説明

太陽電池バックフィルム

【課題】
液体、蒸気及び/又は気体に対するバリア性に優れ、かつ低吸水性でありながら、溶融重合による高分子量化が可能で、成形可能温度幅が広く溶融成形性に優れ、耐薬品性及び耐加水分解性に優れ、さらに耐候性、耐熱性、電気絶縁性すべてに優れる太陽電池バックフィルムを提供することを目的とする。
【解決手段】
ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂を含む太陽電池バックフィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、太陽電池バックフィルムに関するものである。
【背景技術】
【0002】
太陽電池バックフィルムは、太陽電池の裏側のフィルムとして使用され、耐候性、耐熱性、電気絶縁性、耐加水分解性等の要求が高まっている。
【0003】
太陽電池バックフィルムとは、太陽光発電システムに使用するフィルムであり、例えば特許文献1に、フッ素樹脂を用いたフィルムが提案されている。フッ素樹脂は耐候性、耐熱性、電気絶縁性、耐加水分解性等に優れている。しかし、環境への配慮等のためフッ素系以外の樹脂も検討されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−162719号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、耐候性、耐熱性、電気絶縁性、耐加水分解性に優れ、環境に配慮したポリアミド樹脂を含む太陽電池バックフィルムを提供することにある。
【課題を解決するための手段】
【0006】
本発明者らは、ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなるポリアミド樹脂が、耐候性、耐熱性、電気絶縁性、耐加水分解性に優れる太陽電池バックフィルムが得られることを見出し、本発明を完成した。すなわち本発明は以下の通りである。
【0007】
[1] ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂を含む太陽電池バックフィルム。
【0008】
[2] ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物及び1,6−ヘキサンジアミンからなり、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物と、1,6−ヘキサンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂を含む、太陽電池バックフィルム。
[3] ジアミン成分の、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1である、上記[2]に記載の太陽電池バックフィルム。
【0009】
[4] ポリアミド樹脂の、96%硫酸を溶媒とし、濃度1.0g/dlのポリアミド樹脂溶液を用いて25℃で測定した場合の相対粘度(ηr)が1.8〜6.0である、上記[1]〜[3]のいずれかに記載の太陽電池バックフィルム。
【0010】
[5] ポリアミド樹脂の、窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度と窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点との温度差が50℃以上である、上記[1]〜[4]のいずれかに記載の太陽電池バックフィルム。
【0011】
[6] 上記[1]〜[5]のいずれかに記載の太陽電池バックフィルムを用いた太陽電池。
【発明の効果】
【0012】
本発明の太陽電池バックフィルムは、液体、蒸気及び/又は気体に対するバリア性に優れ、かつ低吸水性でありながら、溶融重合による高分子量化が可能で、融点と熱分解温度の差から見積もられる成形可能温度幅が広く溶融成形性に優れ、耐候性、耐熱性、電気絶縁性、耐加水分解性に優れるため、太陽電池バックフィルムとして使用することができる。
【発明を実施するための最良の形態】
【0013】
(I)ポリアミド樹脂
(1)ポリアミド樹脂の構成成分
本発明において用いる1つ目のポリアミド樹脂は、ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が1:99〜99:1であるポリアミド樹脂である。
【0014】
本発明において用いる2つ目のポリアミド樹脂は、ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物及び1,6−ヘキサンジアミンからなり、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物と、1,6−ヘキサンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂である。
【0015】
上記ポリアミド樹脂の製造に用いられる蓚酸源としては、蓚酸ジエステルを採用でき、これらはアミノ基との反応性を有するものであれば特に制限はなく、蓚酸ジメチル、蓚酸ジエチル、蓚酸ジn−(又はi−)プロピル、蓚酸ジn−(又はi−、又はt−)ブチル等の脂肪族1価アルコールの蓚酸ジエステル、蓚酸ジシクロヘキシル等の脂環式アルコールの蓚酸ジエステル、蓚酸ジフェニル等の芳香族アルコールの蓚酸ジエステル等が挙げられる。
【0016】
上記の蓚酸ジエステルの中でも炭素原子数が3を超える脂肪族1価アルコールの蓚酸ジエステル、脂環式アルコールの蓚酸ジエステル、芳香族アルコールの蓚酸ジエステルが好ましく、その中でも蓚酸ジブチル及び蓚酸ジフェニルが特に好ましい。
【0017】
1つ目の発明のジアミン成分としては1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物を用いる。更に、1,9−ノナンジアミン成分と2−メチル−1,8−オクタンジアミン成分のモル比は、1:99〜99:1であり、好ましくは5:95〜95:5、より好ましくは5:95〜40:60又は60:40〜95:5、特に好ましくは5:95〜30:70又は70:30〜90:10である。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンを上記の特定量共重合することにより、低吸水性でありながら、溶融重合による高分子量化が可能で、成形可能温度幅が広く溶融成形性に優れ、かつ耐薬品性、耐加水分解性に優れたポリアミドが得られる。
【0018】
特に、該モル比が5:95〜40:60、更に5:95〜30:70である場合、結晶性に優れるため、低吸水性及び力学特性に特に優れるとともに、液体、蒸気及び/又は気体(例えばアルコールなど)の透過性も低いという利点が得られる他、例えば1,9−ノナンジアミンの含有量が2−メチル−1,8−オクタンジアミンの含有量よりも多い場合と比べて吸水性がより低いという利点も有する。一方該モル比が60:40〜95:5、更に70:30〜95:5、更に70:30〜90:10である場合には、低吸水性及び力学特性が特に優れるとともに、良好な透明性が付与されるという利点が得られる。
【0019】
2つ目の発明のジアミン成分としては1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物及び1,6−ヘキサンジアミンを用いる。更に、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物と、1,6−ヘキサンジアミンとのモル比は、1:99〜99:1であり、好ましくは5:95〜95:5、より好ましくは5:95〜40:60又は60:40〜95:5、特に好ましくは5:95〜30:70又は70:30〜90:10である。溶融重合による高分子量化が可能で、成形可能温度幅が広く溶融成形性に優れ、かつ耐薬品性、耐加水分解性に優れたポリアミドが得られる。
【0020】
また、2つ目の発明の1,9−ノナンジアミン成分と2−メチル−1,8−オクタンジアミン成分のモル比は、1:99〜99:1であり、好ましくは5:95〜95:5、より好ましくは5:95〜40:60又は60:40〜95:5、特に好ましくは5:95〜30:70又は70:30〜90:10である。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンを上記の特定量共重合することにより、低吸水性でありながら、溶融重合による高分子量化が可能で、成形可能温度幅が広く溶融成形性に優れ、かつ耐薬品性、耐加水分解性に優れたポリアミドが得られる。
【0021】
特に、該モル比が5:95〜40:60、更に5:95〜30:70である場合、結晶性に優れるため、低吸水性及び力学特性に特に優れるとともに、液体、蒸気及び/又は気体(例えばアルコールなど)の透過性も低いという利点が得られる他、例えば1,9−ノナンジアミンの含有量が2−メチル−1,8−オクタンジアミンの含有量よりも多い場合と比べて吸水性がより低いという利点も有する。一方該モル比が60:40〜95:5、更に70:30〜95:5、更に70:30〜90:10である場合には、低吸水性及び力学特性が特に優れるとともに、良好な透明性が付与されるという利点が得られる。
【0022】
(2)ポリアミド樹脂の製造において配合できる成分
本発明において用いるポリアミド樹脂を製造する際には、本発明の効果を損なわない範囲で他のジカルボン酸成分を混合する事ができる。蓚酸以外の他のジカルボン酸成分としては、マロン酸、ジメチルマロン酸、コハク酸、グルタル酸、アジピン酸、2−メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2−ジメチルグルタル酸、3,3−ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸などの脂肪族ジカルボン酸、また、1,3−シクロペンタンジカルボン酸、1,4−シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、更にテレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,4−フェニレンジオキシジ酢酸、1,3−フェニレンジオキシジ酢酸、ジ安息香酸、4,4’−オキシジ安息香酸、ジフェニルメタン−4,4’−ジカルボン酸、ジフェニルスルホン−4,4’−ジカルボン酸、4,4’−ビフェニルジカルボン酸などの芳香族ジカルボン酸などを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。
更に、トリメリット酸、トリメシン酸、ピロメリット酸などの多価カルボン酸を溶融成形が可能な範囲内で用いることもできる。他のジカルボン酸成分の使用量は、ジカルボン酸成分全体の5モル%以下であることが好ましい。
【0023】
また、本発明において用いるポリアミド樹脂を製造する際には、本発明の効果を損なわない範囲で、他のジアミン成分を混合する事ができる。1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミン以外の他のジアミン成分としては、エチレンジアミン、プロピレンジアミン、1,4−ブタンジアミン、1,6−ヘキサンジアミン、1,8−オクタンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、3−メチル−1,5−ペンタンジアミン、2,2,4−トリメチル−1,6−ヘキサンジアミン、2,4,4−トリメチル−1,6−ヘキサンジアミン、5−メチル−1,9−ノナンジアミンなどの脂肪族ジアミン、更にシクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンなどの脂環式ジアミン、更にp−フェニレンジアミン、m−フェニレンジアミン、p−キシレンジアミン、m−キシレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテルなどの芳香族ジアミンなどを単独で、あるいはこれらの任意の混合物を重縮合反応時に添加することもできる。他のジアミン成分の使用量は、ジアミン成分全体の5モル%以下であることが好ましい。
【0024】
本発明で用いるポリアミド樹脂は、本発明の効果を損なわない範囲で、一部が他のポリマー成分で置き換えられたものであってもよい。他のポリマー成分としては、ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるポリアミド以外のポリアミドとしての、ポリオキサミド、芳香族ポリアミド、脂肪族ポリアミド、脂環式ポリアミドなどのポリアミド類や、ポリアミド以外の熱可塑性ポリマーなどが挙げられる。本発明において用いるポリアミド樹脂中の、ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるポリアミドの割合は、50質量%超、更に70質量%以上が好ましい。
【0025】
(3)ポリアミド樹脂の性状及び物性
本発明において用いるポリアミド樹脂の分子量に特別の制限はないが、ポリアミド樹脂濃度が1.0g/dlの96%濃硫酸溶液を用い、25℃で測定した相対粘度ηrが1.8〜6.0の範囲内であることが好ましく、より好ましくは2.0〜5.5であり、2.5〜4.5が特に好ましい。ηrが1.8より低いと成形物が脆くなり物性が低下する傾向がある。一方、ηrが6.0より高いと溶融粘度が高くなり、成形加工性が悪くなる傾向がある。
【0026】
本発明において用いるポリアミド樹脂は、ジカルボン酸成分として蓚酸を用い、ジアミン成分として1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンを共重合、又は1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンと1,6−ヘキサンジアミンを共重合することで、蓚酸と1,9−ノナンジアミンからなるポリアミドと比べて、上記相対粘度を増加させること、すなわち分子量を増加させることが可能である。また、実質的な熱分解の指標である1%重量減少温度(以下、Tdと略す)と融点(以下、Tmと略す)の差(Td−Tm)で表される成形可能温度範囲が、蓚酸と1,9−ノナンジアミンからなるポリアミドと比べて拡大し、成形可能温度範囲が好ましくは50℃以上、より好ましくは60℃以上であることができ、更には90℃以上も可能である。本発明において用いるポリアミド樹脂は、Tdが好ましくは280℃以上、より好ましくは300℃以上、更に好ましくは320℃以上であり、高い耐熱性を有することを特徴とする。
また太陽電池は屋外に設置される為、耐候性や耐加水分解性が要求される。さらに、太陽電池内の水分を出来る限り減らしたい為、透湿度は低い方が良い。これは、装置内に水分が多く存在すると、電気系統がショートし易く、材質によっては寸法が安定せず、装置に不具合を生じさせる恐れがあるからである。また通電によるショートを避ける為に、実使用時(WETな状態)における絶縁性が求められている。
【0027】
(4)ポリアミド樹脂の製造
本発明において用いるポリアミド樹脂は、ポリアミドを製造する方法として知られている任意の方法を用いて製造することができる。本発明者らの研究によれば、ジアミン及び蓚酸ジエステルをバッチ式又は連続式で重縮合反応させることによりポリアミド樹脂を得ることができる。具体的には、以下の操作で示されるような、(i)前重縮合工程、(ii)後重縮合工程の順で行うのが好ましい。
【0028】
(i)前重縮合工程:まず反応器内を窒素置換した後、ジアミン(ジアミン成分)及び蓚酸ジエステル(蓚酸源)を混合する。混合する場合にジアミン及び蓚酸ジエステルが共に可溶な溶媒を用いても良い。ジアミン成分及び蓚酸源が共に可溶な溶媒としては、特に制限されないが、トルエン、キシレン、トリクロロベンゼン、フェノール、トリフルオロエタノールなどを用いることができ、特にトルエンを好ましく用いることができる。例えば、ジアミンを溶解したトルエン溶液を50℃に加熱した後、これに対して蓚酸ジエステルを加える。このとき、蓚酸ジエステルと上記ジアミンの仕込み比は、蓚酸ジエステル/上記ジアミンで、0.8〜1.5(モル比)、好ましくは0.91〜1.1(モル比)、更に好ましくは0.99〜1.01(モル比)であることができる。
【0029】
このように仕込んだ反応器内を攪拌及び/又は窒素バブリングしながら、常圧下で昇温する。反応温度は、最終到達温度が80〜150℃、好ましくは100〜140℃の範囲になるように制御するのが好ましい。最終到達温度での反応時間は例えば3時間〜6時間である。
【0030】
(ii)後重縮合工程:更に高分子量化を図るために、前重縮合工程で生成した重合物を常圧下において反応器内で徐々に昇温する。昇温過程において前重縮合工程の最終到達温度、すなわち80〜150℃から、最終的に220℃以上300℃以下、好ましくは230℃以上280℃以下、更に好ましくは240℃以上270℃以下の温度範囲にまで到達させる。昇温時間を含めて1〜8時間、好ましくは2〜6時間保持して反応を行うことが好ましい。更に後重合工程において、必要に応じて減圧下での重合を行うこともできる。減圧重合を行う場合の好ましい最終到達圧力は0.1MPa未満〜13.3Paである。
【0031】
本発明に用いるポリアミド樹脂の製造方法のより具体的な例を以下に説明する。まず原料の蓚酸ジエステルを容器内に仕込む。容器は、後に行う重縮合反応の温度及び圧力に耐え得るものであれば、特に制限されない。その後、容器を原料のジアミンと混合する温度まで昇温させ、次いでジアミンを注入し重縮合反応を開始させる。原料を混合する温度は、原料の蓚酸エステル及びジアミンの融点以上、沸点未満の温度であり、かつ蓚酸ジエステルとジアミンとの重縮合反応によって生じるポリオキサミドが熱分解しない温度であれば特に制限されない。
【0032】
例えば、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとの混合物からなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるジアミンと蓚酸ジメチルとを原料とするポリオキサミド樹脂の場合、上記混合温度は15℃から240℃が好ましい。また、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が5:95〜90:10の場合、常温で液体か又は40℃程度に加温するだけで液化するので取り扱いやすいためより好ましい。混合温度が縮合反応によって生成するアルコールの沸点以上の場合、アルコールを留去、凝縮する装置を備えた容器を用いるのが望ましい。また、縮合反応によって生成するアルコール存在下で加圧重合する場合には、耐圧容器を用いる。蓚酸ジエステルとジアミンとの仕込み比は、蓚酸ジエステル/上記ジアミンで、0.8〜1.2(モル比)が好ましく、より好ましくは0.91〜1.09(モル比)、更に好ましくは0.98〜1.02(モル比)である。
【0033】
次に、容器内をポリオキサミド樹脂の融点以上かつ熱分解しない温度以下に昇温する。例えば、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が85:15であるジアミンと、蓚酸ジブチルとを原料とするポリオキサミド樹脂の場合、融点は235℃であることから240℃から280℃に昇温するのが好ましい(圧力は、2MPa〜4MPa)。生成したアルコールを留去しながら、必要に応じて、常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。耐圧容器内で原料を混合し、縮合反応によって生成するアルコール存在下で加圧重合する場合は、まず生成したアルコールを留去しながら放圧する。その後、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は760〜0.1Torrである。温度は、240〜280℃が好ましい。また、アルコールは水冷コンデンサで冷却して液化し、回収する。
【0034】
また、1,9−ノナンジアミン、2−メチル−1,8−オクタンジアミン、1,6−ヘキサンジアミンの混合物からなり、かつC9ジアミン混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物)と1,6−ヘキサンジアミンのモル比が1:99〜99:1であるジアミンと蓚酸ジブチルを原料とするポリオキサミド樹脂の場合、上記混合温度は15℃から300℃が好ましい。また、C9ジアミン混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物)と1,6−ヘキサンジアミンのモル比は、5:95〜90:10の場合、常温で液状か又は50℃程度に加温するだけで液化するので取り扱いやすいためより好ましい。混合温度が縮合反応によって生成するアルコールの沸点以上の場合、アルコールを留去、凝縮する装置を備えた容器を用いるのが望ましい。また、縮合反応によって生成するアルコール存在下で加圧重合する場合には、耐圧容器を用いる。蓚酸ジエステルとジアミンの仕込み比は、蓚酸ジエステル/上記ジアミンで、0.8〜1.2(モル比)、好ましくは0.91〜1.09(モル比)、更に好ましくは0.98〜1.02(モル比)である。
【0035】
次に、容器内をポリオキサミド樹脂の融点以上かつ熱分解しない温度以下に昇温する。例えば、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンと1,6−ヘキサンジアミンからなり、かつC9ジアミン混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物)と1,6−ヘキサンジアミンのモル比が50:50であり、さらに1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が50:50であるジアミンと蓚酸ジブチルを原料とするポリオキサミド樹脂の場合、融点は261℃であることから270℃から300℃に昇温するのが好ましい(圧力は、2MPa〜4MPa)。生成したアルコールを留去しながら、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。耐圧容器内で原料を混合し、縮合反応によって生成するアルコール存在下で加圧重合する場合は、まず生成したアルコールを留去しながら放圧する。その後、必要に応じて常圧窒素気流下もしくは減圧下において継続して重縮合反応を行う。減圧重合を行う場合の好ましい最終到達圧力は760〜0.1Torrである。温度は、270〜300℃が好ましい。また、アルコールは水冷コンデンサで冷却して液化し、回収する。
【0036】
(II)その他の含有成分
本発明においては、上述のポリアミド樹脂に加えて、必要に応じて各種添加剤を組合せることができ、これらはポリアミド重縮合反応時、又はその後に組合せることができる。
【0037】
各種添加剤としては、バリア性改良成分、補強剤、フィラー、補強繊維、銅化合物などの安定剤、着色剤、紫外線吸収剤、光安定化剤、酸化防止剤、帯電防止剤、難燃剤、結晶化促進剤、ガラス繊維、可塑剤、潤滑剤、耐熱剤などが挙げられる。
【0038】
上記のバリア性改良成分としては、例えば層状珪酸塩が挙げられる。層状珪酸塩は、本発明のポリアミドフィルムの機械的強度、耐熱性、液体(特にアルコール、水など)及び気体(特に酸素やガソリンなど)に対するバリア性を向上させることができる。
【0039】
(III)太陽電池バックフィルム
本発明の太陽電池バックフィルムとは、太陽電池用裏面保護シートとも呼ばれ、太陽電池の一部分を指す。またここで言う太陽電池の表面は太陽光を受ける面となり、ガラスなどの材料を使用している部分を指し、太陽電池の裏面は多層(内側、中間、外側)で構成されている。
【0040】
(IV)太陽電池バックフィルムの成形加工
本発明の太陽電池バックフィルムは延伸フィルムでも未延伸フィルムでもよく、ポリアミドのフィルムの分野で公知の任意の成形加工法を用いて成形できる。
【0041】
より具体的には、例えば、ポリアミド樹脂、及び必要に応じて用いる各種の他の成分の所定量を押出機で溶融混練し、混練物をTダイからフィルム状に押出し、キャスティングロール面上にキャスティングしたフィルムを冷却するTダイ法や、該混練物をリング状ダイから筒状に押出した後に空冷又は水冷するチューブラー法などを適用して未延伸フィルムを成形できる。また、該未延伸フィルムを一軸延伸又は二軸延伸し、未延伸フィルムを構成するポリマーの融点以下で必要に応じて熱固定する方法などにより、延伸フィルムを成形できる。
【0042】
本発明の太陽電池バックフィルムは多層の積層フィルムのうちの1層以上を構成するものとして用いてもよい。この場合、本発明の太陽電池バックフィルム以外の層としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなどからなるポリオレフィンフィルム、ポリエステルフィルム、エチレン−酢酸ビニル共重合体などからなる共重合体フィルム、アイオノマー樹脂フィルムなどを目的に応じて採用できる。
【0043】
積層フィルムは、接着法、共押出法などの公知の方法を用いて成形できる。接着法においては、本発明の太陽電池バックフィルムと1層以上の他のフィルムとを接着剤で接着すればよい。また共押出法においては、本発明の太陽電池バックフィルム及び1層以上の他のフィルムのそれぞれの原料ポリマー溶融物を、必要に応じて接着性樹脂を介して多層口金から溶融共押出しすればよい。
【実施例】
【0044】
以下、実施例及び比較例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
【0045】
[物性測定、成形、評価方法]
特性値を、以下の方法により測定した。
【0046】
(1)融点(Tm)
Tmは、PerkinELmer社製PYRIS Diamond DSC用いて窒素雰囲気下で測定した。30℃から270℃まで10℃/分の速度で昇温し(昇温ファーストランと呼ぶ)、次に270℃まで10℃/分の速度で昇温した(昇温セカンドランと呼ぶ)。得られたDSCチャートから降温ファーストランの昇温セカンドランの吸熱ピーク温度をTmとした。
【0047】
(2)1%重量減少温度(Td)
Tdは島津製作所社製THERMOGRAVIMETRIC ANALYZER TGA−50を用い、熱重量分析(TGA)により測定した。20ml/分の窒素気流下室温から500℃まで10℃/分の昇温速度で昇温し、Tdを測定した。
【0048】
(3)フィルム成形
東邦マシナリー社製真空プレス機TMB−10を用いて、ペレットからフィルムを成形した。500〜700Paの減圧雰囲気下において260℃で5分間加熱溶融させた後、5MPaで1分間プレスを行いフィルム成形した。次に減圧雰囲気を常圧まで戻したのち室温5MPaで1分間冷却結晶化させてフィルムを得た。
【0049】
(4)飽和吸水率
上記(3)の条件で成形したフィルム(寸法:20mm×10mm、厚さ0.25mm;質量約0.05g)を23℃のイオン交換水に浸漬し、所定時間ごとにフィルムを取り出し、フィルムの質量を測定した。フィルム質量の増加率が0.2%の範囲内で3回続いた場合にポリアミド樹脂フィルムへの水分の吸収が飽和に達したと判断して、水に浸漬する前のフィルムの質量(Xg)と飽和に達した時のフィルムの質量(Yg)から次の式(1)により飽和吸水率(%)を算出した。
【0050】
飽和吸水率(%)=(Y−X)/X×100 (1)
【0051】
(5)耐加水分解性
上記(3)の条件で成形したフィルムをオートクレーブに入れ、水、0.5mol/l硫酸、1mol/l水酸化ナトリウム水溶液中(すなわち、順に、pH=7、pH=1、pH=14)でそれぞれ121℃、60分間処理した後の質量残存率(%)を調べた。
【0052】
(6)透湿度
(株)日本製鋼所製のスクリュー径30mmの押出機(シリンダー温度230〜260℃)を用いて、外径1/2インチ、厚み1mmのチューブを調製した。このチューブを300mmの長さに切断し、その中に水分吸収剤である塩化カルシウムを充満するまで充填し、密封した。次に、このチューブを40℃で相対湿度90%の雰囲気中に10日以上放置し、1日の平均的な単位面積当たりの透湿度を測定した。
【0053】
(7)絶縁性(体積固有抵抗値)
ASTM D-257に基づいて測定した。
サンプルサイズは、φ100×t3mmを使用し、測定方法:500Vを電極間に印加し、1分後の抵抗値を測定した。
ここで言うDRYとはサンプルを絶乾状態にした状態を指し、WETは、23℃水中24時間浸漬後、取り出した状態を指す。
【0054】
ρv = (π × d2 )÷ (4 × t)× Rv
ρv :体積固有抵抗(Ω・cm)
Rv :体積抵抗(Ω)
d :主電極の外径(cm)
t :試験片中央部の暑さ(cm)
【0055】
試験片は樹脂温度260℃、金型温度80℃の射出成形によりASTM引張片(20×215×3.2mmt)を成形して用いた。オーブンの温度、それぞれ120℃と150℃で熱したものを240、720、1440時間置いた物を準備し、それぞれの伸びの保持率を測定した。
表2中の縦軸は保持率を示し、横軸は時間を示している。
【0056】
[製造例1:PA92−1の製造]
攪拌機、温度計、トルクメーター、圧力計、ダイアフラムポンプを直結した原料投入口、窒素ガス導入口、放圧口、圧力調節装置及びポリマー抜出し口を備えた内容積が150リットルの圧力容器にシュウ酸ジブチル28.40kg(140.4モル)を仕込み、圧力容器の内部を純度が99.9999%の窒素ガスで0.5MPaに加圧した後、次に常圧まで窒素ガスを放出する操作を5回繰り返し、窒素置換を行った後、封圧下、攪拌しながら系内を昇温した。約30分間かけてシュウ酸ジブチルの温度を100℃にした後、1,9−ノナンジアミン18.89kg(119.3モル)と2−メチル−1,8−オクタンジアミン3.34kg(21.1モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が85:15)をダイアフラムフポンプにより流速1.49リットル/分で約17分間かけて反応容器内に供給すると同時に昇温した。供給直後の圧力容器内の内圧は、重縮合反応により生成したブタノールによって0.35MPaまで上昇し、重縮合物の温度は約170℃まで上昇した。その後、1時間かけて温度を235℃まで昇温した。その間、生成したブタノールを放圧口より抜き出しながら、内圧を0.5MPaに調節した。重縮合物の温度が235℃に達した直後から放圧口よりブタノールを約20分間かけて抜き出し、内圧を常圧にした。常圧にしたところから、1.5リットル/分で窒素ガスを流しながら昇温を開始し、約1時間かけて重縮合物の温度を260℃にし、260℃において4.5時間反応させた。その後、攪拌を止めて系内を窒素で1MPaに加圧して約10分間静置した後、内圧0.5MPaまで放圧し、重縮合物を圧力容器下部抜出口より紐状に抜き出した。紐状の重合物は直ちに水冷し、水冷した紐状の樹脂はペレタイザーによってペレット化した。得られたポリアミドは白色の強靭なポリマーであり、ηr=3.20であった。
【0057】
[製造例2:PA92−2の製造]
1,9−ノナンジアミン17.62kg(111.3モル)と2−メチル−1,8−オクタンジアミン4.45kg(28.1モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が80:20)を仕込んだほかは、製造例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは白色の強靭なポリマーであり、ηr=3.10であった。
【0058】
[製造例3:PA92−3の製造]
1,9−ノナンジアミン11.11kg(70.2モル)と2−メチル−1,8−オクタンジアミン11.11kg(70.2モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が50:50)を仕込んだ以外は、製造例1と同様に反応を行ってポリアミドを得た。得られた重合物は白色の強靭なポリマーであり、ηr=3.35であった。
【0059】
[製造例4:PA92−4の製造]
1,9−ノナンジアミン6.67kg(42.1モル)、2−メチル−1,8−オクタンジアミン15.56kg(98.3モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が30:70)を仕込んだ以外は製造例1と同様に反応を行ってポリアミドを得た。得られたポリアミドは白色の強靭なポリマーであり、ηr=3.55であった。
【0060】
[製造例5:PA92−5の製造]
1,9−ノナンジアミン1.33kg(8.4モル)と2−メチル−1,8−オクタンジアミン20.88kg(131.9モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を仕込んだほかは、製造例1と同様に反応を行ってポリアミドを得た。得られた重合物は白色の強靭なポリマーであり、ηr=3.53であった。
【0061】
[製造例6:PA92−6の製造]
1,9−ノナンジアミン1.33kg(8.4モル)と2−メチル−1,8−オクタンジアミン20.88kg(131.9モル)の混合物(1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンのモル比が6:94)を仕込み、ブタノールの抜出による内圧を0.25MPaに保持した以外は、製造例1と同様に反応を行ってポリアミドを得た。得られた重合物は白色の強靭なポリマーであり、ηr=4.00であった。
【0062】
製造例1〜6で調製したポリアミド、並びに市販品のPA6(宇部興産製、UBEナイロン1015B)の特性データを表1に示し、製造例1で調製したポリアミドの各温度における耐熱性評価を表2に示す。
【0063】
【表1】

【0064】
【表2】

【0065】
太陽電池バックフィルムは、外に設置される事から雨に濡れ、吸水した際に寸法が変化する事を嫌う。実施例1〜6は飽和吸水率が低く水分を吸収しにくい事から雨天であったとしても成形品の寸法は安定する事が分かる。また実施例1〜6は透湿度が比較例1より大変優れている事からも太陽電池内に水分を殆ど透過させない事が分かる。耐加水分解性についても比較例1はpH=1,7,14の条件において加水分解が生じたが、実施例1〜6は問題ない。
そして、実施例1の120℃及び150℃における強度保持率は、1400時間を超えても、100%以上をあり、十分な耐熱性を有している事が表2から分かる。さらに、太陽電池バックフィルムは絶縁性も求められる。ここで言う絶縁性とは表1中にある、体積固有抵抗の事を指す。実施例1は10の16乗という高い絶縁性を有し、絶乾の時と実使用時(吸水時)の時で絶縁性が変化しない。しかし、比較例1は絶縁性が3桁も低下している。この結果は他の実施例2〜6も同様である。またポリアミドは、古くから使用されている樹脂の一つであり、リサイクル技術など多くの環境への配慮が行われている。
従って、本発明品は、耐候性、耐熱性、耐加水分解性、電気絶縁性に優れ、かつ環境へ配慮した太陽電池バックフィルムになりうる。
【産業上の利用可能性】
【0066】
本発明は、液体、蒸気及び/又は気体に対するバリア性に優れ、かつ低吸水性でありながら、溶融重合による高分子量化が可能で、成形可能温度幅が広く溶融成形性に優れ、耐薬品性及び耐加水分解性に優れ、更に耐候性、耐熱性、電気絶縁性、耐加水分解性のすべてに優れるため、太陽電池バックフィルムとして好適に使用できる。

【特許請求の範囲】
【請求項1】
ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミン及び2−メチル−1,8−オクタンジアミンからなり、かつ1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂を含む、太陽電池バックフィルム。
【請求項2】
ジカルボン酸成分が蓚酸からなり、ジアミン成分が1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物及び1,6−ヘキサンジアミンからなり、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンの混合物と、1,6−ヘキサンジアミンとのモル比が1:99〜99:1であるポリアミド樹脂を含む、太陽電池バックフィルム。
【請求項3】
前記ジアミン成分の、1,9−ノナンジアミンと2−メチル−1,8−オクタンジアミンとのモル比が1:99〜99:1である、請求項2に記載の太陽電池バックフィルム。
【請求項4】
前記ポリアミド樹脂の、96%硫酸を溶媒とし、濃度1.0g/dlのポリアミド樹脂溶液を用いて25℃で測定した場合の相対粘度(ηr)が1.8〜6.0である、請求項1〜3のいずれかに記載の太陽電池バックフィルム。
【請求項5】
前記ポリアミド樹脂の、窒素雰囲気下、10℃/分の昇温速度で測定した熱重量分析における1%重量減少温度と窒素雰囲気下、10℃/分の昇温速度で測定した示差走査熱量法により測定した融点との温度差が50℃以上である、請求項1〜4のいずれかに記載の太陽電池バックフィルム。
【請求項6】
請求項1〜5のいずれかに記載の太陽電池バックフィルムを用いた太陽電池。

【公開番号】特開2012−182316(P2012−182316A)
【公開日】平成24年9月20日(2012.9.20)
【国際特許分類】
【出願番号】特願2011−44249(P2011−44249)
【出願日】平成23年3月1日(2011.3.1)
【出願人】(000000206)宇部興産株式会社 (2,022)
【Fターム(参考)】