説明

多重極イオン輸送装置および関連方法

【課題】m/z比が広範囲であるイオンに最適化されたイオン移送条件を提供するために構成されたイオン輸送機器が必要とされている。
【解決手段】イオン輸送装置は、イオン入口端部と、イオン出口端部と、イオン入口端部からイオン出口端部まで長手方向軸に沿って配置された電極とを備えている。各電極は、長手方向軸に沿って変化するRF電界を印加するように構成され、RF電界は、イオン入口端部では2n重極の主要な第1多重極成分を備えた第1RF電界を有し、ここで、n≧3/2であり、また、イオン出口端部では主として2n重極の第2多重極成分を備えた第2RF電界を有し、ここで、n≧3/2およびn<nである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般に、イオンの案内、例えば、質量分析などの分析化学分野において用途のあるものに関する。より詳しくは、本発明は、収束イオンビームのイオンの案内に関する。
【背景技術】
【0002】
本出願は、2009年6月5日に出願された米国特許出願第12/479,614号の優先権を主張するものである。
種々のタイプのイオン処理装置、一例として質量分析計(MS)においてイオンを移送するためにイオンガイド(またはイオン輸送装置)を用いてもよい。当業者には種々のタイプの質量分析計の理論、設計、および動作は公知であるため、本開示において詳述する必要はない。一般的に使用されるイオンガイドは、2対以上の電極が意図したイオン経路の方向に伸長し、イオンが移動する内部空間を取り囲む多極構造に基づくものである。通常、この電極構造は、RF専用電極構造であり、イオンガイドを通過するイオンは、この電極構造を貫通する軸方向経路に沿ってイオンを集束させる2次元高周波(RF)トラップ電界に曝される。かかるイオンの経路は、電極構造の軸に対して直交する横断面の径方向に振動できるが、このような振動は、当該横断面に印加されているRF電界によって付与される力によって制限される。その結果、イオンは、電極構造の軸(通常、幾何学的中心軸)を中心にしたイオンビームに閉じ込められる。RF電界が無ければ、イオンは不安定な制御されない状態で広く分散してしまう。イオンガイドのイオン出口から後続の装置へ実際に移送されるイオンはほとんどなく、たいていのイオンはイオン出口に到達せずに、イオンガイドロッドに衝突するか電極構造から漏れてしまう。したがって、イオンガイドにおいて、イオンガイドの軸方向端部でイオン出口を通過して効率良く移送されるようにするために、イオンはその飛行中、イオンビームに閉じ込められるように最少量のRF復元力を受ける必要がある。
【0003】
従来のイオンガイドにおいて、印加されたRF電界は、端部効果および他の局所的な不連続性を無視すると、一般に、イオン入口からイオン出口まで軸方向に沿って均一である。その結果、少なくとも、イオンビームの断面積(大略的に、イオンの径方向偏位(振幅)が2次元平面内に限定される包路(エンベロープ)を指す)が軸に沿って均一であるという意味において、イオンビームは大略的に円筒状である。イオンビームの断面の大きさは通常、印加されているRF電界の性質に依存する。例として、四重極RF電界を発生させるためには4つの平行な電極群が利用され、六重極RF電界を発生させるためには6つの平行な電極群が利用されるなどが挙げられる。四重極電界では、軸を中心により強力にイオンが集束されるため、六重極電界に比べてイオンビームの断面は小さい。このような従来の場合は全て、RF電界は均一であり、故にイオンビームの断面は均一である。しかし、所定の質量電荷比(m/z)または所定の範囲のm/z比のイオンを最適な方法でイオンガイドに入れることができる条件は、イオンを最適な方法でイオンガイドから放出できる条件とは必ずしも同じではない。それゆえ、一様なイオンビームの寸法は、イオン入口およびイオン出口の両方にとってまたはイオン入口もしくはイオン出口のいずれか一方のみにとってさえも最適でないことが多く、イオン信号および機器の感度が最適値より低い状態を招く。
【先行技術文献】
【非特許文献】
【0004】
【非特許文献1】Guo−Zhong Li and Joseph A. Jarrell, Proc. 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, Florida, 1998, p 491
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、m/z比が広範囲であるイオンに最適化されたイオン移送条件を提供するために構成されたイオン輸送機器が必要とされている。
上記問題および/または当業者が観察する可能性のある他の問題に全面的または部分的に対処するため、本開示は以下の実施態様において例として説明する方法、プロセス、システム、装置、器具、および/または機器を提供する。
【課題を解決するための手段】
【0006】
ある実施態様によれば、イオン輸送(移送)装置は、イオン入口端部と、長手方向軸に沿って前記イオン入口端部から距離を置いて配置されたイオン出口端部と、前記イオン入口端部から前記イオン出口端部に向かって前記長手方向軸に沿って延びるイオン入口部と、前記イオン出口端部から前記イオン入口端部に向かって前記長手方向軸に沿って延びるイオン出口部と、複数の電極とを備えている。各電極は前記長手方向軸に沿って配置され、前記電極の少なくとも一部が前記長手方向軸に直交する横断面において径方向に距離を置いて配置されている。前記複数の電極は、前記イオン入口部の内部空間を囲む複数の第1電極と、前記イオン出口部の内部空間を囲む複数の第2電極とを備えている。前記複数の電極は、前記長手方向軸に沿って変化するRF電界を印加するように構成され、前記RF電界は、前記イオン入口端部では2n重極の主要な第1多重極成分を備えている第1RF電界を有し、ここで、n>3/2であり、また、前記イオン出口端部では主として2n重極の第2多重極成分を備えた第2RF電界を有し、ここで、n≧3/2かつn<nである。
【0007】
別の実施態様によれば、電極の少なくともいくつかは、前記長手方向軸に直交する横断面に断面積を有し、前記断面積は、前記イオン入口端部と、少なくともいくつかの電極の反対側の軸方向端部とで異なる。
別の実施態様によれば、イオンを輸送するための方法が提供される。上記イオンは、軸方向イオン入口端部でイオン輸送装置の内部空間へ入れられる。上記イオン輸送装置は、軸方向イオン入口端部から軸方向イオン出口端部に向かって長手方向軸に沿って配置された複数の電極を備え、上記複数の電極は、長手方向軸に直交する横断面において内部空間を取り囲んでいる。横断面でのイオンの径方向への動きは、イオン入口端部の大きなイオンビーム断面からイオン出口端部の小さなイオンビーム断面まで制約されて長手方向軸に沿って延びる収束イオンビームが得られる。この収束イオンビームは、長手方向軸に沿って変化するRF電界を印加することによって生じ、RF電界はイオン入口端部に2n重極の主要な第1多重極成分を備え、ここで、n≧3/2であり、また、RF電界はイオン出口端部に主として2n重極の第2多重極成分を備え、ここで、n≧3/2かつn<nである。
【0008】
本発明の他の機器、装置、システム、方法、特徴、および利点は、以下の図面および詳細な説明を精査することにより当業者に明らかとなろう。これら付加的なシステム、方法、特徴、および利点は全て当該説明および本発明の範囲に含まれ、また添付の特許請求の範囲によって保護されることが意図される。
本発明を、以下の図面を参照することによってよりよく理解することができる。図中の構成部材は必ずしもその一定の比率の縮尺で描かれておらず、むしろ本発明の原則を説明することに重点が置かれている。図中、同じ参照符号は異なる全図を通じて対応する部材を示している。
【図面の簡単な説明】
【0009】
【図1】本開示の、ある実施態様によるイオン輸送装置の一例の簡略化した斜視図である。
【図2】本開示の他の実施態様によるイオン輸送装置の別の例の(長手方向)側面図である。
【図3】イオン入口端部におけるイオン輸送装置の電極群の模式端面図である。
【図4】イオン輸送装置の、反対側のイオン出口端部における、図3に示したものと同じ電極群の模式端面図である。
【図5】他の実施態様によるイオン輸送装置の一例の(長手方向)側断面図である。
【図6】他の実施態様による別のイオン輸送装置の一例の(長手方向)側断面図である。
【図7】四重極、六重極、および八重極RF電界の擬電位を示すプロット群である。
【図8】四重極、六重極、および八重極RF電界におけるイオン分布を示すプロット群である。
【図9】他の実施態様によるイオン輸送装置の一例の斜視図である。
【図10A】入口部における電極群の模式断面図である。
【図10B】中間部における電極群の模式断面図である。
【図10C】出口部における電極群の模式断面図である。
【図11】他の実施態様によるイオン輸送装置の一例の斜視図である。
【図12A】入口部における電極群の模式断面図である。
【図12B】出口部における電極群の模式断面図である。
【図13】他の実施態様によるイオン輸送装置の一例の(長手方向)側面図である。
【図14】他の実施態様によるイオン輸送装置の一例の(長手方向)側面図である。
【図15A】図14に示すイオン輸送装置の入口部における電極群の模式断面図である。
【図15B】図14に示すイオン輸送装置の中間部における電極群の模式断面図である。
【図15C】図14に示すイオン輸送装置の出口部における電極群の模式断面図である。
【図16】他の実施態様によるイオン輸送装置の一例の(長手方向)側面図である。
【図17】他の実施態様によるイオン輸送装置の一例の斜視図である。
【図18】他の実施態様によるイオン輸送装置の一例の斜視図である。
【図19】他の実施態様によるイオン輸送装置の一例の斜視図である。
【発明を実施するための形態】
【0010】
ここに開示された内容は一般に、イオンの移送および関連するイオン処理に関する。方法と、関連する機器、装置、および/またはシステムとの実施態様例については図1ないし図19を参照して以下に詳細に述べる。これらの実施例は少なくとも一部が質量分析(MS)と関連して説明されるが、イオンの移送を伴ういかなるプロセスも本開示の範囲に含まれる。
【0011】
図1は、本開示の、ある実施態様によるイオン輸送装置(機器、組立品など)100の一例の簡略化された斜視図である。このイオン輸送装置100は、長手方向軸120を中心に配置された複数の電極104、108、112、116を備えている。この長手方向軸120をZ軸と呼ぶ場合がある。電極104、108、112、116は、イオンガイド100内の内部空間を囲むように配置され、この内部空間も長手方向軸120に沿って細長く伸ばされている。少なくとも各電極104、108、112、116の一部は、長手方向軸120に直交する横断面またはx−y面において長手方向軸120から径方向に距離を置いて配置されている。したがって、電極104、108、112、116および内部空間は、横断面および長手方向軸120に沿った軸方向範囲にそれぞれの断面積を有する。内部空間の断面積は、内部空間内側に面する電極104、108、112、116の表面によって大略的に境界づけられている。電極104、108、112、116の対向した軸方向両端部はそれぞれ、イオン輸送装置100の軸方向イオン入口端部124および軸方向イオン出口端部128を取り囲んでいる。イオンガイド100は一般に、ハウジングまたはフレーム(図示せず)もしくは長手方向軸120に沿って固定配置された電極104、108、112、116を支持するのに適した他の任意の構造を含んでいてもよい。想定されるイオン処理システムのタイプによって、このハウジングは真空、低圧、または周囲圧力未満の環境を提供してもよい。当業者が理解するように、電極104、108、112、116に対してRF電圧を適当に印加すると、電極104、108、112、116は2次元(本実施例ではx−y面)多重極RF復元電界を発生し、図3を参照しながら以下にさらに記載するように、かかる電界は一般に、長手方向軸120に沿う経路またはイオンビームに沿ってイオンを集束する。かかるイオンは、動きが、長手方向軸120近傍の横断面に制約されるため、イオンビームをイオン入口端部124からイオン出口端部128まで長手方向軸120に沿って集束されるイオン雲またはイオン占有輸送領域であると考えてもよい。
【0012】
イオン輸送装置100は、イオン入口端部124の前に1つ以上の軸方向距離を隔てて配置された1つ以上のイオン入口レンズ132と、イオン出口端部128の後ろに1つ以上の軸方向距離を隔てて配置された1つ以上のイオン出口レンズ136とをさらに備えている。これらのイオン入口レンズ132およびイオン出口レンズ136は、それぞれ開口部を有するプレート、ディスク、円筒、またはグリッドといった任意の好適な構造であってもよい。また、イオン輸送装置100は、イオンエネルギーを軸方向に制御するために利用される、1つ以上の電界を発生させるための装置または手段を備えていてもよい。これらの装置または手段を1つ以上のDC電圧源または信号発生器として具体化してもよい。これにより、図示された例において、DC電圧源148、152、156はそれぞれ、イオン入口レンズ132と、電極104、108、112、116と、イオン出口レンズ136と電気的に接続して配置され、イオン入口レンズ132と電極104、108、112、116との間の軸方向隙間を横切るように、また、電極104、108、112、116とイオン出口レンズ136との間の軸方向隙間を横切るようにDC電位を発生させてもよい。このように、イオンがイオン入口端部124を通ってイオン輸送装置100内へ、また、イオン出口端部128を通ってイオン輸送装置100外へ誘導および推進されてもよい。DC電圧源148、152、156は図1に模式的に表され、種々の異なるタイプの物理的回路または装置によって実際に実行されてもよいことが理解されよう。一代案として、長手方向軸120に沿って配置された1つ以上の他の導電性構造(例えば、抵抗トレース、ワイヤーなど)といった外部の軸方向DC電界発生装置または装置類(図示せず)を具体化してもよい。
【0013】
様々な実施態様において、イオン輸送装置100は複数のイオン輸送部を含んでいてもよい。各イオン輸送部は、電極104、108、112、116の構成またはその部内で印加される多重極RF電界の構成によって他の部と区別してもよい。また、イオン輸送装置100は、イオン入口端部124からイオン出口端部128に向かって延びるイオン入口部(または第1イオン輸送部)160と、イオン出口端部128からイオン入口端部124に向かって延びるイオン出口部(または第2イオン輸送部)164とを備えていてもよい。いくつかの実施態様においては、イオン輸送装置100は、イオン入口部160とイオン出口部164との間に介在された1つ以上の中間部(または第3イオン輸送部、第4イオン輸送部など)168をさらに備えていてもよい。図1では、イオン入口部160、イオン出口部164、および中間部168は、破線によって模式的に境界を画定されている。これらイオン輸送部160、164、168の互いに対するそれぞれの軸方向長さは限定されない。電極104、108、112、116の一部または全ては、各部160、164、168を通って延びていてもよい。
【0014】
特に図1に示す実施例において、電極104、108、112、116は、一組のストレートロッドの形態で提供されている。この場合、電極104、108、112、116は大略的に、互いに平行かつ長手方向軸120に対して平行であってもよく、長手方向軸120を中心に互いに周方向に沿って間隔をあけていてもよく、長手方向軸120に沿って細長く伸ばされていてもよい。他の実施態様において、以下に記載の実施例では、電極104、108、112、116は、直線で囲まれた、正方形、または他の多角形の断面を有していてもよく、長手方向軸120を中心に巻かれた螺旋形状で提供されてもよく、または長手方向軸120に沿って軸方向に間隔をあけた一連のリング形状でまたはリングを積み重ねて提供されてもよい。さらに、電極104、108、112、116が、内部空間に2次元RF電界を発生させて本明細書に開示の方法でイオンビームを制御するように構成されていれば、一般に、電極104、108、112、116の数は限定されない。いくつかの実施態様においては、上記電極群は電極の四重極構成に対応した少なくとも2組の対向電極対を含んでいる。このように、図1において、長手方向軸120に対して、1個の電極104は、(例えば、Y軸に沿って)別の電極108に対して径方向に対向して位置し、別の電極112は、(例えば、X軸に沿って)さらに別の電極116に対して径方向に対向して位置する。他の実施態様において、例えば、六重極、八重極、十重極、および十ニ重極の構成、さらに12個以上の電極を含む構成において、4個以上の電極を設けてもよい。さらに他の実施態様において、螺旋状の電極の場合のように、2個の電極だけを利用してもよい。
【0015】
図2は、本開示の他の実施態様によるイオン輸送装置200の別の例の(長手方向)側面図である。分かり易くするため、径方向に対向する電極対の一部分の構成のみを図示する。このイオン輸送装置200は、長手方向軸220に沿って配置された一連の多重極イオン輸送機器を備える、または分割された電極構成を有すると考えてもよい。また、イオン輸送装置200は、イオン入口部260に対応した第1電極群206、およびイオン出口部264に対応した第2電極群210を含んでいる。さらに、イオン輸送装置200は、1つ以上の中間部268に対応した1つ以上の他の電極群214を含んでいる。第1電極群206に囲まれた内部空間を、イオン入口領域(または第1イオン輸送領域)と呼ぶ場合があり、第2電極群210に囲まれた内部空間を、イオン出口領域(または第2イオン輸送領域)と呼ぶ場合があり、第3電極群214に囲まれた内部空間を、中間領域(または第3イオン輸送領域)と呼ぶ場合がある。本実施例において、電極群206、214、210は、軸方向の隙間によって隔てられている。また、1つ以上のイオン入口レンズ232およびイオン出口レンズ236も含まれていてよい。図2に模式的に示すように、DC電圧源248、250、252、254、256はそれぞれ、イオン入口レンズ232と、電極群206、214、210と、イオン出口レンズ236と電気的に接続して配置され、イオン輸送装置200内へ、イオン輸送装置200を通って、また、イオン輸送装置200外へとイオンを駆動してもよい。
【0016】
図3は、イオン入口端部におけるイオン輸送装置300の電極群の、横断面またはx−y面の模式端面図である。この電極群は、図1に示す電極群または図2に示す第1電極群206に対応していてもよい。この例では、電極群は、第1対向電極対304、308および第2対向電極対312、316を含んでいる。通常、一方の対向電極対304および308が互いに電気的に相互接続され、また他方の対向電極対312および316が互いに電気的に相互接続されて、2次元イオン誘導電界を駆動する適切なRF電圧信号の印加を容易にする。各電極304、308、312、および316はそれぞれ、通常、長手方向Z軸320から他の電極304、308、312、および316と同じ径方向距離rだけ間隔をあけている。これにより、イオン輸送装置300の内部空間は、内接円の半径がrである円によって横断面に大略的に境界づけられる。イオン輸送装置300の内部空間と、イオンの2次元(径方向)偏位運動が印加されたRF集束電界によって制約されるイオン誘導領域とは通常、この内接円内に画成される。
【0017】
イオン輸送装置300は、以下に詳述するように、イオンを制約して収束イオンビームにするために、1つ以上の対応するイオン輸送領域で1つ以上の2次元RF電界を発生させるための装置または手段を備えている。これらの装置または手段を1つ以上のRF(またはRF/DC)電圧源または信号発生器として実現してもよい。これにより、図示された例において、イオン集束または誘導電界を発生させるには、一般形がVRF cos(ωt)の高周波(RF)電圧を互いに接続された対向電極対304、308および312、316に印加する。一方の対向電極対304、308に印加される信号は、他方の対向電極対に印加される信号312、316と180度位相がずれている。図3では、RFエネルギーの印加を、第1対向電極対304、308と信号によって交信するRF電圧源(+VRF)362と、第2対向電極対312、316と信号によって交信する別のRF電圧源(VRF)366とによって模式的に示す。図2に示すような分割されたイオン輸送装置では、各部の電極対はそれぞれ互いに接続されてもよく、同様の方法で各電極対にRF電圧を印加してもよい。イオン輸送装置300が質量フィルターまたは質量ソーターとして機能することが望ましい実施態様において、印加しているRF電圧(±VRF)に適切なDC電圧(±U)が重ね合わされてもよい。このようなDC電圧は、軸方向DC電界を生成するために利用される前記軸方向DC電位と混同すべきではない。イオンの集束、誘導またはトラッピング、ならびに質量フィルタリング、イオンフラグメンテーション、イオン放出、イオン分離および他の関連する処理用の多重極RF電界発生に関する基本理論と応用とについては公知であるため、ここで詳述する必要はない。
【0018】
図1ないし図3に挙げた例では、電極群は、平行で、電気的に接続され対向した対になって配置された4個の電極からなっている。この電極群に2次元RF閉じ込め電界を従来通り印加すると、その結果、純粋な対称四重極RF電界となり、この電界の電極数が2nで、n=2である。本明細書において、「純粋な」または「主な」四重極RF電界とは、優勢な(または著しい)高次の多重極RF電界が(意図的にまたは意図せずに)この四重極電界と組み合わさって存在していないことを意味すると解される。高次のRF電界として、例えば、六重極電界(n=3)、八重極電界(n=4)、十重極電界(n=5)、および十ニ重極電界(n=6)が挙げられるが、これらに限定されない。同じ空間に印加される低次の多重極RF電界によって生じるイオンビーム断面に比べて、より大きなイオンビーム断面を所定の空間内に維持できれば、一般に、高次の多重極RF電界の電界強度は「主要なものである」。
【0019】
また、本明細書において、「主要な」高次の多重極RF電界は、イオン輸送装置の特定のイオン輸送領域で印加されている低次(例えば、四重極)の電界上にその電界強度の実質的な部分を重ね合せるという特徴を有していてもよい。例えば、所定のイオン輸送領域に複合RF電界が存在していて、四重極電界成分と1つ以上の高次の多重極電界成分とが組み合わさっているという特徴を有すると考えてみよう。高次の多重極電界成分(群)が主要であれば、高次の多重極RF電界(または、複数のタイプの高次多重極電界を重ね合わせる場合の複数の電界)の強度は、印加されている四重極電界の強度の10%以上であってもよい。したがって、純粋なまたは主な四重極RF電界において、任意の高次の多重極電界が存在すれば、これら高次の多重極電界全体の強度は四重極電界の強度の10%未満である。
【0020】
便宜上、本明細書で用いられるように、「純粋な」という用語は、「純粋な」(100%の電界強度)と「優勢な」または「実質的に純粋な」(90%以上の電界強度)との両方を包含する。また、「純粋な」という用語は、実際の実施態様において、以下の原因によって生じる電界の異常、端部効果、またはひずみによって、比較的弱い(また、時には非常に局所的な)高次の多重極電界が意図せずまたはやむを得ず存在するかもしれないことを考慮するものである。上記原因として、例えば、機械加工および組み立ての不備、電極に開口部や他の外形形状が不連続に存在すること、電極の大きさが必然的に有限であること(すなわち、実際の電極を切断し、それらの表面が完全な双曲幾何学の漸近線に向かって無限には延びず、結果的に純粋な四重極電界になる)、理想的な双曲幾何学(例えば、円筒形ロッド、直線状の棒または板など)から逸脱する表面を有する電極の使用、空間電荷効果などが挙げられる。
【0021】
純粋な四重極電界では、イオンビームは電極の配置される長手方向軸を中心に比較的しっかりと集中されるため、ほぼ細長い円筒として形成される。さらに、従来の四重極ロッド構成においても、電極群の内部空間で有効な四重極RF電界は一般に、電極群の長さ(すなわち、イオン入口端部からイオン出口端部まで)に沿って均一である。これにより、イオンビーム(すなわち、横断面におけるイオンの偏位の限界)の断面積は一般に、イオン入口端部からイオン出口端部まで均一または一定である。すなわち、イオンビームは、円錐形または漏斗形とは異なり、断面積が一定の大略的に円筒形状を有する。さらに別の方法を述べると、イオンビームの断面積は著しく発散または収束しない。同様に、6つの平行ロッドからなる電極群に2次元RF集束電界を従来通り印加すると、その結果は六重極RF電界になる。このイオンビームも、イオン入口端部からイオン出口端部まで断面積が一定の大略的に円筒形状を有するであろう。しかし、この六重極電界におけるイオンビームの断面積は、純粋な四重極電界における断面積よりも広くなる。さらに高次のRF電界に対しても同様の結果が得られる。このような従来の場合は全て、イオンビームは収束も発散もしない。
【0022】
図3は、六重極、八重極などの高次電界におけるイオンビームの断面積378と比較して四重極のような低次電界におけるイオンビームの断面積374を模式的に表す。これらの破線円は、イオンビームのイオンが横断面において移動する包路(エンベロープ)を大略的に区別するために提供されていることは当業者によって十分に理解されよう。実際には、イオンビームの実際の断面積は、より楕円形状であってもよく、楕円の向きは、印加されているRFエネルギーのサイクルに従ってx−y面において変化する。
【0023】
長手方向軸に沿った大略的に一定の構成を有する上記の従来のRF電界とは対照的に、本教示に従って、電極群および/または電極群にRF電圧を印加するための手段は、RF電界が長手方向軸に沿って変化するように構成される。本明細書中に記載の種々の実施態様において、RF電界はイオン入口端部に主要な高次多重極電界成分を含むRF電界からイオン出口端部に主として低次多重極電界成分を含むRF電界まで変化する。本明細書において、「高次」および「低次」という用語は互いに相対的なものと解される。これにより、高次多重極電界の極数が2nで、低次多重極電界成分の極数が2nであるとすると、n>nである。軸方向に変化するRF電界の結果、イオンビームは、イオン出口端部の方向に収束し、大略的に円錐形状または漏斗形状である。このような収束は、緩勾配状(例えば、テーパ状)、階段状、または緩勾配状と階段状との両方を組み合わせたもので表されてもよい。
【0024】
収束イオンビームは、図3と図4とを比較することによって視覚化されてもよい。この目的のために、図3は、イオン入口端部の高次多重極RF電界の影響を受けた断面積378のイオンビームを模式的に表していると考えてもよい。この軸方向位置では、イオンビームの断面積378はイオン入口開口部またはイオン受容開口部と呼ぶ場合がある。図4は、イオン輸送装置300の反対側のイオン出口端部における、図3に示したものと同じ電極群の、横断面またはx−y面の模式端面図である。図4は、図3と同じイオンビームを表していると考えてもよいが、ここではこのイオンビームは、この軸方向位置で低次多重極RF電界が集束により大きな影響を与えることによって、イオン出口端部でより小さな断面積374を有する。イオン出口端部において、イオンビームの断面積374はイオン出口開口部またはイオン放出開口部と呼ぶ場合がある。
【0025】
さらに、収束イオンビームは、図5において視覚化されてもよく、図5は、その長手方向軸520に沿ったイオン輸送装置500の一例の(長手方向)側断面図である。簡略化のために、1対の対向電極504、508および、これら電極504、508の間の内部空間にあるイオンビーム570を共に図示する。イオンビーム570は、比較的より大きい(またはより広い)イオン受容開口部578から比較的より小さい(またはより狭い)イオン放出開口部574までイオン移送方向に収束する。この例では、イオンビーム570は、イオン入口端部524からイオン出口端部528まで、また場合によっては1つ以上の別のイオン輸送部560、564、568を通って、緩勾配状またはテーパ状に収束する。
【0026】
それに対して、図6は、その長手方向軸620に沿った別のイオン輸送装置600の一例の(長手方向)側断面図である。この例では、イオン輸送装置600の電極は分割されており、それによってイオン輸送装置600は、イオン入口部660と、イオン出口部664と、場合によっては1つ以上の中間部668とを備え、それぞれ軸方向に間隔をあけている。また、より大きなイオン受容開口部678からより小さなイオン放出開口部674までイオン移送方向に収束するイオンビーム670が図示される。この例では、イオンビーム670は階段状に収束する。
【0027】
電極群の構成および/またはRF電界を印加するための手段によっては、他の実施態様は、図5および図6に示した上記の特徴または局面の種々の組み合わせを含んでいてもよい。これにより、例えば、図5に示す分割されていない電極群は、図6に示す、階段状の収束イオンビーム670を印加するかもしれない。あるいは、図6に示す分割された電極群は、図5に示す、徐々に収束しているイオンビーム570を印加するかもしれない。さらに、階段状のイオンビーム670の大きさは、各イオン輸送部660、664、668の長さにわたって一定または実質的に一定であるように図6に示されているが、別法として、このイオンビームはテーパ状と階段状とが混在して収束していてもよい。例えば、イオンビームの断面積は、最初のイオン入口部660の長さに沿って先細り、次いで、隣のイオン輸送部668の始端で階段状にさらに小さい面積になり、その後、この輸送部668の長さに沿って先細り、さらに、隣のイオン輸送部分664の始端でより小さい面積になってもよい。したがって、図5または図6のいずれかの電極群に印加されるRF電界の構成は、所定のイオン輸送部を通って(実質的に)均一であり、隣接したイオン輸送部でのみ著しく変化してもよく、あるいは、イオン輸送装置に対して定義された2つ以上のイオン輸送部の軸方向範囲全体にわたって徐々に変化してもよい。
【0028】
本開示による軸方向に変化するRF電界は、イオン入口端部に(またはイオン入口部において)少なくとも1つの主要な高次多重極RF電界と、イオン出口端部に(またはイオン出口部において)主として低次多重極RF電界とを含むという特徴を有していてもよい。これにより、例えば、RF電界は、イオン入口端部に主要な十ニ重極電界を含んでいてもよく、イオン出口端部では主として四重極電界からなっていてもよい。本明細書中に開示される多くの実施態様に関して、印加された2次元RF電界は、2つ以上の多重極電界成分の複合体であると考えてもよい。これにより、例えば、RF電界は、イオン入口端部に四重極電界に重ね合わされた主要な十ニ重極電界を含んでいてもよく、イオン出口端部では主に四重極電界からなっていてもよい。イオン出口端部に仮に十ニ重極電界が存在する場合には、その十ニ重極電界は小さいか僅かである。他の高次多重極電界成分がイオン輸送装置の任意の所定のイオン輸送部に存在してもよいが、そのような他の電界も同様に僅かである。一般に、高次多重極電界が主要であるのは、低次多重極電界と比べて広がったイオンビーム断面を維持するのにこの電界が十分に強い場合である。上記のように、高次多重極電界強度はイオン出口端部で印加されている低次電界強度の10%以上であると明記することによって、非限定的な例において高次多重極電界の重要性を定量化してもよい。イオン入口端部で印加される主要な高次多重極電界および中間イオン輸送部で印加される任意の主要な高次多重極電界以外に、イオン輸送装置の所定のイオン輸送部に他の高次多重極電界成分が存在してもよい。しかし、そのような電界は、僅かでもよく(すなわち、弱くてもよく)、一般に、イオンビームの意図的に変化する断面にあまり影響しないことを意味する。
【0029】
多重極電界成分を種々組み合せることによって、軸方向に変化するRF電界が収束イオンビームを生ずることを実現してもよい。幾つかの実施例として、イオン入口部は十ニ重極電界を含んでいてもよく、イオン出口部は八重極、六重極、または四重極電界を含んでいる。さらなる実施例として、イオン入口部は八重極電界を含んでいてもよく、イオン出口部は六重極または四重極電界を含んでいる。また別の実施例として、イオン入口部は六重極電界を含んでいてもよく、イオン出口部は四重極電界を含んでいる。他の実施例において、イオン入口部で重要性のある高次多重極電界は、十ニ重極より高次、すなわち、n>6でもよい。イオン輸送装置が、電極群を軸方向に分割することによってまたはその他の電極構成によって、1つ以上の中間イオン輸送部を備えるように分割される場合には、さらなる変更が可能である。幾つかの実施例として、イオン入口部は十ニ重極電界を含んでいてもよく、中間部が八重極または六重極電界を含んでいてもよく、また、イオン出口部は四重極電界を含んでいてもよい。また別の実施例として、イオン入口部は八重極電界を含んでいてもよく、中間部が六重極電界を含んでいてもよく、また、イオン出口部は四重極電界を含んでいてもよい。また別の実施例として、イオン入口部は十ニ重極電界を含んでいてもよく、中間部が八重極電界を含んでいてもよく、また、イオン出口部は六重極電界を含んでいてもよい。
【0030】
上記の実施例において、提供される電極の数は2の倍数である。
しかし、電極群の電極数は、例えば、3、5、7などの奇数でもよい。また、上記の実施例において、上述した最低次の電界は四重極電界である。しかし、イオン出口端部で(またはイオン出口部において)印加される最低次の電界は、三重極、すなわち、2n=3極であり、ここで、n=3/2である。任意の適切に構成された電極群によって三重極電界を実現してもよい。非限定的な例において、3個の平行電極を設ける(図示せず)。各電極は長手方向軸に沿って細長く伸ばされ、長手方向軸を中心に横断面において互いに対称的に間隔をあけている。すなわち、各電極はそれぞれ120度隔てて配置されている。これら3個の電極に印加されるRF信号はそれぞれ位相が120度異なる。
【0031】
したがって、イオン輸送装置が少なくともイオン入口端部およびイオン出口端部を備えるいくつかの実施態様において、複数の電極は長手方向軸に沿って変化するRF電界を印加するように構成されるため、RF電界はイオン入口端部に(または関連するイオン入口部に)2n重極の主要な第1多重極成分を備え、ここで、n>3/2であり、また、RF電界はイオン出口端部に(または関連するイオン出口部に)主として2n重極の第2多重極成分を備え、ここで、n≧3/2およびn<nである。イオン輸送装置が少なくとも1つの中間イオン輸送部をさらに備える他の実施態様において、複数の電極は長手方向軸に沿って変化するRF電界を印加するように構成されてもよいため、RF電界は中間部に2n重極の主要な第3多重極成分を備え、ここで、n>nおよびn<n(n>n>n)である。
【0032】
前述より、本教示の実施態様は、イオン移送効率を向上させ、質量分析のようなイオンの処理を要する様々な用途に焦点をあてていることは明白である。イオン入口端部でイオン受容開口部を大きくし、イオン出口端部でイオン放出開口部を小さくすることによって利点が達成される。従来のイオン輸送装置またはイオンガイド装置と比べて、イオン受容開口部を大きくすることによって、より多数のイオンを上流側装置(例えば、イオン源、衝突セルなど)からこの装置に入れることができ、また、イオン放出開口部を小さくすることによって、効率が向上し、かつイオン信号が強まるように、イオンを下流側装置(例えば、質量分析器、衝突セルなど)に移送することができる。収束イオンビームによって、本明細書に開示のイオン輸送装置は、分散するイオンビームを装置に入れ、しっかりと閉じ込めたイオン流に導き、集束させることができる。このイオン流は、後続の装置へ移送するために最適化されている。場合によっては、衝突冷却(または減衰)を利用して、出口端部でイオン相の占める空間容積をさらに減少させ、それによって、さらにイオン移送効率を向上させてもよい。衝突冷却は通常、当業者に公知の任意の好適な手段によって、不活性のバックグラウンドガス(例えば、水素、ヘリウム、窒素、キセノン、アルゴンなど)を装置の内部空間へ導入することを要する。イオン輸送装置は、大気レベル、ほぼ大気レベル、または大気レベル未満(例えば、約10−9トールまで)で動作してもよい。
【0033】
本明細書に開示の実施態様は、以下の観察によってさらに説明されてもよい。多重極RFイオンガイドの電位は、以下のように表す場合がある。
V(r,φ)=V*COS(Ωt)(r/r*COS(nφ),(1)
式中、rは長手方向軸に対するRF電界の径方向位置を示し、2rは2つの対向ロッド間の距離を示し、2nはロッドの数を示し、Vはロッドに印加されたRF電圧の振幅を示し、φはRF電圧の位相を示し、ΩはRF電圧の角周波数を示し、tは時間を示す。
【0034】
式(1)から、多重極RF電界の擬電位は以下の様に表される。
【0035】
【数1】

【0036】
式中、mはイオンの質量を示し、電荷の単位はe=1.602×10−19であり、zはイオンの電荷数を示す(上記非特許文献1)。
図7は、四重極、六重極、および八重極RF電界の擬電位を示すプロット群である。図7から、多数のロッドを有する多重極イオンガイドの受容楕円が、少数のロッドを有する多重極イオンガイドの受容楕円より大きいことは明らかである。図8は、四重極、六重極、および八重極RF電界におけるイオン分布、すなわち、イオンがRF電界に入り平衡状態に達した時の径方向イオン密度分布を示すプロット群である。図8から、四重極(n=2)RF電界におけるイオンの径方向分布が、高次の多重極(n≧3)RF電界の分布より中心軸に近いことがわかる。これにより、四重極電界などの低次のRF電界から質量分析器までのイオン移送効率は、高次のRF電界から質量分析器までよりも高くなる。図7および図8に示す情報から、イオン入口端部に高次の多重極RF電界を提供し、イオン出口端部に低次の多重極RF電界を提供することによって、イオン輸送装置を通って最適なイオン移送が実現されることを示す。
【0037】
以下に別の例を挙げて、本教示をさらに説明する。
図9は、幾つかの実施態様によるイオン輸送装置900の一例の斜視図である。このイオン輸送装置900は、イオン入口部960と、イオン出口部964と、場合によっては1つ以上の中間イオン輸送部968とを備える。簡略化のために、1つの中間部968のみを図示して説明する。イオン入口部960は第1電極群906を備え、イオン出口部964は第2電極群910を備え、中間部968が設けられている場合には、第3電極群914を備える。この例では、各部960、964、968はそれぞれ同数の電極を備える。電極の数およびこれらの電極が構成される方法、ならびにRF信号が電極に印加される方法では、イオン輸送装置900は、イオン入口部960で高次多重極RF電界を発生させ、イオン出口部964で低次多重極RF電界を発生させ、また、イオン入口部960の電界より低次だがイオン出口部964の電界よりも高次である中間部968(設けられている場合)で別の高次多重極RF電界を発生させる。図9において、一例として且つ非限定的に、イオン輸送部960、964、968はそれぞれ12個の電極を備え、これらの電極は長手方向軸に沿って細長く伸ばされ、長手方向軸を中心に周方向に配置されている。
【0038】
図10A、図10B、および図10Cはそれぞれ、入口部960、中間部968、および出口部964における電極群906、914、912の模式断面視図である。また、図10A、図10B、および図10Cは、RF電圧が各部960、968、964それぞれにある電極に印加される態様を示すものである。1つ以上の電極群906、914、912をm個の電極のグループ(電極の数がm個であるグループ)に分類してもよい。本実施例において、第1電極群906の各グループ1080にある電極の数は、m=1であり、第2電極群912の各グループ1084にある電極の数は、m=3であり、第3電極群914の各グループ1088にある電極の数は、m=2である。したがって、12個の電極配列の例において、第1電極群906には、電極1個のグループ1080が12個あり、第2電極群912には、電極3個のグループ1084が4個あり、第3電極群914には、電極2個のグループ1088が6個ある。各電極グループ1080、1084、1088は横断面において別の電極グループと対向して径方向に配置されている。電極に「+」および「−」記号で示すように、各対向電極対(または対になった対向電極グループ1080、1084、1088)に印加されるRF電圧は、その対のいずれかの側に隣接する電極(または電極グループ1080、1084、1088)に印加されるRF電圧と180°位相がずれている。図示された例における結果によれば、第1電極群906はイオン入口領域960の主要な十ニ重極RF電界を印加し、第2電極群912はイオン出口領域964の主な四重極RF電界を印加し、第3電極群914は中間部968の主要な六重極電界を印加する。このように、RF電界は十ニ重極RF電界から四重極RF電界まで軸方向に変化する。中間イオン輸送部968が設けられている場合には、RF電界は十ニ重極RF電界から六重極RF電界、さらに四重極RF電界まで軸方向に変化する。
【0039】
本開示に詳細に上述したように、イオン輸送装置900は、必要に応じて、任意の所定のイオン輸送部960、964、968における他のタイプのRF電界を発生するように変更または構成されてもよい。例えば、電極をグループ化する方法によって強力な八重極または四重極のRF電界を発生するために、8個の電極群を利用してもよい。また別の例として、強力な十六重極、八重極または四重極のRF電界を発生するために、16個の電極群を利用してもよい。また、イオン輸送部960、964、968がそれぞれ異なるRF電界を印加することを必要とすることなく収束イオンビームを実現してもよいことが理解されよう。例えば、イオン入口部960および隣接する任意の中間部968は共に十ニ重極電界を印加することができる一方で、イオン出口部964は四重極電界を印加する、あるいは、イオン入口部960は十ニ重極電界を印加することができる一方で、イオン出口部964および隣接する任意の中間部968は共に四重極電界を印加することができる、などが挙げられる。
【0040】
図11は、他の実施態様によるイオン輸送装置1100の一例の斜視図である。このイオン輸送装置1100は、イオン入口部1160と、イオン出口部1164と、場合によっては1つ以上の中間イオン輸送部(図示せず)とを備える。イオン入口部1160は第1電極群1106を備え、イオン出口部1164は第2電極群1112を備える。この例では、各部1160、1164はそれぞれ異なる数の電極を備える。電極の数およびこれらの電極が構成される方法、ならびにRF信号が電極に印加される方法では、イオン輸送装置1100は、イオン入口部1160の高次多重極RF電界およびイオン出口部1164の低次多重極RF電界を発生させる。図11において、一例として且つ非限定的に、各イオン輸送部1160、1164にある電極はそれぞれ、長手方向軸に沿って細長く伸ばされ、長手方向軸を中心に周方向に配置されている。イオン入口部1160には12個の電極1106があり、イオン出口部1164には4個の電極1112がある。1つ以上の中間部が設けられている場合には、中間部に4〜12個の電極を備えることができる。
【0041】
図12Aおよび図12Bはそれぞれ、イオン入口部1160およびイオン出口部1164の電極群1106、1112の模式断面図である。また、図12Aおよび図12Bは、RF電圧が各部1160、1164の電極1106、1112それぞれに印加される態様を示すものである。前述の例と同様に、各対向電極対に印加されるRF電圧は、その対のいずれかの側に隣接する電極に印加されるRF電圧と180°位相がずれている。その結果、第1電極群1106は、イオン入口領域1160において主要な十ニ重極RF電界を印加し、第2電極群1112は、イオン出口領域1164において主な四重極RF電界を印加する。また、イオン輸送装置1100を通るイオンビームは上記のように収束する。前述の例と同様に、1つ以上の軸方向中間イオン輸送部(図示せず)を追加して、イオン入口部1160およびイオン出口部1164において印加されるRF電界に対して1つ以上の中間のRF電界を印加することができる。図9ないし図10Cに示す例のように、イオン輸送装置1100は、十ニ重極RF電界および四重極RF電界の印加に限定されず、他のタイプのRF電界を用いてもよい。また、前述の例のように、1つ以上の電極群をm個の電極のグループ(電極の数がm個であるグループ)に分類してもよい。したがって、例えば、第1電極群1106の電極を六重極電界を印加するようにグループ化してもよい。
【0042】
図13は、他の実施態様によるイオン輸送装置1300の一例の(長手方向)側面図である。このイオン輸送装置1300は、イオン入口部1360と、イオン出口部1364と、場合によっては1つ以上の中間イオン輸送部1368とを備え、全て長手方向軸1320に沿って軸方向に配置されている。イオン輸送装置1300は、長手方向軸1320に沿って細長く伸ばされ、長手方向軸1320を中心に周方向に配置された複数の電極を備える。簡略化のために、電極を3個だけ図示する。これらの電極1304、1308、1316は、イオン入口端部1324で始まり、各部を通って、イオン出口端部1328に向かって延びている。電極の数およびこれらの電極が構成される方法、ならびにRF信号が電極に印加される方法では、イオン輸送装置1300は、イオン入口端部1324(またはイオン入口部1360)で高次多重極RF電界を発生させ、イオン出口端部1328(またはイオン出口部1364)で低次多重極RF電界を発生させ、また、イオン入口端部1324の電界より低次だがイオン出口端部1328の電界よりも高次である中間部1368(設けられている場合)で別の高次多重極RF電界を発生させる。この例では、軸方向に変化するRF電界は、変化する半径およびそれ故に変化する断面を有する電極1304、1308のいくつかによって実現される。断面積は、イオン出口端部1328に向かって軸方向に徐々にテーパ状に減少させてもよい。したがって、(横断面における)テーパ状の電極1304、1308の断面積は、イオン出口端部1328よりイオン入口端部1324での方が広い。あるいは、断面積は、緩やかに先細るよりも階段状に減少してもよく、または、テーパ状および階段状の特徴を組み合わせてもよい。イオン入口端部1324では、半径の変化する電極1304、1308の断面積は、半径が一定の電極1316の断面積と同じであってもよい。
【0043】
図14は、他の実施態様によるイオン輸送装置1400の一例の(長手方向)側面図である。このイオン輸送装置1400は、イオン入口部1460と、イオン出口部1464と、1つ以上の中間イオン輸送部1468とを備え、全て長手方向軸1420に沿って軸方向に配置されている。イオン輸送装置1400は、長手方向軸1420に沿って細長く伸ばされた、長手方向軸1420を中心に周方向に配置された複数の電極を備える。簡略化のために、3個の電極1404、1408、1416だけを図示する。これらの電極1404、1408、1416は、イオン入口端部1424で始まり、各部を通って、イオン出口端部1428に向かって延びている。電極の数およびこれらの電極が構成される態様、ならびにRF信号が電極に印加される態様では、イオン輸送装置1400は、イオン入口端部1424(またはイオン入口部1460)で高次多重極RF電界を発生させ、イオン出口端部1428(またはイオン出口部1464)で低次多重極RF電界を発生させ、また、イオン入口端部1424の電界より低次だがイオン出口端部1428の電界よりも高次である中間部1468(設けられている場合)で別の高次多重極RF電界を発生させる。この例では、軸方向に変化するRF電界は、変化する断面積を有する電極1404、1408のいくつかによって実現される。その断面積は、イオン出口端部1428に向かって軸方向にある1つ以上の箇所で緩やかに先細ることによっておよび/または階段状に、減少する。さらに、半径の変化する電極1404、1408のいくつかまたは全ては、均一な大きさの電極1416より短い。したがって、均一な大きさの電極1416および半径の変化する電極1404、1408共にイオン入口端部1424で始まるが、均一な大きさの電極1416だけは実際にイオン出口端部1428まで完全に延びていてもよい。イオン入口端部1424に対向した、半径の変化する電極1404、1408の軸方向両端部は、例えば、図14に示すように中間イオン輸送部1468の端部に位置してもよい。このように、半径の変化する電極1404、1408は、イオン出口部1428に印加されるRF電界に影響を及ぼさない。あるいは、半径の変化する電極1404、1408は、部分的に(図示せず)イオン出口部1464内に延びていてもよい。いずれの場合も、半径の変化する電極は、イオン出口端部1428のRF電界に寄与しない。
【0044】
図15A、図15B、および図15Cは、図14に示すイオン輸送装置1400の入口部1460、中間部1468、および出口部1464それぞれにおける電極群の模式断面図である。また、図15A、図15B、および図15Cは、RF電圧が各部1460、1464、1468それぞれの電極に印加される態様を示すものである。この例では、電極が12個ある。半径が一定の2組の対向電極対(例えば、1416、1512)は、互いから90°の位置に配置される。半径の変化する4組の対向電極対(例えば、1404、1408)は、半径が一定の電極1416、1512間に配置されるため、半径の変化する2個の電極は、半径が一定の各電極のいずれかの側に周方向に位置される。本実施例において、図15Aに示すように、半径が一定の電極1416、1512と、半径の変化する電極1404、1408の断面積は、イオン入口端部で等しくなっている。図15Bで示すように、中間部1468において、半径の変化する電極1404、1408の断面積は、半径が一定の電極1416、1512の断面積より小さい。図15Cで示すように、半径の変化する電極1404、1408は、イオン出口部1464の前に(または、他の実施態様では、少なくともイオン出口端部の前の)終端となり、半径が一定の電極1416、1512だけが、イオン出口部1464において(または、少なくともイオン出口端部で)存在する。この例において、「+」および「−」記号で示すように、電極の半径が一定であろうが変化しようが、任意の所定の電極に印加されるRF電圧は、その特定の電極のいずれかの側に隣接する電極に印加されるRF電圧と180°位相がずれている。この構成の結果、印加されるRF電界は、十ニ重極電界から、中間(例えば、六重極)の多重極、さらに四重極まで軸方向に変化する。
【0045】
他の実施態様において、上記のように、イオン入口部1460(図15A)および/または中間部1468(図15B)の電極群は他のタイプのRF電界を印加するためにグループ化されてもよい。
図13に示すイオン輸送装置1300の場合、電極の配列および対応するRF電圧は、イオン入口端部1324の図15Aおよびイオン出口端部1328の図15Bと類似していてもよい。RFは、高次電界(例えば、十ニ重極)から低次電界(例えば、六重極)まで軸方向に変化する。しかし、イオン出口端部1328では、半径の変化する電極1304、1308の半径は十分に小さくてもよいため、図14に示すイオン輸送装置1400の場合のようにイオン出口端部1328で四重極電界が優位になる。
【0046】
図16は、他の実施態様によるイオン輸送装置1600の一例の(長手方向)側面図である。このイオン輸送装置1600は、イオン入口部1660と、イオン出口部1664と、場合によっては1つ以上の中間イオン輸送部1668とを備え、全て長手方向軸1620に沿って軸方向に配置されている。また、イオン輸送装置1600は、イオン入口部1660に第1電極1606と、イオン出口部1664に第2電極1610と、設けられている場合には中間部1668に第3電極1614とを含む複数の電極を備えている。これらの電極1606、1610、1614は、長手方向軸1620を中心に周方向に配置されており、各電極1606、1610、1614の少なくとも一部は、横断面において長手方向軸1620から径方向に距離を置いて配置されている。第1電極1606は、長手方向軸1620に対して互いに第1軸方向距離1690を隔て、第2電極1610は互いに、第1軸方向距離1690より大きい第2軸方向距離1694を隔てている。第3電極1614(設けられている場合)は互いに、第1軸方向距離1690より大きく第2軸方向距離1694より小さい第3軸方向距離1698を隔てている。したがって、イオン輸送装置1600の各部1660、1664、1668はそれぞれ、他の部1660、1664、1668と比べて、異なる軸方向間隔を有する電極によって特徴づけられる。特に図16に示す例において、任意の所定の部1660、1664、1668の電極間の軸方向間隔は、当該部1660、1664、1668の範囲にわたって均一である。あるいは、各部1660、1664、1668の内1つ以上の部における電極間の軸方向間隔は変化してもよく、例えば、所定の部における軸方向間隔はイオン出口端部1628に向かってその部を通る方向に大きくなってもよい。
【0047】
図16に挙げた例において、電極は、長手方向軸1620を中心に巻かれた螺旋形状で提供されている。したがって、この例では、電極間の軸方向間隔1690、1694、1698は電極の螺旋ピッチに相当する。よって、この螺旋ピッチは、ある部から別の部までおよび/または個々の部を通じてイオン出口端部1628の方向に大きくなる。螺旋ピッチは、徐々にまたは階段状に変化してもよい。固定した螺旋の内径と共に、イオン輸送装置1600の擬電位井戸(ウェル)は、イオン出口端部1628に向かう方向へのピッチの変化によって徐々にまたは階段状に変化する。本実施例において、各部1660、1664、1668にはそれぞれ、180°位相がずれてRF電圧を印加する2個の電極1606、1610、1614がある。しかし、所定部に2個以上の電極を提供してもよい。図示する構成によって、イオン輸送装置1600は、イオン入口部1660で高次多重極RF電界を発生し、イオン出口部1664で低次多重極RF電界を発生し、また、イオン入口部1660における電界より低次だがイオン出口部1664における電界よりも高次である中間部1668(設けられている場合)で別の高次多重極RF電界を発生する。本明細書に記載の他の実施態様のように、軸方向に変化するRF電界によって収束イオンビームを生ずる。
【0048】
図17は、他の実施態様によるイオン輸送装置1700の一例の斜視図である。このイオン輸送装置1700は、イオン入口部1760と、イオン出口部1764と、場合によっては1つ以上の中間イオン輸送部1768とを備え、全て長手方向軸1720に沿って軸方向に配置されている。また、イオン輸送装置1700は、イオン入口部1760に第1電極1706と、イオン出口部1764に第2電極1710と、設けられている場合には中間部1768に第3電極1714とを含む複数の電極を備えている。これらの電極1706、1710、1714は、長手方向軸1720を中心に周方向に配置されており、少なくとも各電極1706、1710、1714の一部は、横断面において長手方向軸1720から径方向に距離を置いて配置されている。第1電極1706は、長手方向軸1720に対して互いに第1軸方向距離1790を隔て、第2電極1710は互いに、第1軸方向距離1790より大きい第2軸方向距離1794を隔てている。第3電極1714(設けられている場合)は互いに、第1軸方向距離1790より大きく第2軸方向距離1794より小さい第3軸方向距離1798を隔てている。したがって、イオン輸送装置1700の各部1760、1764、1768はそれぞれ、他の部1760、1764、1768と比べて、異なる軸方向間隔を有する電極によって特徴づけられる。特に図17に示す例において、任意の所定の部1760、1764、1768の電極間の軸方向間隔は、その部1760、1764、1768の範囲にわたって均一で(一定)ある。あるいは、部1760、1764、1768の内1つ以上の部における電極間の軸方向間隔は変化してもよく、例えば、所定の部の軸方向間隔はイオン出口端部1728に向かってその部を通る方向に大きくなってもよい。
【0049】
図17に挙げた例において、電極は、横断面における長手方向軸1720を中心に同軸に配置された一連のリング形状でまたはリングを積み重ねて提供されている。したがって、この例では、電極間の軸方向間隔1790、1794、1798は隣接するリング間の軸方向距離に相当する。よって、この軸方向距離は、ある部から別の部までおよび/または個々の部を通じてイオン出口端部1728の方向に大きくなる。軸方向距離は、徐々にまたは階段状に変化してもよい。固定したリングの内径と共に、イオン輸送装置1700の擬電位井戸は、徐々にまたは階段状に深くなり、イオン出口端部1728に向かう方向への軸方向距離の変化によって、イオンの径方向分布は長手方向軸1720に向かって移動する。本実施例において、各部1760、1764、1768にはそれぞれ、180°位相がずれてRF電圧を印加する2個の電極1706、1710、1714がある。しかし、2個以上の電極が所定部に提供されてもよい。図示する構成によって、イオン輸送装置1700は、イオン入口部1760で高次多重極RF電界を発生し、イオン出口部1764で低次多重極RF電界を発生し、また、イオン入口部1760における電界より低次だがイオン出口部1764における電界よりも高次である中間部1768(設けられている場合)で別の高次多重極RF電界を発生する。本明細書に記載の他の実施態様のように、軸方向に変化するRF電界によって収束イオンビームを生ずる。
【0050】
図18は、他の実施態様によるイオン輸送装置1800の一例の斜視図である。このイオン輸送装置1800は、長手方向軸1820に沿って細長く伸ばされた、長手方向軸1820を中心に周方向に間隔をあけた複数の電極を備える。図示された例において、電極群は、第1対向電極対1804および1808と第2対向電極対1812および1816とを含んでいる。第1電極1804、1808と、第2電極1812、1816は、イオン入口端部1824からイオン出口端部1828まで長手方向軸1820に沿って延びている。第1電極1804、1808は、それぞれ横断面に第1断面積1805を有し、第2電極1812、1816はそれぞれ横断面に第2断面積1813を有する。第1電極1804、1808および第2電極1812、1816の断面積1805、1813はそれぞれ、長手方向軸1820に沿って、徐々に(例えば、図示された例のように、テーパ状に)もしくは階段状に、またはテーパ状および階段状の特徴の組み合わせによって変化する。これにより、第1電極1804、1808に関して、第1断面積1805の大きさは、イオン出口端部1828とイオン入口端部1824とで異なり、第2電極1812、1816に関して、第2断面積1813の大きさは、同様にイオン出口端部1828とイオン入口端部1824で異なる。特に図18に示す例において、第1断面積1805は、イオン出口端部1828よりイオン入口端部1824の方が大きく、第2断面積1813は、イオン出口端部1828よりイオン入口端部1824の方が小さい。イオン入口端部1824では、第1断面積1805は第2断面積1813より大きい。イオン出口端部1828では、第1断面積1805は第2断面積1813と等しくまたは実質的に等しくてもよい。第1電極1804、1808に印加されるRF電圧は、第2電極1812、1816に印加されるRF電圧と180°位相がずれている。この構成によって、イオン輸送装置1800は、イオン入口端部1824の主要な高次多重極RF電界からイオン出口端部1828の主な四重極多重極RF電界まで変化するRF電界を発生する。本明細書に記載の他の実施態様のように、軸方向に変化するRF電界によって収束イオンビームを生ずる。
【0051】
上記実施態様において、イオン輸送装置1800が2組の対向電極対を備える一方、他の実施態様は、付加的な電極を備えていてもよく、これらの電極のいくつかまたは全ては変化する断面を有する。上記実施態様において、イオン輸送装置1800は、イオン入口端部1824からイオン出口端部1828まで延びる単一の電極群を備えると考えられてもよく、他の実施態様は、軸方向に間隔をあけた異なるイオン輸送部に付加的な電極群を備えていてもよく、1つ以上のイオン輸送部の1個以上の電極は変化する断面を有する。また、上記実施態様において、電極の断面1805、1813は直線的形状であり、他の実施態様において、断面1805、1813は他のタイプの多角形もしくは三稜形を有していてもよいし、または丸形(例えば、円形、楕円形、双曲線形など)であってもよい。
【0052】
図19は、他の実施態様によるイオン輸送装置1900の一例の斜視図である。図19のイオン輸送装置1900は、図18のイオン輸送装置1800の変形と考えてもよいが、RF電界が複数の区分または複数の電極群(または複数のイオン輸送部)にわたって高次多重極からより純粋な低次多重極まで変化するものである。また、イオン輸送装置1900は、第1イオン輸送部(またはイオン入口部)1960と、第1イオン輸送部1960から軸方向に間隔をあけた第2イオン輸送部(またはイオン出口部)1964とを備える。場合によっては、イオン輸送装置1900は、第1イオン輸送部1960と第2イオン輸送部1964との間に軸方向に介在された1つ以上の中間部(図示せず)をさらに備える。第1イオン輸送部1960は、第1イオン入口端部1924から第1イオン出口端部1925まで長手方向に延び、第2イオン輸送部1964は、第2イオン入口端部1927から第2イオン出口端部1928まで長手方向に延びている。第1イオン輸送部1960は複数の第1電極を備え、第2イオン輸送部1964は複数の第2電極を備える。また、これらの電極は全て、長手方向軸1920に沿って細長く伸ばされており、長手方向軸1920を中心に周方向に間隔をあけている。第1電極は、第1イオン入口端部1924から第1イオン出口端部1925まで長手方向軸1920に沿って延び、第2電極は、第2イオン入口端部1927から第2イオン出口端部1928まで長手方向軸1920に沿って延びている。図示された例において、第1電極群は第1対向電極対1906および第2対向電極対1907を含み、第2電極群は、第3対向電極対1910および第4対向電極対1911を含んでいる。横断面において、第1電極対1906はそれぞれ第1断面積を有し、第2電極対1907はそれぞれ第2断面積を有し、第3電極対1910はそれぞれ第3断面積を有し、第4電極対1911はそれぞれ第4断面積を有する。
【0053】
図19に挙げた例において、各電極のそれぞれの断面積は、所定のイオン輸送部において長手方向軸1920に沿って均一(一定)または実質的に均一であってもよい。しかし、電極対の中には断面積が他の電極対の断面積と異なる場合がある。したがって、特に図示した例において、第1断面積(第1電極1906)は第2断面積(第2電極1907)よりも広く、第1断面積は第3断面積(第3電極1910)よりも広い。第2断面積は第4断面積(第4電極1911)よりも小さい。また、第3断面積は第4断面積と等しくまたは実質的に等しくてもよい。第1電極1906に印加されるRF電圧は、第2電極1907に印加されるRF電圧と180°位相がずれていて、また、第3電極1910に印加されるRF電圧は、第4電極1911に印加されるRF電圧と180°位相がずれている。この構成によって、イオン輸送装置1900は、第1イオン入口端部1924(または第1イオン輸送領域1960)の主要な高次多重極RF電界から第2イオン出口端部1928の主な四重極多重極RF電界(または第2イオン輸送領域1964)まで変化するRF電界を発生する。本明細書に記載の他の実施態様のように、軸方向に変化するRF電界によって収束イオンビームを生ずる。
【0054】
他の実施態様において、第1イオン輸送部1960および/または第2イオン輸送部1964における1個以上の電極の断面積はそれぞれ、図18に示した方法と同様の方法で、長手方向軸1920に沿って、徐々に(例えば、テーパ状に)もしくは階段状に、またはテーパ状および階段状の特徴の組み合わせによって変化してもよい。上記実施態様では、イオン輸送装置1900が各部1960、1964に2組の対向電極対を備える一方、他の実施態様は、付加的な電極を備えていてもよく、これらの電極のいくつかまたは全ては変化する断面を有する。上記実施態様では、電極の断面は直線的形状であり、他の実施態様では、断面は他のタイプの多角形もしくは三稜形を有していてもよいし、または丸形(例えば、円形、楕円形、双曲線形など)であってもよい。
【0055】
他の実施態様において、図1ないし図19を参照しながら記載した特徴および局面の種々の組み合わせをイオン輸送装置が備えていてもよい。さらに、図1ないし図19に示したいずれのイオン輸送装置も、それより上流側および/または下流側に位置する1つ以上の付加的なセクションを有する、より大きなイオン輸送装置(図示せず)の一部またはセクションを表していてもよい。また、これらの付加的なイオン輸送部は、上記のどの実施態様にしたがって構成されていてもよく、あるいはイオンビームを収束しない従来の設計にしたがって構成されていてもよい。
【0056】
上記の図1ないし図19に示した様々な実施態様において、イオン輸送装置は、主としてRFのみのイオンガイドと関連して説明され、必要に応じて軸方向のイオン運動エネルギーを調整するために軸方向DC電位が追加される。しかし、このイオン輸送装置は、他のタイプのイオン処理装置として機能してもよいことが理解されよう。例えば、電極によって囲まれた内部空間にある収束イオンビームに対して適切なバックグラウンドガスを向けることなどによって、イオンをフラグメントするための衝突セルとして利用されてもよい。また別の例として、2次元RF電界を駆動するRF電圧Vに適切なDC電圧Uを重ね合わせることなどによって、質量電荷(またはm/z)比の所望の範囲内のイオンだけを通過させる質量フィルターまたは質量ソーターとして利用されてもよい。
【0057】
本明細書に開示の実施態様のいずれかしたがって提供されたイオン輸送装置が、他のイオン処理機器を備えるイオン処理システムの一部を構成してもよい。例えば、そのイオン処理システムは通常1つ以上の上流側装置および/または1つ以上の下流側装置を備えていてもよい。また、イオン処理システムは、所望のMS技術(例えば、単ステージ式MS、タンデムMSまたはMS/MS、MSなど)を実行するように構成された質量分析(MS)システム(または装置、機器など)であってもよい。したがって、さらなる実施例として、上流側装置がイオン源、下流側装置がイオン検出器であってもよく、また、付加的な装置として、イオン蓄積またはトラップ装置、質量選別または分析装置、衝突セルまたは他のフラグメント化装置、イオン光学系および他のイオン誘導装置などが含まれていてもよい。よって、例えば、イオンガイドを質量分析器の前に(例えば、Q0装置として)用いてもよく、それ自体をRF/DC質量分析器として用いてもよく、または第1の質量分析器の後ろおよび第2の質量分析器の前に位置する衝突セルとして用いてもよい。したがって、イオンガイドは真空引きされても、またはイオンと気体分子との間に衝突が起こる形態で(例えば、高真空GC/MSにおけるQ0装置として、LC/MSのイオン源領域内でQ0装置として、またはQ2装置として)作動されてもよい。
【0058】
上記の図1ないし図19に示した様々な実施態様において、イオン輸送装置の電極は、直線状長手方向軸に沿って細長く伸ばされたイオン誘導内部空間を設けるように構成されており、それによって、直線状(ただし、収束する)イオンビームを生じる。しかし、長手方向軸は直線状の軸である必要はなく、曲線状の軸でもよいことは理解されよう。これは、電極を適切に構成することにより達成することができる。その結果、曲線状の収束イオンビームが実現される。一般に、曲線状イオンガイドとは、このガイドを通過するイオンが沿うイオン軸が直線状経路ではなく曲線状経路のガイドである。曲線状イオンガイドを好んで質量分析計などのイオン処理装置に実装する場合が多いが、その理由は曲線状イオンガイドによって質量分析計の感度およびロバスト性を改善することができるためである。このような状況下における曲線状イオンガイドの主要な利点は、ニュートラル(電気的に中性の粒子)によるノイズ、大きな液滴ノイズ、またはフォトンをイオンからライン・オブ・サイト分離し、それによってニュートラル成分がイオン光学系およびイオン検出器のより感度の高い部材にまで達することを防止する点にある。また、曲線状イオンガイドはイオン経路の折れ曲がりを可能にして、関連する機器の設置面積を縮小することができる。
【0059】
例えば、曲線状イオン輸送装置はイオン経路を滑らかに90°曲折させてもよい。イオン経路をさらに変更するために、1つ以上の付加的な曲線状イオン輸送部を付け加えてもよい。また、これらの付加的なイオン輸送部は円形状に構成されてもよく、または、線形経路もしくは他のタイプの非円形経路を辿ってもよい。よって、1つ以上のイオン輸送部を用いて、それによって集束されるイオンビーム用に任意の所望される経路を提供してもよい。したがって、図示されない別の例において、イオン輸送装置は、1つ以上の適切に形成されたイオン輸送部を用いて、集束イオン経路を180度曲折するように、つまり、U字型のイオン経路を設けるように形成されてもよい。また、別の例において、U字型経路の「脚部」はそれぞれ、U字型イオンガイドのイオン導入口およびイオン導出口に隣接した直線状のイオンガイド部分を設けることによって延長されてもよい。さらに、別の例において、2つの90度イオン輸送部が、互いに隣接配置してイオン経路を180度曲折させてもよい。また、別の例において、同様の形状の2つのイオン輸送部を互いに隣接配置して、そのうち1つのイオン輸送部の曲率半径を他のイオン輸送部の曲率半径と反対の方向に向け、それによって、S字型イオン経路を提供してもよい。当業者なら、本教示から他の様々な構成が導出されてもよいことを理解するであろう。
【0060】
本開示において説明された方法および装置を、以上大略的に例として説明したMSシステム等のイオン処理システムとして実現してもよい。しかしながら、本発明の内容はここに例示した特定のイオン処理システムまたはここに例示した回路および構成部材の特定の配列に限定されるものではない。さらに、本発明の内容は上述の如く、MSに基づく用途に限定されるものではない。
【0061】
一般に、「連係(接続)する」および「〜と連係(接続)している」等の用語(例えば、第1の構成部材が第2の構成部材と「連係(接続)する」または「連係(接続)している」)は、ここでは2つ以上の構成部材または要素間の構造的、機能的、機械的、電気的、信号的、光学的、磁気的、電磁気的、イオン的、または流体的な関係を示すために用いられる。よって、ある構成部材が第2の構成部材と連係すると述べられていたとしても、さらなる部材が第1および第2の構成部材の間に存在しているか、かつ/またはさらなる部材が第1および第2の構成部材と動作的に関連または連動している可能性を排除することを意図するものではない。
【0062】
本発明の様々な局面または細部は発明の範囲から逸脱することなく変更してもよいことは言うまでもない。さらに、上記説明は例示のみを目的とし、限定を目的とするものではない。本発明は特許請求の範囲によって規定される。

【特許請求の範囲】
【請求項1】
イオン入口端部と、
長手方向軸に沿って前記イオン入口端部から距離を置いて配置されたイオン出口端部と、
前記イオン入口端部から前記イオン出口端部に向かって前記長手方向軸に沿って延びるイオン入口部と、
前記イオン出口端部から前記イオン入口端部に向かって前記長手方向軸に沿って延びるイオン出口部と、
前記長手方向軸に沿って配置された複数の電極であって、前記電極の少なくとも一部が前記長手方向軸に直交する横断面において径方向に距離を置いて配置され、当該複数の電極は、前記イオン入口部の内部空間を囲む複数の第1電極と、前記イオン出口部の内部空間を囲む複数の第2電極とを備えた複数の電極と、
を備えたイオン輸送装置であって、
前記複数の電極は、前記長手方向軸に沿って変化するRF電界を印加するように構成され、前記RF電界は、前記イオン入口端部では2n重極の主要な第1多重極成分を備えた第1RF電界を有し、ここで、n≧3/2であり、また、前記イオン出口端部では主として2n重極の第2多重極成分を備えた第2RF電界を有し、ここで、n≧3/2かつn<nであることを特徴とする、イオン輸送装置。
【請求項2】
前記複数の第1電極は、前記長手方向軸に沿って細長く伸ばされた形状を有しており、前記長手方向軸を中心に周方向に間隔をあけていて、前記複数の第2電極は、前記長手方向軸に沿って細長く伸ばされた形状を有しており、前記長手方向軸を中心に周方向に間隔をあけていることを特徴とする、請求項1に記載のイオン輸送装置。
【請求項3】
第1電極の数は第2電極の数と等しく、
前記複数の第1電極は第1電極の数がm個であるグループに分類され、第1電極の数がm個であるグループはそれぞれ他の2つの第1電極の数がm個であるグループと隣接し、各グループの前記第1電極の数mはm≧1であり、
前記複数の第2電極は第2電極の数がm個であるグループに分類され、第2電極の数がm個であるグループはそれぞれ他の2つの第2電極の数がm個であるグループと隣接し、m>mであり、
前記第1電極に第1RF電圧を印加して前記第1RF電界を発生させ、また、前記第2電極に第2RF電圧を印加して前記第2RF電界を発生させるように構成された回路であって、各第1電極のグループに印加される前記第1RF電圧は、前記隣接する第1電極のグループに印加される前記第1RF電圧と180度位相がずれていて、各第2電極グループに印加される前記第2RF電圧は、前記隣接する第2電極グループに印加される前記第2RF電圧と180度位相がずれている回路をさらに備えたことを特徴とする、請求項2に記載のイオン輸送装置。
【請求項4】
前記第1電極の数は、前記第2電極の数より大きいことを特徴とする、請求項2に記載のイオン輸送装置。
【請求項5】
前記第1電極は前記長手方向軸に対して互いに第1軸方向距離を隔てており、前記第2電極は前記長手方向軸に対して互いに前記第1軸方向距離より大きな第2軸方向距離を隔てていることを特徴とする、請求項1に記載のイオン輸送装置。
【請求項6】
前記第1電極および前記第2電極は、前記長手方向軸を中心に螺旋状に巻かれており、前記第1軸方向距離は前記第1電極の第1螺旋ピッチであり、前記第2軸方向距離は前記第2電極の第2螺旋ピッチであることを特徴とする、請求項5に記載のイオン輸送装置。
【請求項7】
前記第1電極は前記長手方向軸に直交する横断面内に配向された2つ以上の第1リングを備えており、前記第1軸方向距離は隣接した第1リング間の第1軸方向間隔であり、前記第2電極は前記横断面内に配向された2つ以上の第2リングを備えており、前記第2軸方向距離は隣接した第2リング間の第2軸方向間隔であることを特徴とする、請求項5に記載のイオン輸送装置。
【請求項8】
前記第1電極は、前記長手方向軸に沿って細長く伸ばされた形状を有し、前記長手方向軸に対して互いに対向して間隔をあけた第1電極対と前記長手方向軸に対して互いに対向して間隔をあけた第2電極対とを備え、
前記第2電極は、前記長手方向軸に沿って細長く伸ばされた形状を有し、前記長手方向軸に対して互いに対向して間隔をあけた第3電極対と前記長手方向軸に対して互いに対向して間隔をあけた第4電極対とを備えていて、
前記第1電極対の各電極は横断面に第1断面積を有し、前記第2電極対の各電極は横断面に第2断面積を有し、前記第3電極対の各電極は横断面に第3断面積を有し、前記第4電極対の各電極は横断面に第4断面積を有しており、
前記イオン入口端部では、前記第1断面積は前記第2断面積より大きく、
前記イオン出口端部では、前記第3断面積は前記第4断面積と等しく、
前記イオン入口端部での前記第1断面積は、前記イオン出口端部での前記第3断面積より大きく、
前記イオン入口端部での前記第2断面積は、前記イオン出口端部での前記第4断面積より小さいことを特徴とする、請求項1に記載のイオン輸送装置。
【請求項9】
前記第1断面積は前記長手方向軸に沿って一定であり、前記第2断面積は前記長手方向軸に沿って一定であり、前記第3断面積は前記長手方向軸に沿って一定であり、前記第4断面積は前記長手方向軸に沿って一定であることを特徴とする、請求項8に記載のイオン輸送装置。
【請求項10】
前記第1断面積、前記第2断面積、前記第3断面積、および前記第4断面積の少なくとも1つが変化し、前記イオン出口端部と前記イオン入口端部とで異なることを特徴とする、請求項8に記載のイオン輸送装置。
【請求項11】
前記イオン入口部と前記イオン出口部との間に介在された中間イオン輸送部をさらに備え、前記複数の電極は前記中間イオン輸送部の内部空間を囲む複数の第3電極をさらに備え、前記複数の第3電極は2n重極の主要な第3多重極成分を備えた第3RF電界を印加するように構成され、ここで、n≧3/2かつn>n>nであることを特徴とする、請求項1に記載のイオン輸送装置。
【請求項12】
イオン輸送装置であって、
イオン入口端部と、
長手方向軸に沿って前記イオン入口端部から距離を置いて配置されたイオン出口端部と、
前記イオン入口端部から前記イオン出口端部に向かって前記長手方向軸に沿って配置され、当該イオン輸送装置の内部空間を囲む複数の電極とを備えたイオン輸送装置であって、
前記電極の少なくともいくつかは、前記長手方向軸に直交する横断面に断面積を有し、前記断面積は、前記イオン入口端部と、前記少なくともいくつかの電極の反対側の軸方向端部とで異なり、
前記複数の電極は、前記長手方向軸に沿って変化するRF電界を印加するように構成され、前記RF電界は前記イオン入口端部で2n重極の主要な第1多重極成分を備え、ここで、n≧3/2であり、また、前記RF電界は前記イオン出口端部で主として2n重極の第2多重極成分を備え、ここで、n≧3/2およびn<nであることを特徴とする、イオン輸送装置。
【請求項13】
前記複数の電極は、前記長手方向軸に対して互いに対向して間隔をあけた第1電極対と、前記長手方向軸に対して互いに対向して間隔をあけた第2電極対とを備え、
前記第1電極対および前記第2電極対の各電極は前記イオン入口端部から前記イオン出口端部へ延びて、前記横断面において前記電極の全長にわたって一定の第1断面積を有し、
前記少なくともいくつかの電極は、複数の第2電極を含み、各第2電極は前記横断面に第2断面積を有し、各第2断面積は、前記イオン入口端部では前記第1断面積と等しく、前記第2電極の反対側の軸方向端部では小さくなっていることを特徴とする、請求項12に記載のイオン輸送装置。
【請求項14】
前記複数の電極は、前記長手方向軸に対して互いに対向して間隔をあけた第1電極対と、前記長手方向軸に対して互いに対向して間隔をあけた第2電極対とを備え、
前記第1電極対の各電極は前記横断面に第1断面積を有し、前記第1断面積は前記イオン出口端部におけるより前記イオン入口端部で大きく、
前記第2電極対の各電極は前記横断面に第2断面積を有し、前記第2断面積は前記イオン出口端部におけるより前記イオン入口端部で小さく、
前記イオン入口端部では、前記第2断面積が前記第1断面積より小さく、
前記イオン出口端部では、前記第2断面積が前記第1断面積と等しいことを特徴とする、請求項12に記載のイオン輸送装置。
【請求項15】
イオン輸送方法であって、
イオン輸送装置の内部空間に、前記イオン輸送装置の軸方向イオン入口端部で、イオンを入れる工程であって、前記イオン輸送装置が前記軸方向イオン入口端部から軸方向イオン出口端部に向かって長手方向軸に沿って配置された複数の電極を備え、前記複数の電極が前記長手方向軸に直交する横断面において前記内部空間を取り囲んでいる工程と、
前記長手方向軸に沿って変化するRF電界を印加することによって、前記横断面における前記イオンの径方向への動きを、前記イオン入口端部での大きなイオンビーム断面から前記イオン出口端部での小さなイオンビーム断面まで制約して前記長手方向軸に沿って延びる収束イオンビームを得る工程であって、前記RF電界は前記イオン入口端部に2n重極の主要な第1多重極成分を備え、ここで、n≧3/2であり、また、前記RF電界は前記イオン出口端部に主として2n重極の第2多重極成分を備え、ここで、n≧3/2かつn<nである工程とを含むことを特徴とする、イオン輸送方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図11】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate


【公表番号】特表2012−529156(P2012−529156A)
【公表日】平成24年11月15日(2012.11.15)
【国際特許分類】
【出願番号】特願2012−514149(P2012−514149)
【出願日】平成22年6月3日(2010.6.3)
【国際出願番号】PCT/US2010/037324
【国際公開番号】WO2010/141776
【国際公開日】平成22年12月9日(2010.12.9)
【出願人】(399117121)アジレント・テクノロジーズ・インク (710)
【氏名又は名称原語表記】AGILENT TECHNOLOGIES, INC.
【Fターム(参考)】