破砕工程では、投入される多結晶シリコン破砕物の最大辺の長さに合わせて、前記破砕比が1.0以上1.5未満となるように、前記破砕歯の対向距離を調整して破砕することを特徴とする。
【0011】
各破砕工程においては、破砕比が1.0以上1.5未満に設定されていることから、微細粉が生じることが防止される。また、微細粉の発生を防止しながら、多結晶シリコン破砕物を各破砕工程の通過毎に徐々に所望の大きさに近づけることができるので、微細物の発生の割合を低く抑え、所望の大きさの多結晶シリコン破砕物への変換効率を向上させることができる。
【0012】
本発明の多結晶シリコン破砕物の製造方法においては、各破砕工程の前記破砕歯の対向距離に合わせて、各破砕歯の直径および突出高さ、隣接する破砕歯どうしの間隔を調整するとよい。
両ロールの破砕歯の対向距離に合わせて、各破砕歯のサイズや配置を調整することで、微細粉の発生を防止しながら、多結晶シリコン破砕物を細分化することができる。
【発明の効果】
【0013】
本発明の多結晶シリコン破砕物の製造方法によれば、多結晶シリコンを所望の大きさの塊に破砕して、最大目的寸法の管理ができるとともに、破砕時に微粉の発生を抑えることができる。
【図面の簡単な説明】
【0014】
【図1】本発明に係る多結晶シリコン破砕物の製造方法を適用する破砕手段の一実施形態を示す一部を透視した斜視図である。
【図2】図1の破砕手段におけるロール表面の斜視図である。
【図3】その破砕手段に取り付けられている破砕歯ユニットの背面から見た斜視図である。
【図4】複数個並んだ状態の破砕歯ユニットの斜視図である。
【図5】破砕歯の斜視図である。
【図6】ロールの対向部における位置関係を説明する正面図である。
【図7】多結晶シリコンのロッドを破砕して塊状としたものを示す模式図である。
【発明を実施するための形態】
【0015】
以下、本発明に係る多結晶シリコン破砕物の製造方法の一実施形態を説明する。
第1実施形態の破砕方法は、図1に示す破砕手段1により、平行な軸線回りに互いに逆回転する一対のロール間に、塊状の多結晶シリコンを挟み込んで破砕する破砕工程を有して行われる。
破砕手段1は、ハウジング2内に二つのロール3がその回転軸線4を水平方向に向けて平行に配置されており、両ロール3の外周面に複数の破砕歯5が半径方向外方に向けて突設されている。この場合、各ロール3の外周面は、図2に示すように、均一な円弧面ではなく、軸方向に沿う長尺な平坦面6を周方向に連結して構成された多面体状に形成されており、各平坦面6の両端部にねじ穴7が設けられ、これら平坦面6に、破砕歯ユニット8が一つずつ固定されている。
【0016】
破砕歯ユニット8は、図3及び図4に示すように、ロール3の平坦面6に当接する短冊状の固定カバー11と、この固定カバー11に取り付けられる複数個の破砕歯5とから構成されている。
破砕歯5は、超硬合金により、図5に示すように、柱状部13とその基端部で拡径する若干の厚さのつば部14とが一体に形成された形状とされている。柱状部13は、その先端面15が球面状に形成されるとともに、側面16が円錐面状又は円柱面状に形成されている。つば部14は、円形板の両側部を柱状部13の長手方向と平行に切除した形状とされ、その切除した部分により、平面部17が180°反対向きに形成されている。
【0017】
また、固定カバー11は、ロール3の平坦面6と同じ幅、長さの短冊状に形成され、その長手方向に相互間隔をおいて破砕歯固定孔21が貫通状態に形成され、両端部にねじ挿通孔22が形成されている。これら破砕歯固定孔21は、図3に示すように、固定カバー11の厚さの半分までが破砕歯5の柱状部13の側面16に対応した断面円形の嵌合孔23とされ、残りの半分が破砕歯5のつば部14に対応して平面部24を有する拡径部25とされている。そして、破砕歯5は、固定カバー11の嵌合孔23に柱状部13を嵌合した状態でつば部14が拡径部25に嵌合し、固定カバー11の平面部24とつば部14の平面部17とが当接することにより、固定カバー11に回り止めされた状態に保持される。
【0018】
この場合、この固定カバー11は拡径部25をロール3表面に向け、嵌合孔23から破砕歯5の柱状部13を突出させた状態として、ロール3の各平坦面6に重ねられ、その両端部がねじ26によりロール表面に固定される。
また、各破砕歯ユニット8は、隣接する破砕歯ユニット8の破砕歯5がロール3の周方向に連続して並ばないように、図4に示すように、破砕歯5が千鳥状に配列した状態に取り付けられる。
一方、両ロール3の間では、図6に示すように、その対向部(両ロール3の破砕歯どうしが最も近接する位置)において両ロール3にそれぞれ設けられる破砕歯5の先端面15どうしが対向するように配置されている。
なお、この図6においては、千鳥状に配列されている破砕歯5のうち、同一円周上に配置される一列の破砕歯5を実線で示し、他の列の破砕歯5を二点鎖線で示している。
【0019】
そして、最大辺の長さが110mmの多結晶シリコンの塊を破砕手段1に投入する場合の実施形態は、破砕後の多結晶シリコン破砕物のサイズとして、最大辺の長さが5mm以上90mm以下となる破砕物を得るようにしている。その大きさの破砕物を得るために、各破砕歯5は、柱状部13の直径Dが14mm、図6に示す固定カバー11の表面から破砕歯5の先端までの突出高さHが30mmとされるとともに、隣接する破砕歯5どうしの間隔Lが26mmとされている。また、両ロール3の対向部において、破砕歯5の先端面15どうしの対向距離Gが74〜110mmに設定されており、対向距離Gに対する破砕手段1に投入される破砕前の多結晶シリコンの最大辺の長さの比で特定される破砕比は1.0以上1.5未満に設定されている。
【0020】
なお、両ロール3を収容したハウジング2は、コンタミ防止のため、ポリプロピレン等の樹脂製とされ、あるいは金属製のハウジングの内面にテトラフルオロエチレンのコーティングをしたものが用いられる。
また、ハウジング2内には、両ロール3の両端部にロール3の軸線4と直交して配置される一対の仕切り板31がハウジング2の内壁面との間に一定の間隔をおいて平行に設けられている。これら仕切り板31は、ハウジング2に固定されており、両ロール3の半分以上を係合するように、ロール3の直径よりも若干大きい径の円弧状にくり抜いた2個の切欠32が形成され、これら切欠32内に各ロール3の両端部を係合した状態で、両ロール3の間に架け渡されるように配置されている。この仕切り板31をロール3に係合した状態では、仕切り板31の切欠32の内周面とロール3の外周面との間には、ロール3の回転を阻害しない程度に若干の隙間が形成され、また、ロール3の両端部に設けられている破砕歯ユニット8固定用のねじ26が仕切り板31の外側方に配置され、両仕切り板31がロール3の対向部からその上下の空間を挟んだ状態としている。そして、これら仕切り板31に挟まれた空間が多結晶シリコン破砕空間33とされ、ハウジング2の上面には、その破砕空間33の真上に配置されるように投入口34が設けられる。これら仕切り板31も、ハウジング2と同様にポリプロピレン等の樹脂製、あるいは金属製のものにテトラフルオロエチレンのコーティングをしたものが用いられる。
なお、このハウジング2には、両ロール3を回転駆動するギヤボックス(図示略)等が備えられ、ギヤボックスには排気手段(図示略)が接続されて、ハウジング2及びギヤボックスの内部空間が排気されるようになっている。
【0021】
このように構成した破砕手段1において、両ロール3を回転させた状態で、ハウジング2の投入口34から両仕切り板31の間の多結晶シリコン破砕空間33に予め粗く破砕した適宜の大きさの多結晶シリコンを投入すると、両ロール3の破砕歯5の間で多結晶シリコンがさらに破砕されて塊状に細分化される。このとき、各破砕歯5は、その先端面15が球面状に形成されているので、この先端面15と多結晶シリコンとは点接触となり、また、柱状部13の側面16が円錐面状又は円柱面状に形成されているので、この側面16と多結晶シリコンとは点接触又は線接触となる。このため、多結晶シリコンに対して破砕歯5は点接触又は線接触状態で衝撃を付加するので、多結晶シリコンを面で押しつぶすようなことはない。
また、破砕比を1.0以上1.5未満の範囲に設定することにより、投入される多結晶シリコンが過剰に押しつぶされることがなく、微細粉が生じることを防止することができる。
【0022】
また、両ロール3の両端部上に配置されている仕切り板31は、その間で破砕される多結晶シリコンの塊がハウジング2の内壁面とロール3の端面との間に侵入してつぶされることを防止しており、多結晶シリコンの塊を確実に両ロール3の間で破砕して下方に通過させることができる。
したがって、この破砕手段1では多結晶シリコンを所望の大きさの塊に破砕することができ、微細粉の発生を防止して、ロス率を低減することができる。
【0023】
次に、本発明の第2実施形態の多結晶シリコンの破砕方法について説明する。
第1実施形態の破砕方法は、単体の破砕工程を行う構成とされていたが、第2実施形態の破砕方法は、破砕工程を4回繰り返して行われる。
第2実施形態の1次から4次の破砕工程は、第1実施形態の破砕工程と同様の破砕手段1を用いて、平行な軸線回りに逆回転する一対のロール3間に多結晶シリコンを挟み込むことにより破砕するものである。また、第2実施形態の破砕方法においては、各破砕工程の間には、先の工程から流れてきた多結晶シリコン破砕物を大小のサイズに分級する分級工程を有しており、2回目以降の破砕工程では、これら分級工程により分級されたサイズの大きい多結晶シリコン破砕物の最大辺の長さに合わせて、破砕比が1.0以上1.5未満となるように、破砕歯5の対向距離Gを調整して破砕を行う。また、各破砕工程における破砕歯どうしの対向距離Gは、表1に示すように、多結晶シリコン破砕物が投入される順に(破砕回数を重ねる毎)に小さくなるように設けられており、前後の破砕工程についてみると、後の破砕工程の対向距離Gが、前の破砕工程の対向距離Gよりも小さくなるように設定されている。また、各破砕工程の破砕歯5は、柱状部13の直径D、破砕歯5の固定カバー11の表面からの突出高さH、隣接する破砕歯どうしの間隔Lは、破砕回数を重ねる毎に小さくなるように設定されている。
【0024】
【表1】

【0025】
このように構成した破砕手段を用いて多結晶シリコン破砕物を製造する場合、まず、1次破砕工程においては、両ロール3を回転させた状態で、最大辺の長さが110mm以下に破砕された多結晶シリコンを投入する。投入された多結晶シリコンは、両ロール3の破砕歯5の間で破砕されて少量の微粉が生じるが、大部分は、最大辺の長さが90mm以下の破砕物に破砕される。
次に、1次破砕工程で破砕された多結晶シリコン破砕物は、分級工程で大小のサイズ毎に分級される。例えば、篩い等の選別手段によって最大辺の長さが60mm未満の破砕物と、60mm以上の破砕物とに分級される。そして、分級された60mm以上90mm以下の破砕物が、両ロール3を回転させた状態の2次破砕手段に投入される。2次破砕工程においては、1次破砕工程と同様に、両ロール3の破砕歯5の間で破砕されて少量の微粉が生じるが、大部分は、最大辺の長さが75mm以下の破砕物に破砕される。そして、選別手段により分級され、最大辺の長さが60mm以上75mm以下の破砕物が3次破砕手段に投入される(3次破砕工程)。このように、破砕と分級とが4次破砕工程まで繰り返されることにより、破砕物の多くが5〜60mmの大きさに生成される。
【0026】
第2実施形態においては、破砕後の多結晶シリコン破砕物の大きさとして、最大辺の長さが5〜60mmのものを得るようにしていることから、対向距離Gが44〜65mmに設定された4次破砕工程まで構成されている。そして、対向距離Gが大きく設定された1次破砕工程から順に4次破砕工程まで破砕物を投入していくことで、各破砕工程の通過毎に、徐々に破砕物を細分化して所望の大きさに近づけることができるとともに、微細物の発生の割合を低く抑えることができ、所望の大きさの多結晶シリコン破砕物への変換効率を向上させることができる。
【0027】
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態で説明した破砕歯の対向距離等の諸寸法は、必ずしもこれに限定されるものではない。
【符号の説明】
【0028】
1 破砕手段
2 ハウジング
3 ロール
4 回転軸線
5 破砕歯
6 平坦面
7 ねじ穴
8 破砕歯ユニット
11 固定カバー
13 柱状部
14 つば部
15 先端面
16 側面
17 平面部
21 破砕歯固定孔
22 ねじ挿入孔
23 嵌合孔
24 平面部
25 拡径部
26 ねじ
31 仕切り板
32 切欠
33 破砕空間
34 投入口


【特許請求の範囲】
【請求項1】
平行な軸線回りに互いに逆回転する一対のロール間に塊状の多結晶シリコンを挟み込むことにより破砕する破砕工程を有し、各ロールには、外周面上に複数の破砕歯が半径方向外方に突出して設けられ、各破砕歯は、先端面が球面状に形成されるとともに、側面が円錐面状又は円柱面状に形成されており、前記破砕工程は、両ロールの対向部間における前記破砕歯の先端面どうしの対向距離に対する投入される破砕前の多結晶シリコンの最大辺の長さの比で特定される破砕比を1.0以上1.5未満に設定して破砕することを特徴とする多結晶シリコン破砕物の製造方法。
【請求項2】
請求項1記載の破砕工程を複数回繰り返して行われる製造方法であって、各破砕工程の間に、多結晶シリコン破砕物を大小のサイズに分級する分級工程を有し、該分級工程により分級されたサイズの大きい多結晶シリコン破砕物を2回目以降の破砕工程で破砕するとともに、該2回目以降の破砕工程では、投入される多結晶シリコン破砕物の最大辺の長さに合わせて、前記破砕比が1.0以上1.5未満となるように、前記破砕歯の対向距離を調整して破砕することを特徴とする多結晶シリコン破砕物の製造方法。
【請求項3】
各破砕工程の前記破砕歯の対向距離に合わせて、各破砕歯の直径および突出高さ、隣接する破砕歯どうしの間隔を調整することを特徴とする請求項2に記載の多結晶シリコン破砕物の製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−217887(P2012−217887A)
【公開日】平成24年11月12日(2012.11.12)
【国際特許分類】
【出願番号】特願2011−84063(P2011−84063)
【出願日】平成23年4月5日(2011.4.5)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】