説明

定量流体移送システム

流体導入、放出用の少なくとも1つの入口と出口とを有する弁本体を備え、非常に少量の離散増分の流体を流通可能にして流体流量を調整する小型定量流体移送システムは、弁本体内の第1のチャンバ内で移動可能な弁ロッドを備え、該弁ロッドは、該ロッドに沿い長手方向に離れた複数の流体通路を有し、選択された流体通路に対応する選択された入口または出口ポートを流体が通り流れ可能に各流体通路を第1のチャンバ中の入口または出口ポートに整列させるよう移動可能である。本システムは弁本体内の第2のチャンバ内で移動可能なプラグを有し、該プラグは、第2のチャンバの第1および第2の端部の間で移動可能で、体積流体が第1又は第2の端部の一方にて第1のチャンバから第2のチャンバに入る場合に、第1または第2の端部の他方の方向に移動する。プラグは流体が入った端部の対向側の端部で第2のチャンバから対応する体積の流体を押し出す。

【発明の詳細な説明】
【技術分野】
【0001】
(関連出願)
本出願は、2007年5月8日に出願された、「Quantum Fluid Transfer Systems」と題される米国仮特許出願第60/928,293号の利益を主張し、該出願は、参照によりその全体として本明細書に組み込まれる。
【0002】
本発明は、流体流れシステム、弁、および弁システムに関し、より詳細には、定量弁を備える定量流体制御システムであって、定量弁が、好ましくはMEMS環境などの超小型環境内にて、アクチュエータまたはアクチュエータシステムを制御および操作するための方向弁と組み合わされ得る、定量流体制御システムに関する。
【背景技術】
【0003】
アナログ弁およびデジタル弁は、よく知られている。概して、アナログ弁は、所望の流量が実現されるまで弁ゲートを開くまたは閉じることにより流れを調整する。いくつかのアナログ弁は、弁ステムを回転させることによって手動的に調節され得る。他のアナログ弁は、弁ゲート位置を検出するセンサを用いて弁ゲートを開くまたは閉じることが可能な、電気式、空圧式、または水圧式アクチュエータによって、自動的に調節され得る。
【0004】
残念ながら、アナログ弁は、多数の弁の用途において問題となる可能性があるという制約を有する。例えば、機械的清浄度、弁リンク装置の摩擦、ならびに、弁ゲートおよび弁ステムに作用する流体力が、弁の設定において不確実性をもたらす可能性があり、弁において変更がなされた場合に予測不能な流体流れを生じさせる可能性がある。さらに、アナログ弁は、水圧式アクチュエータなどの高速反応用途にとっては、流体流れ条件に対する変更が過度に低速であるおそれがある。
【0005】
デジタル弁においては、アナログ弁の欠点を克服することが試みられている。例えば、いくつかのデジタル弁は、電気信号により独立的に操作される電子ゲートを有する一連の弁を用いて流体流れを調整する。各弁は、開かれる弁の個数によって流体流れを増加または減少させるように、非常な高速にて開かれ得る、または閉じられ得る。したがって、適切な弁または弁の組合せを開くことによって、ある流量を達成することが可能である。コンピュータまたは同様のものなどの制御システムを使用して、流量を制御することが可能である。
【0006】
残念ながら、多数のデジタル弁は、多数の弁の用途において問題となる可能性があるという制約を有する。例えば、複雑な流体システムは、流体流れの流動制御精度に影響を及ぼす、流体流れ力、機械的相互作用、および電気力を有する可能性がある。さらに、これらの力により、典型的なデジタル弁によって流体流れを適切に制御することが困難になるおそれがある。例えば、小型水圧式システムにおける高圧の水圧流体が、弁リンク装置および弁ゲートを阻害し、それによりゲートが閉じることができずに比例的な流体流れに影響を及ぼすおそれがある。
【発明の概要】
【発明が解決しようとする課題】
【0007】
先行技術に特有の問題および欠点を鑑みて、本発明は、比例的に制御可能な流体流れを生成するように、流体の定量離散パケットまたは定量デジタル形式パケットを生成することによって、これらの問題および欠点を解消することを目的とする。
【課題を解決するための手段】
【0008】
本明細書において具現化され概略的に説明される本発明によれば、本発明は、流体を受けるための少なくとも1つの入口、および流体を放出するための少なくとも1つの出口を有する弁本体を備える、非常に少量の離散増分の流体を流通可能にすることにより流体の流量を調整するように構成された、小型定量流体移送システムに関する。この定量流体移送システムは、弁本体内の第1のチャンバ内に移動可能に配設された弁ロッドを備えることが可能である。弁ロッドは、この弁ロッドに沿って長手方向に離れた複数の流体通路を有することが可能であり、この弁ロッドは、選択された流体通路に対応する選択された入口ポートまたは出口ポートを流体が通り流れることが可能となるように、各流体通路を第1のチャンバ中の入口ポートまたは出口ポートに整列させるように移動可能であることが可能である。さらに、定量流体移送システムは、弁本体内の第2のチャンバ内に移動可能に配設されたプラグを有することも可能である。このプラグは、第2のチャンバの第1の端部と第2の端部との間にて移動可能であることが可能であり、ある体積の流体が第1の端部または第2の端部の一方にて第1のチャンバから第2のチャンバに進入する場合に、第1の端部または第2の端部の他方の方向に移動することが可能である。プラグは、流体が進入した端部の対向側の端部にて第2のチャンバから対応する体積の流体を押し出すことが可能である。
【0009】
また、本発明は、弁本体内に配設され少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する第1のチャンバを備える定量弁を調達するステップを含む、弁により流体流れを調整するための方法に関する。さらに、この定量弁は、第1のチャンバ内に移動可能に配設された弁ロッドを有することも可能である。この弁ロッドは、この弁ロッドに沿って長手方向に離れた複数の流体通路を有することが可能である。この弁ロッドは、選択された流体通路に対応する選択された入口ポートおよび出口ポートを流体が通り流れるのを可能にするように、複数の流体通路の中の少なくとも1つを入口ポートの中の1つと整列させ、複数の流体通路の中の少なくとも1つを出口ポートの中の少なくとも1つと整列させるように移動可能であることが可能である。また、定量弁は、第2のチャンバであって、第2のチャンバの第1の端部および第2の端部にて第1のチャンバと流体連通状態になることが可能な、弁本体内に配設された第2のチャンバを有することも可能である。さらに、定量弁は、第2のチャンバ内にて第1の端部と第2の端部との間に移動可能に配設され得るプラグを有することも可能である。流れを調整するためのこの方法は、第1のチャンバを流体源と流体連通状態にさせるステップを含むことが可能である。弁ロッドは、流体源からの流体が、第1のチャンバおよび第2のチャンバの第1の端部に進入し、プラグを第2のチャンバ内において変位させて、第2のチャンバの第2の端部からある体積の流体を吐出することが可能となるように、配置され得る。
【0010】
さらに、本発明は、定量流体移送/荷重体作動システムにおいて、比例関係により作動するように構成された定量弁であって、加圧流体を受けるための少なくとも1つの圧力入口および流体を放出するための少なくとも1つの戻り出口を有する弁本体と、弁本体内に配設され、少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する第1のチャンバと、第1のチャンバ内に移動可能に配設され、入口ポートおよび出口ポートを介して第1のチャンバを通る流体流れを促進するように適合された複数の流体通路を有する弁ロッドと、弁本体内に配設され、第1のチャンバの入口ポートおよび出口ポートを介して第1のチャンバと流体連通状態にある第2のチャンバと、変位する際にある特定体積の流体を出力するように第2のチャンバ内に移動可能に配設されるプラグとを備える、定量弁、定量弁からの出力としての特定体積の流体を受けるように、定量弁と共に作動可能な方向弁であって、アナログ式の態様においてではなく2進法式またはデジタル式の態様において作動し、特定体積の流体を受けると種々の作動位置間においてデジタル式に切り替わることが可能となる、方向弁、ならびに、方向弁によって作動可能なアクチュエータであって、定量弁からの特定体積の流体出力により、アクチュエータの比例的変位が決定される、アクチュエータを備える、定量流体移送/荷重体作動システムに関する。
【0011】
添付の図面と組み合わせることにより、以下の説明および添付の特許請求の範囲から、本発明がさらに十分に明らかになろう。これらの図面は、本発明の例示の実施形態を表すにすぎないことが理解され、したがって、これらの図面は、本発明の範囲を限定するものと見なされるべきではない。本明細書においては概略的に説明され図面中に図示される本発明の構成要素は、多様な異なる構成において構成および設計され得ることが、容易に理解されよう。そうではあるが、添付の図面を用いることによりさらなる特定性および詳細をもたせつつ、本発明を示し、説明する。
【図面の簡単な説明】
【0012】
【図1】本発明の一実施形態による小型定量流体移送システムの概略断面図である。
【図2】本発明の別の実施形態による小型定量流体移送システムの概略断面図である。
【図3】アクチュエータを制御するために定量弁により作動するように構成された、本発明の一実施形態による方向弁の概略断面図である。
【図4】ある一定期間にわたる定量弁の体積流体出力、および、流体出力に対して定量弁の作動周波数における変化が与える影響の、グラフである。
【図5】定量弁および方向弁が共にパッケージングされた、本発明の定量流体移送システムの別の実施形態の斜視図である。
【図6】定量弁および方向弁が共にパッケージングされた、本発明の定量流体移送システムの別の実施形態の概略図である。
【図7】本発明の別の実施形態による小型定量流体移送システムの概略断面図である。
【図8】本発明の別の実施形態による小型定量流体移送システムの概略断面図である。
【発明を実施するための形態】
【0013】
以下の本発明の例示の実施形態の詳細な説明は、添付の図面を参照とし、この添付の図面は、本明細書の一部を成し、添付の図面には、本発明を実施し得る例示の実施形態が例として示される。これらの例示の実施形態は、当業者が本発明を実施することが可能となるように十分に詳しく説明されるが、他の実施形態を実現することが可能であり、本発明の趣旨および範囲から逸脱することなく、本発明に対して様々な変更を行うことが可能であることを、理解されたい。したがって、図1から図6において示される、以下の本発明の実施形態のより詳細な説明は、特許請求される本発明の範囲を限定することを意図されず、本発明の構成部および特徴を説明するために、本発明の最良の実施形態を提示するために、および、当業者が本発明を実施することが十分に可能となるように、もっぱら例示のために、非限定的なものとして、提示される。したがって、本発明の範囲は、添付の特許請求の範囲によってのみ、規定されるべきである。
【0014】
以下の詳細な説明および本発明の例示の実施形態は、添付の図面を参照することにより最もよく理解されよう。添付の図面においては、本発明の要素および構成部が、全ての図面にわたって数字によって指定される。
【0015】
概して、本発明は、アナログ式の態様において作動するアクチュエータを駆動または制御するために、水力学式システム、とりわけ超小型水圧式システムを、デジタル式の態様において作動させることを可能にするための、方法およびシステムを説明する。さらに具体的には、本発明は、定量弁から1つまたは複数の水圧流体出力を生成し、方向弁にこの流体出力を供給するための方法およびシステムであって、方向弁が、デジタル式の態様において流体を出力して、この方向弁に流体結合されたアクチュエータを作動させる、または、当技術において既知の同様のもしくは他の構造体を作動させる、方法およびシステムを説明する。基本的には、定量弁は、比例的に作動するように構成され、または、比例弁として機能するように構成される。さらに、単一の定量弁を使用して、所要の体積流体出力を生成し得るが、複数の定量弁を、相互に直列または並列になど、相互の組合せにおいて作動させて、使用される定量弁の寸法および個数、ならびに1つまたは複数の定量弁の作動可能構成に応じて、様々な、累加的な、および/または、選択的な出力をもたらし得ることが、予期される。
【0016】
図1を参照すると、本発明の第1の例示の実施形態による定量流体移送システムの概略図が示される。具体的には、図1は、定量弁12と、シンク4を介して定量弁12に流体的におよび作動可能に結合された方向弁230とを備える、定量流体移送システム10を図示する。さらに、定量流体移送システム10は、アクチュエータ290を備え、このアクチュエータ290は、方向弁230からの流体出力によって制御されるように、方向弁230に流体的におよび作動可能に結合されて、図示される。要するに、定量弁12は、ある特定の体積の流体を流体源2から受けると、シンク4に、および、引き続きまたはそれにより方向弁230に、この特定の体積の流体を出力するように、構成される。この体積流体出力により、方向弁230は、デジタル式の態様において機能することが可能となり、それにより離散量のまたは定量の流体がこの弁を通ることが可能となり、したがって、1つの例示の実施形態においては、定量流体移送システム10がデジタル水力学式システムとして機能することが実質的に可能となる。
【0017】
定量弁12は、その一次構成要素として、第1の端部18、第2の端部22、外側面26、および外径dを有する細長本体14と、図示される実施形態においては細長本体14内にそれぞれ収容されるまたは形成される第1の流体変位ボア30および第2の流体変位ボア62が備えられる、少なくとも1つの流体変位ボアと、やはり細長本体14内に収容されるまたは形成されるスプールボア94と、定量流体移送システム10の構成要素間に、とりわけ第1の流体変位ボア30と、第2の流体変位ボア62と、スプールボア94と、流体源2と、流体シンク4との間に延在する、一連の流体連結部とを備える。
【0018】
この場合には、定量流体移送システム10は、好ましくは超小型の寸法であり、すなわち、定量流体移送システム10の寸法および定量流体移送システム10の構成要素パーツの寸法が、ミリメートルまたはマイクロメートルにおいて正確におよび適切に測定され得るものとなることを、指摘しておく。いくつかの例示の実施形態においては、定量弁12は、参照によりその全体として本明細書に組み込まれる、2008年2月22日に出願された、「Micro−fluid Transfer System」と題される、米国出願整理番号第12/072,133号(代理人整理番号第00729−24144.NP)において記載され特許請求された技術を利用して後に形成される、マイクロ流体移送システムとして構成されてよい。例えば、細長本体14の長さは、5から20ミリメートルの間、または5,000から20,000マイクロメートルの間であってよく、円筒状本体を呈する細長本体14の半径は、1から3ミリメートルの間、または1,000から3,000マイクロメートルの間であってよい。しかし、明らかではあるが、定量弁および定量流体移送システム10の構成要素は、他の方法を用いて形成または製造されてよく、他の寸法および幾何学的構成を備えてよい。
【0019】
1つの例示の実施形態においては、細長本体14は、好ましくは円筒形状の、均一の円形断面を有するガラス構造体またはセラミック構造体を備える。当然ながら、細長本体14は、他の適切な材料から形成されてよく、当業者が気づくであろう他の形状を備えてよい。例えば、細長本体14は、正四方形または矩形の断面を備えてよい。さらに、細長本体14は、したがって定量弁12は、単一のまたは3つ以上の流体変位ボア、および複数のスプールボアを備えてよい。
【0020】
細長本体14内には、第1の流体変位ボア30が、長手方向に形成され、この第1の流体変位ボア30は、第1の端部34、第2の端部38、ある長さ、およびある内径を備える。そのため、第1の流体変位ボア30は、流体変位ボア30の断面積を流体変位ボア30の長さと乗算することにより規定されるある特定の容積を備える。換言すれば、流体変位ボア30は、このボアの寸法および形状によって決定される容積Vbore,1を備える。明らかであるように、流体変位ボア30の寸法、および細長本体14内における流体変位ボア30の位置は、種々の定量弁において、様々であってよい。
【0021】
細長本体14内における流体変位ボア30の配置に関しては、一態様においては、流体変位ボア30は、流体変位ボア30のいずれの部分もが、細長本体14の外側面26または端部18および22と流体連通状態にないように、配置されてよい。別の言い方をすれば、流体変位ボア30は、流体変位ボア30が、細長本体14を構成する剛性本体構造体内に収容され、この剛性本体構造体によって完全に囲まれるように、形成されてよい。別の態様においては、流体変位ボア30は、細長本体14の第1の端部18から第2の端部22まで延在し、したがって、流体変位ボア30が外側面26と流体連通状態になされるように、形成されてよい。さらに、第1の流体変位ボア30は、細長本体14の長手方向中心軸に対して平行である、または実質的に平行である、長手方向中心軸を備える。
【0022】
第1の流体変位ボア30内には、プラグまたはプランジャ42が、摺動可能に配設または配置される。プラグ42は、流体源2からの流体の入力に応じて、流体変位ボア30内で2方向に変位するように構成される。好ましくは、プラグ42は、第1の流体変位ボア30の長さにわたって変位または移動するように構成され、流体変位ボア30の端部が、プラグ42用のストッパとして機能する。別の態様においては、第1の流体変位ボア30は、流体変位ボア30の内壁部から外方に延在し、計画的に配置された、突出部の形態の、1つまたは複数のストッパを備えてよく、これらのストッパは、いずれかの方向または両方向におけるプラグ42の変位距離を画定および制限するように機能し得る。プラグ42は、流体変位ボア30内に嵌入するように、および流体変位ボア30内で摺動するように、寸法設定され構成された、剛性本体構造体部材を備えてよい。そのため、プラグ42は、プラグの断面積(プラグの外形または外側面を使用)とプラグの長さとの乗算を演算することにより算出され得る、体積Vplugを備える。
【0023】
さらに図1に図示されるように、定量弁12は、第1の流体変位ボア30と同軸の位置において細長本体14内に長手方向に形成された、第2の流体変位ボア62をさらに備える。第1の流体変位ボア30と同様に、第2の流体変位ボア62は、第1の端部66、第2の端部70、ある長さ、およびある内径を備える。そのため、第2の流体変位ボア62は、第2の流体変位ボア62の断面積を第2の流体変位ボア62の長さと乗算することにより規定される、ある特定の容積を備える。換言すれば、第2の流体変位ボア62は、このボアの寸法および形状により決定される、容積Vbore,2を備える。明らかであるように、第2の流体変位ボア62の寸法、および細長本体14内における第2の流体変位ボア62の位置は、種々の定量弁において、様々であってよい。
【0024】
細長本体14内における第2の流体変位ボア62の位置に関して、一態様においては、第2の流体変位ボア62は、第2の流体変位ボア62のいずれの部分もが、細長本体14の外側面26または端部18および22と流体連通状態にないように、配置されてよい。別の言い方をすれば、流体変位ボア30と同様に、第2の流体変位ボア62は、第2の流体変位ボア62が、細長本体14を構成する剛性本体構造体内に収容され、この剛性本体構造体によって完全に囲まれるように、形成されてよい。別の態様においては、第2の流体変位ボア62は、細長本体14の第1の端部18から第2の端部22まで延在し、したがって、第2の流体変位ボア62が外側面26と流体連通状態になされるように、形成されてよい。さらに、第2の流体変位ボア62は、細長本体14の長手方向中心軸に対して平行である、または実質的に平行である、長手方向中心軸を備える。
【0025】
好ましくは、第1の流体変位ボア30および第2の流体変位ボア62はそれぞれ、円筒断面を備え、したがって、円筒形状を備え、いくつかの様々な既知の製造方法の中の1つにより、細長本体14内に形成され得る。
【0026】
第2の流体変位ボア62内には、プラグまたはプランジャ74が、摺動可能に配設または配置される。プラグ74は、流体源2からの流体の入力に応じて、第2の流体変位ボア62内で2方向に変位するように構成される。好ましくは、プラグ74は、第2の流体変位ボア62の長さにわたって変位するように構成され、第2の流体変位ボア62の端部が、プラグ74用のストッパとして機能する。別の態様においては、第2の流体変位ボア62は、第2の流体変位ボア62の内壁部から外方に延在し、計画的に配置された、突出部の形態の、1つまたは複数のストッパを備えてよく、これらのストッパは、いずれかの方向または両方向におけるプラグ74の変位距離を画定および制限するように機能し得る。プラグ74は、第2の流体変位ボア62内に嵌入し、第2の流体変位ボア62内で摺動するように、寸法設定され構成された、剛性本体構造体部材を備えてよい。そのため、プラグ74は、プラグの断面積(プラグの外形または外側面を使用)とプラグの長さとの乗算を演算することにより算出され得る、容積Vplugを備える。
【0027】
必要なものではないが、第2の流体変位ボア62は、定量弁12の作動を均衡させるように、および、選択的なまたは累加的な流体出力をもたらすように、機能する。さらに、第1の流体変位ボア30および第2の流体変位ボア62は、同様の寸法であってよく、それにより、定量弁12が作動して、プラグ42および74が互いに同期的に第1の流体変位ボア30および第2の流体変位ボア62内で変位して、同様の体積の流体をシンク4に同時に出力することが可能となる。代替としては、第1の変位ボア30および第2の変位ボア62は、異なる寸法のものであってよく、それぞれ異なる体積の流体を出力するように選択的に作動されてよい。
【0028】
定量弁12は、図示されるように、細長本体14内に形成された、スプールボア94として示される、少なくとも1つのスプールボアをさらに備える。スプールボア94は、その中に、ロッドまたは弁ロッド98を受容するように構成される。弁ロッド98は、スプールボア94内を前後に変位して、スプールボア94の種々の入口ポートおよび出口ポートを開閉するように、構成される。そのため、スプールボア94および弁ロッド98は、定量弁12の細長本体14内に収容されたスプール弁として、共に機能する。スプール弁は、流体変位ボア(または複数の流体変位ボア)30および62と共に、定量弁12を構成するように機能し、以下においてさらに詳細に説明されるように、作動周波数に応じて、方向弁に対する流体出力の量を制御するように機能する。
【0029】
スプールボア94は、第1の端部18から第2の端部22まで細長本体14内で長手方向に延在し、したがって、細長本体14の端部および外側面26と流体連通状態にある。スプールボア94は、必要に応じて、任意の適切な寸法および形状を備えてよい。図1に図示される実施形態においては、スプールボア94は、200から500マイクロメートルの間の直径を有する円筒形状を備える。当然ながら、他の寸法が予期される。
【0030】
さらに、好ましくは、弁ロッド98は、ガラス材料またはセラミック材料から形成されるが、他の材料が使用されてもよい。さらに、弁ロッド98は、スプールボア94と同様の幾何学的寸法および形状で構成される。弁ロッド98は、弁ロッド98の第2の端部106の周囲に配置されたソレノイド178などの作動手段により作動されると、スプールボア94内で2方向に変位するように機能する。弁ロッド98の対向側の端部、すなわち第1の端部102は、ばね182などの付勢手段を用いて付勢される。したがって、ソレノイド178が選択的に作動され、これにより弁ロッド98が付勢手段の方向に選択的に変位されると、弁ロッド98の第1の端部102には、付勢手段による抗力が加えられ、この抗力は、ソレノイド178の作動により生じるものとは逆方向に弁ロッド98を変位させる傾向を有する。しかし、弁ロッド98を変位させるソレノイドへの入力は、付勢手段またはばね182が移動され、それにより、弁ロッド98がスプールボア94中に形成された様々な入口ポートおよび出口ポートの周囲に選択的に配置されることが可能となるまで、付勢手段またはばね182を克服するのに十分なものであるべきである。入力が取り除かれると、付勢手段により、弁ロッド98は、その初期開始位置に戻される。
【0031】
弁ロッド98は、流体通路110−a、110−b、110−c、および110−dとして示される1つまたは複数の流体通路が、中に形成される。これらの凹部は、弁ロッド98の変位位置に応じて、スプールボア94の入口ポートおよび出口ポートを選択的におよび計画的に開閉するような特定の位置にて、弁ロッド94中に配置される。このコンセプトは、以下においてさらに説明される。流体通路110は、化学エッチングもしくは他のエッチング、機械加工、または当技術において知られている任意の他の方法などの、1つまたは複数の製造方法を利用して、弁ロッド98中に形成される。各流体通路110は、それが、弁ロッド98の作動および適切な配置に応じて入力ポートまたは出力ポートの上に配置される場合に、流体がスプールボア94を通り流れるのを促進するように、寸法設定され、構成される。
【0032】
図1の概略図により図示されるように、複数の流体連結部が、第1の流体変位ボア30と、第2の流体変位ボア62と、スプールボア94と、流体源2と、シンク4と、方向弁230と、アクチュエータ290との間に存在する。流体源2から始まるが、これは、定量弁12に対して加圧下において、流体を、好ましくは水圧流体または他の非圧縮性流体を、入力または送給することが可能な、加圧流体源である。分かるように、細長本体14は、流体源2に流体連結された、圧力入力ポート190として示される入力ポートが、細長本体14の第1の端部18内に形成される。
【0033】
圧力入力ポート190は、スプールボア94に通じる圧力入力ポート126を介してスプールボア94に流体連結される。対応する圧力出力ポート122が、スプールボア94から通じ、第1の流体変位ボア30中に形成された圧力入力ポート50に流体連結される。この一連の入力ポートおよび出力ポート、ならびに、第1の流体変位ボア30と、スプールボア94と、流体源2との間の流体相互連結により、加圧流体は、流体源2から細長本体14を通りスプールボア94内に流れることが可能となる。その後、弁ロッド98の変位位置に応じて、加圧流体は、スプールボア94から出て第1の流体変位ボア30内に流れることが可能となり、加圧流体は、以下においてさらに詳細に説明されるように、第1の流体変位ボア30内においてプラグ42を変位させる役割を果たす。
【0034】
さらに、流体源2は、第1の流体変位ボア30の対向側端部に加圧流体を送給することが可能である。具体的には、流体源2は、圧力入力ポート194および134を介してスプールボア94内に加圧流体を送給する流体ラインを備える。圧力入力ポート134に対応するものは、スプールボア94から通じる圧力出力ポート130である。圧力出力ポート130は、第1の流体変位ボア30中に形成された圧力入力ポート58に流体連結される。この一連の圧力入力ポートおよび圧力出力ポート、ならびに流体相互連結は、加圧流体を、流体源2から細長本体14を通りスプールボア94内に流すように機能する。さらに、弁ロッド98の変位位置に応じて、流体源2からの加圧流体は、引き続いて、スプールボア94から圧力出力ポート130を通り、第1の流体変位ボア30中に形成された圧力入力ポート58を介して第1の流体変位ボア30内に流されて、それにより第1の流体変位ボア30内でプラグ42を変位させる。
【0035】
分かるように、圧力入力ポート50は、流体変位ボア30の一方の端部に形成され、圧力入力ポート58は、流体変位ボア30の対向側端部に形成される。したがって、弁ロッド98の変位位置に応じて、加圧流体は、これらの圧力入力ポートを通り流れて、第1の流体変位ボア30内でプラグ42を2方向に変位させることが可能となる。第1の流体変位ボア30内で引き起こされるプラグ42の各変位により、対応する体積流体出力が生成される。
【0036】
第1の流体変位ボア30の第1の端部34中には、戻り出力ポート46が形成され、この戻り出力ポート46は、スプールポート94に、とりわけスプールポート94の戻り入力ポート114に、流体連結される。戻り入力ポート114に対応するものは、シンク4に流体連結された戻り出力ポート118である。第1の流体変位ボア30の第2の端部38から第1の端部34にプラグ42が変位すると、流体は、スプールボア94中に形成された戻り入力ポート114および戻り出力ポート118を開くように弁ロッド98が適切に配置されると同時に、戻り出力ポート46から出て、スプールボア94を通り、シンク4内に流れることが可能になる。同様に、第1の流体変位ボア30は、スプールボア94中に形成された戻り入力ポート138に流体連結された戻り出力ポート54が、中にさらに形成される。戻り入力ポート138に対応するものは、やはりスプールボア94中に形成された戻り出力ポート142であり、この戻り出力ポート142は、細長本体14の外側面26中に形成された戻り出力ポート198に流体連結される。戻り出力ポート198は、シンク4に流体連結される。第1の流体変位ボア30の第1の端部34から第2の端部38にプラグ42が変位すると、流体は、戻り入力ポート138および戻り出力ポート142を開くように弁ロッド98が適切に配置されると同時に、戻り出力ポート54から出て、スプールボア94内に進み、スプールボア94から出て、細長本体14から出て、シンク4内に流される。戻り入力ポート138および戻り出力ポート142は、これらのポートの周囲に流体通路110−bを配置することによって、開かれる。
【0037】
図1の概略図によってやはり図示される第2の流体変位ボア62に関しては、複数の流体連結部が、第2の流体変位ボア62と、スプールボア94と、流体源2と、シンク4と、方向弁230と、アクチュエータ290との間に存在する。流体源2から、加圧流体が、細長本体4中に形成された圧力入力ポート206を通り、細長本体14の第2の端部22中に流れる。そのため、圧力入力ポート206は、流体源2に流体連結される。さらに、圧力入力ポート206は、スプールボア94内に通じる圧力入力ポート158を介してスプールボア94に流体連結される。対応する圧力出力ポート154が、スプールボア94から出て通じ、第2の流体変位ボア62の第1の端部66中に形成された圧力入力ポート82に流体連結される。この一連の入力ポートおよび出力ポート、ならびに第2の流体変位ボア62と、スプールボア94と、流体源2との間の流体相互連結により、加圧流体は、流体源2から細長本体14を通りスプールボア94内に流される。その後、弁ロッド98の変位位置に応じて、加圧流体は、スプールボア94から第2の流体変位ボア62内に流され、加圧流体は、以下でさらに詳細に説明されるように、第2の流体変位ボア62内にてプラグ74を変位させるように機能する。
【0038】
さらに、流体源2は、第2の流体変位ボア62の対向側のすなわち第2の端部70に加圧流体を送給することも可能である。具体的には、流体源2は、圧力入力ポート210および166を介してスプールボア94に流体結合され、このスプールボア94内に加圧流体を送給するように構成される。圧力入力ポート166に対応するのは、スプールボア94から出て通じる圧力出力ポート162である。圧力出力ポート162は、第2の流体変位ボア62中に形成された圧力入力ポート90に流体連結される。この一連の圧力入力ポートおよび圧力出力ポート、ならびに流体相互連結は、加圧流体を、流体源2から細長本体14を通りスプールボア94内に流すように機能する。さらに、弁ロッド98の変位位置に応じて、流体源2からの加圧流体は、引き続いて、スプールボア94から圧力出力ポート162を通り、第2の流体変位ボア62中に形成された圧力入力ポート90を介して第2の流体変位ボア62内に流され、それにより第2の流体変位ボア62内においてプラグ74を変位させる。分かるように、圧力入力ポート82は、流体変位ボア62の一方の端部に形成され、圧力入力ポート90は、流体変位ボア62の対向側端部に形成される。したがって、弁ロッド98の変位位置に応じて、加圧流体は、第2の流体変位ボア62内でプラグ74を2方向に変位させるように、これらの圧力入力ポートを通り流れることが可能となる。第2の流体変位ボア62内におけるプラグ74の各変位により、対応する体積流体出力が生成される。
【0039】
同様に、第2の流体変位ボア62の第1の端部66中には、戻り出力ポート78が形成され、この戻り出力ポート78は、スプールポート94に、とりわけスプールポート94の戻り入力ポート146に、流体連結される。戻り入力ポート146に対応するものは、シンク4に流体連結された戻り出力ポート150である。第2の流体変位ボア62の第2の端部70から第1の端部66にプラグ74が変位すると、流体は、スプールボア94中に形成された戻り入力ポート146および戻り出力ポート150を開くように弁ロッド98が適切に配置されると同時に、戻り出力ポート78から出て、スプール弁94を通り、シンク4内に流される。同様に、第2の流体変位ボア62は、スプールボア94中に形成された戻り入力ポート170に流体連結された戻り出力ポート86が、中にさらに形成される。戻り入力ポート170に対応するものは、やはりスプールボア94中に形成された戻り出力ポート174であり、この戻り出力ポート174は、細長本体14の外側面26中に形成された戻り出力ポート214に流体連結される。戻り出力ポート214は、シンク4に流体連結される。第2の流体変位ボア62の第1の端部66から第2の端部70にプラグ74が変位すると、流体は、戻り入力ポート170および174を開くように弁ロッド98が適切に配置されると同時に、戻り出力ポート86から出て、スプールボア94内に進み、スプールボア94から出て、細長本体14を出て、シンク4内に流される。戻り入力ポート170および戻り出力ポート174は、これらのポートの周囲に流体通路110−dを配置することによって、開かれる。
【0040】
図示される実施形態においては、第1および第2の流体変位ボア中にそれぞれ形成された圧力入力ポートが、流体変位ボアの端部の上に、または実質的に近傍に配置され、それにより、加圧流体は、流体変位ボアに進入し、この流体変位ボア内に収容されたプラグを可能な限り長い距離だけ変位させることが可能となる。同様に、第1および第2の流体変位ボア中に形成された戻り出力ポートは、やはり、流体変位ボアの端部の上に、または実質的に近傍に配置され、それにより、プラグにより変位される可能な限り多量の流体が、プラグによってそれぞれ遮断されるまで流体変位ボアから出ることが可能になる。この構成が好ましいが、本発明は、これに限定されない。実際に、特許請求される本発明の範囲内に含まれるものとそれぞれが見なされる他の位置が、予期される。
【0041】
第1の流体変位ボア30と、第2の流体変位ボア62と、スプールボア94との間の流体連結は、当技術における任意の既知の手段によるものであってよい。しかし、好ましくは、定量弁および定量流体移送システム10が、一般的には超小型サイズであるため、様々なボアが、2007年5月8日に出願され、「Micro−Fluid Transfer System」と題された、上述のものと同じ米国特許出願整理番号第12/072,133号において記載されるものなどの技術を利用して、必要に応じて互いに流体連結される。細長本体の外側面にスプールボアを流体連結するために、他の技術を使用することも可能である。
【0042】
上述の定量流体移送システム10の作動においては、弁ロッド98は、プラグ42および74の変位を、したがって定量弁12からの流体出力を制御するように作動される。ソレノイド178、または他の作動手段を作動させることにより、弁ロッド98は、スプールボア94内で変位されて、適切な入力および/または出力ポートの周囲に流体通路110を配置し、定量弁12による流体移送または流体流れを促進する。ばね182などの付勢要素または部材は、弁ロッド98に対して抗力または反力を誘導するまたは加えるように機能し、この力は、弁ロッド98をその初期開始位置に戻す傾向を有する。
【0043】
1つの例示の実施形態においては、その初期の、未作動の開始位置において、弁ロッド98が、定量弁12内の全ての入力ポートおよび出力ポートを遮断し、それによりそれらのポートを介した流体の移送を阻止する。定量弁12から流体を出力するためには、作動手段が作動されて、弁ロッド98を変位し、それにより、流体通路110−aが、スプールボア94中に形成された圧力入力ポート126および圧力出力ポート122をそれぞれ開く。これらのポートは、流体源2に流体連結された圧力入力ポート190に流体連結されるため、加圧流体は、圧力入力ポート126および圧力出力ポート122をそれぞれ通り、圧力入力ポート50を介して第1の流体変位ボア30内に進むことが可能となる。加圧流体が、第1の流体変位ボア30に進入すると、加圧流体は、第1の端部34に配置されたプラグ42に対して、結果的に得られた力を誘導する。この力が、プラグ42、およびプラグ42に作用する任意の追加的な静的力を克服するのに十分なものである場合には、プラグ42は、圧力入力ポート50から離れるように、第1の流体変位ボア30の第2の端部38の方向に変位される。プラグ42が変位すると、プラグ42は、さらに、流体変位ボア30内に存在する体積流体を変位させる。この体積流体は、戻り出力ポート54を介して第1の流体変位ボア30から脱するまたは出ることが可能であり、この戻り出力ポート54は、スプールボア94の戻り入口ポート138に流体連結される。次いで、出力流体は、後の放出のために、シンクに送られる。
【0044】
弁ロッド98がこの同一の位置にある場合には、流体通路110−bは、戻り入口ポート138および戻り出口ポート142を開くように配置され、これにより、流体は、戻り出口ポート54から、スプールボア94の戻り入口ポート138および戻り出口ポート142を通り、細長本体14の戻り出口ポート198を通り、シンク4内に流れることが可能となる。プラグ42の変位は、停止されるまで継続し、それにより、定量弁12は、この停止時まで流体を継続的に出力することが可能となる。図示される実施形態においては、プラグ42が、戻り出力ポート54を遮断する、または他の方法により停止されるまで、流体は、このポートを通り出力される。そのため、流体出力の量は、移送ボア30およびプラグ42の体積を根拠としつつ、流体変位ボア30内におけるプラグ42の変位距離に比例する。具体的には、プラグ42の単一の1方向直線変位に対する定量弁12の体積出力は、プラグ42が端部から端部まで完全に変位可能であると仮定した場合には、流体変位ボア30の容積からプラグ42の体積を減算したものと、すなわち、Vout≒Vbore−Vplugと等しくなるはずである。したがって、流体変位ボア30およびプラグ42が、共に円筒状である場合には、Vout≒πrh(bore)−πrh(plug)であり、この場合、h=流体変位ボア30およびプラグ42それぞれの高さまたは長さである。当然ながら、流体変位ボア30およびプラグ42の寸法は、システムより様々であってよく、これらの形状は、円筒状以外のものであってよく、したがって、相対的に異なる体積等式および出力をもたらす。以下において説明されるように、累加的な流体出力を生成するために、複数の定量弁を共に作動可能に結合することもまた可能である。複数の流体変位ボアが、累加的な流体出力を生成するために使用される場合には、Vout,total≒Vout,1+Vout,2+Vout,nとなるはずであり、この場合、Vout,1は、単一サイクルの際の第1の流体変位ボアの作動による流体出力の体積を表し、Vout,2は、単一サイクルの際の第2の流体変位ボアの作動による流体出力の体積を表し、Vout,nは、第3以降の任意の番号の流体変位ボアによる流体出力の体積を表す。
【0045】
上述の説明は、プラグ42の1方向変位、および1サイクルの第1のステージを中心としたものであったが、定量弁12の1サイクルを、流体変位ボア30内におけるプラグ42の2方向変位として規定することが、意図される。換言すれば、1サイクルは、プラグ42が前後に1度変位することに相当し得る。上述のように逆方向にプラグ42を変位させる、したがって、1サイクルの第2のステージを実行するためには、弁ロッド98が、スプールボア94中に形成された圧力入力ポート126および圧力出力ポート122を閉じるように、ならびに、スプールボア94中にやはり形成された戻り入力ポート114および戻り出力ポート118を開くように、再配置されるように作動される。戻り入力ポート114および戻り出力ポート118を開くためには、弁ロッド98は、流体通路110−aがこれらのポートの周囲に配置されるように、配置される。この態様で弁ロッド98を再配置することは、これらのポートの周囲に流体通路110−bを配置することにより、戻り入口ポート138および戻り出口ポート142を閉じ、圧力入口ポート134および圧力出口ポート130を開くようにも機能する。ポート134および130を開くことにより、流体源2からの加圧流体は、圧力入力ポート194に進入し、スプールボア94を通って進み、圧力出力ポート130から出ることが可能となる。圧力出力ポート130が、第1の流体変位ボア30の第2の端部38中に形成された圧力入力ポート58に流体結合されるため、加圧流体は、圧力入力ポート58内に進入することが可能となる。加圧流体が、圧力入力ポート58を通り第1の流体変位ボア30に進入すると、プラグ42に対して力が誘導されて、第2の端部38から離れるように第1の端部34の方向にプラグ42を変位させる。プラグ42が変位されると、ある体積量の流体が、戻り出力ポート46を通り流体変位ボア30から出る。流体は、プラグ42が停止されるまで、流体変位ボア30から押し出される。プラグ42が停止すると、弁ロッド98は、このプロセスを反復するために再度作動され得る。分かるように、1サイクルにより、流体変位ボアの体積からプラグの体積を減算したものの2倍に相当する出力が生成される。換言すれば、1サイクルに対する総体積流体出力は、Vout,total≒2(Vout)≒2(Vbore−Vplug)として説明することができる。この出力の流体は、加圧され、シンク4内にて加圧下において保管されることを指摘しておく。
【0046】
定量弁12は、第2の流体変位ボア62に関して、比例的な流体出力を生成するために、第1の流体変位ボア30と同様の態様において作動し、この作動の詳細は、提示されない。しかし、第2の流体変位ボア62は、同一のまたは異なる流体源から加圧流体を受けてよいことを指摘しておく。さらに、第2の流体変位ボア62は、同一のまたは異なるシンクに流体を出力してよい。第1の流体変位ボア30および第2の流体変位ボア62は、同一の流体源から流体を受け、同一のシンクに流体を出力するものとして示されるが、これは、必要とされるわけでもなく、いかなる意味においても本発明を限定するものと見なされるべきでもない。
【0047】
さらに、第2の流体変位ボア62は、第1の流体変位ボア30と同時に作動されてよく、または、第2の流体変位ボア62は、独立的に作動されて、ある体積量の加圧流体をシンク4に出力してもよい。好ましくは、第1の流体変位ボア30および第2の流体変位ボア62は、互いに同期的に、または同調的に作動するように構成される。しかし、必要に応じて、第1の流体変位ボア30および第2の流体変位ボア62は、非同調的に作動するように構成されてもよい。
【0048】
上述において示唆されるように、および必要とされるわけではないが、定量弁12は、示された第1の流体変位ボア30および第2の流体変位ボア62と同様の態様において、ある体積量の流体を出力するように構成された、追加の流体変位ボアをさらに備えてよい。さらに、これら追加の流体変位ボアは、互いに同調的にまたは非同調的に作動するように構成されてもよい。さらに、当業者には明らかであるように、定量弁においてそれぞれ異なる流体変位ボアが、それぞれ異なる寸法および/または形状のものであってよく、したがって、それぞれ異なる体積量の流体をシンクに出力してもよい。
【0049】
図2は、別の例示の実施形態による、本発明の定量流体移送システムを図示する。具体的には、図2は、定量流体移送システム10、とりわけ単一の流体変位ボア30を備える定量流体弁12を図示する。この特定の実施形態は、第2の流体変位ボアを伴わずに、上述のおよび図1に示される実施形態と同一の機能を果たす。そのため、上記に示される説明が、この場合において組み込まれ、図2に示される実施形態の構造および作動を説明するために、全体的にまたは部分的に参照され得る。
【0050】
図1および図3を参照すると、本発明の定量流体移送システムは、定量弁により作動するように構成された方向弁または同様の弁をさらに備え、定量弁および方向弁は、アクチュエータを制御するために組み合わされて機能する。図示されるように、定量弁12は、シンク4を介して方向弁230に作動可能におよび流体的に結合される。定量弁12が、加圧流体を出力すると、加圧流体は、シンク4に送られ、シンク4内に保管される。方向弁230にシンク4を流体的に結合するのは、流体連結部218であり、この流体連結部218は、シンク4からの加圧流体の流れが、細長本体234中に形成された圧力入力ポート258を通り方向弁230内に入力されるのを促進する。この圧力入力ポート258により、加圧流体は、方向弁230の細長本体234の内部238内に進入することが可能となる。換言すれば、シンク4からの出力は、方向弁230内に入力される。そのため、定量弁12は、方向弁230に対する制御入力を行うためのパイロット弁として機能するはずである。
【0051】
方向弁230は、4方向スプール弁として示され、したがって、一連のスプールを、すなわち、ロッド256によりそれぞれが相互連結された、スプール242、246、250、および254を備える。方向弁230は、複数の入力ポートおよび出力ポートを、すなわち、圧力入力ポート258、第1の入口/出口ポート274、第2の入口/出口ポート278、戻り出力ポート262、および戻り出力ポート266を、さらに備える。スプールは、計画的に配置され、圧力入力ポート258内に進入する加圧流体がアクチュエータ290を駆動するために使用され得るように、種々の入力ポートおよび出力ポートの周辺にて変位可能である。作動時には、加圧流体が、流体源2から定量弁12に、および定量弁12からシンク4に出力されると、方向弁30は、シンク4から方向弁230を通りアクチュエータ290に、その後の流体の流れを配向するように機能し、それにより、アクチュエータ290を作動または駆動させる。
【0052】
アクチュエータ290は、当技術において任意の既知のものであってよい。図示されるように、アクチュエータ290は、内部298へのアクセスを提供するために、複数のポートが中に形成された本体294を備える。アクチュエータは、本体294の一方の端部中に形成された第1のポート302、および、本体294の対向側端部中に形成された第2のポート306を備える。アクチュエータ290の内部298内に作動可能に支持されるものは、スプール310であり、このスプール310には、ロッド314が結合され、このロッド314は、荷重体に結合され得る。スプール310は、方向弁230から受けた加圧流体の入力に応じて、内部298内にて、および第1のポート302および第2のポート306の周辺にて、2方向に変位するように構成される。先行の関連する方向弁とは異なり、本発明の定量流体移送システム10、とりわけ定量弁12の構成および機能により、方向弁290は、アナログ式の態様においてではなく、2進法式またはデジタル式の態様において機能することが可能となる。さらに、方向弁290は、その入力に比例する出力を生成するように作動する必要はない。その代わりに、本発明の定量弁(または複数の定量弁)12が、比例関係により作動し、したがって、方向弁230は、アクチュエータ290を作動させるために、1つの作動位置または他方の作動位置の間でデジタル式に切り替わることが可能となる。定量弁(または複数の定量弁)12から出力された流体の体積により、方向弁230に流体結合されたアクチュエータ290の比例的な変位が決定される。したがって、単一の定量弁は、あらゆる面積の減算または力の乗算を根拠としつつ、定量弁からのVoutおよびアクチュエータの寸法にもとづき、予め定められた距離だけアクチュエータを変位させるように作動され得る。さらに、複数の定量弁が、累加体積流体出力を生成するために使用される場合には、アクチュエータは、これらの定量弁のそれぞれにより生成されたVout,totalに比例して移動する。それにより、アクチュエータは、方向弁230と組み合わされた定量弁(または複数の定量弁)の操作および作動により、特定的におよびデジタル式に制御され得る。
【0053】
例えば、方向弁230中のロッド256は、スプール246および250が第1の入口/出口ポート274および第2の入口/出口ポート278のそれぞれの左側に配置され、それによりこれらのポートが開かれるように、スプール246および250を変位させるように作動され得る。この作動位置においては、定量弁12の作動により方向弁230に供給される加圧流体は、圧力入口ポート258から進入し、入口/出口ポート274を介して方向弁230から出ることが可能である。入口/出口ポート274を出た加圧流体は、引き続き、アクチュエータ290中に形成された第1の入口/出口ポート302に流体連結された流体ライン282に進入し、それにより、アクチュエータ290を作動させ、スプール310を第1の入口/出口ポート302から離れるように変位させる。スプール310の変位により、スプール310の対向側に位置する流体は、第2の入口/出口ポート306を介してアクチュエータ290から出され、方向弁230内に進められる。アクチュエータ230の第2の入口/出口ポート306は、流体ライン286を介して方向弁230の第2の入口/出口ポート278に流体連結される。この作動状態においては、流体は、方向弁230から戻り出口ポート266を介して流れ、流体は、流体ライン270を通り戻り流体リザーバに進む。さらに、アクチュエータ290の変位は、定量弁12から受け、方向弁230により送られた、加圧流体の入力に比例する。
【0054】
逆方向にスプール310を変位させるためには、定量弁12が、方向弁230に加圧流体を供給するように作動される。方向弁230は、スプール246および250がそれぞれ第1の入口/出口ポート274および第2の入口/出口ポート278の右側に配置され、それによりこれらのポートが開かれるように、スプール246および250を変位させるように作動される。この作動位置においては、方向弁230に供給された加圧流体は、シンク4から圧力入口ポート258に進入し、入口/出口ポート278を介して方向弁230から出ることが可能である。第2の入口/出口ポート278から出た加圧流体は、引き続き、アクチュエータ290中に形成された第2の入口/出口ポート306に流体連結された流体ライン286に進入し、それにより、アクチュエータ290を作動させ、スプール310を第2の入口/出口ポート306から離れるように変位させる。スプール310の変位により、スプール310の対向側に位置する流体は、第1の入口/出口ポート302を介してアクチュエータ290から出され、方向弁230内に進められる。既述のように、アクチュエータ230の第1の入力/出力ポート302は、流体ライン282を介して方向弁230の第1の入口/出口ポート274に流体連結される。この作動状態においては、流体は、方向弁230から戻り出口ポート262を介して流れ、流体は、流体ライン270を通り戻り流体リザーバに進む。このプロセスは、アクチュエータおよびアクチュエータに装着された荷重体を制御するために必要とされる回数だけ繰り返される。
【0055】
図4を参照すると、ある一定期間にわたる定量弁の体積流体出力、および、流体出力に対して定量弁の作動周波数における変化が与える影響のグラフが図示される。図示されるように、定量弁、とりわけスプール弁の作動周波数は、要望に応じて変更され得る。周波数を変更することにより、定量弁から出て、シンク内に進み、方向弁内に進み、装着される場合にはその後アクチュエータに進む、流体の体積出力が決定される。図示されるように、グラフAにより表される比較的高い周波数での定量弁の作動により、比較的高い流体出力、または比較的高い体積の流体が、方向弁に対して生成される。逆に、グラフBによる表される比較的低い周波数での定量弁の作動により、所与の期間にわたって、それぞれ比較的低いレベルの流体出力が生成される。換言すれば、定量弁の作動周波数および各パルスの体積出力により、アクチュエータの変位距離が比例的に決定される。出力320として示される、各パルスにもとづく流体出力の量は、流体変位ボアの寸法および中に収容されるプラグの変位距離により決定される。
【0056】
図5および図6を参照すると、定量弁および方向弁が共にパッケージングされた、本発明の定量流体移送システムの別の例示の実施形態の斜視図および概略図がそれぞれ図示される。具体的には、図5および図6は、単一のパッケージまたは構造体として細長本体14内に共に組み込まれた、移送弁32、スプール弁100、および方向弁230から構成される、定量弁(または複数の定量弁)12を備える、定量流体移送システム10を図示する。この構成においては、流体変位ボア30は、スプールボア94に流体的におよび作動可能に連結される。スプールボア94は、流体源2およびシンク4に作動可能におよび流体的に連結される。方向弁230は、シンク4およびアクチュエータ290に流体連結される。さらに、これらの要素のそれぞれの間の流体相互連結が、細長本体14内において形成されてよく、または、上述の、本明細書に組み込まれる、既になされた先行の開示にしたがって、他の方法により実現されてよい。
【0057】
複数の定量弁が、予め定められた対応する出力を生成するように、または、互いに組み合わされて、予め定められた累加的な流体出力を生成するように、個別に作動可能であってよいことが、理解されよう。換言すれば、本発明は、単独であるいは1つまたは複数の追加の定量弁との組合せにおいてアクチュエータを作動させるようにそれぞれが構成された複数の定量弁を使用することが可能な、定量流体移送システムを予期する。したがって、定量流体移送システムは、複数の定量弁からの直列のまたは並列の流体出力を備え得るはずである。単一のアクチュエータに対して累加的な流体出力を生成するように、2つ以上の定量弁を用いることにより、このシステムは、それぞれ異なるデジタル式流体出力レベルを実現することが可能となり、引き続き、アクチュエータ内においてそれぞれ異なるまたは可変的な作動状態をもたらすことが可能となる。とりわけ、これは、同時に作動する定量弁、とりわけ定量弁の流体変位ボアが、それぞれ異なる流体の体積を出力するように構成された、それぞれ異なる寸法である場合に、該当する。換言すれば、それぞれ異なるレベルの出力流体を生成することが可能な、それぞれ異なるように寸法設定された定量弁が、互いに共に作動するように構成され得る。したがって、任意の単一の出力レベルは、単一の対応する定量弁を作動させることによって、達成され得る。さらに、累加出力レベルは、2つ以上の定量弁を同時に作動させることによって、可能となる。
【0058】
図7は別の例示の実施形態による本発明の定量流体移送システムを図示する。具体的には、図7は、上述のおよび図1から図2において図示される定量流体移送システム10、とりわけ、単一の流体変位ボア30を備える定量流体弁12を図示する。この特定の実施形態は、第2の流体変位ボアを伴わずに、上述の、図1から図2に図示される実施形態と同一の機能を果たす。そのため、上記に示される説明が、この場合において組み込まれ、図7に示される実施形態の構造および作動を説明するために、全体的にまたは部分的に参照され得る。
【0059】
さらに、図7に図示される定量流体移送システムは、モータ(図示せず)により駆動され得るまたは回転され得る回転ロッド500を備えることが可能である。回転ロッドは、定量流体移送システム10の入口および出口、ならびに流体源2とシンク4との入口および出口と整列され得る、孔または貫通穴504の形態において中に形成された流体通路を有することが可能である。孔504は、ロッド500がスプールボア94内で回転すると、流体が様々な間隔で回転ロッドを通過することが可能となるように、互いからラジアル方向に偏移されてよい。一態様においては、交互に配置された孔504が、互いに対して直交方向に配向され得る。さらに、孔は、内部における迂回漏れを最小限に抑えるために、所望の距離だけ離間されてよい。回転ロッドを通過する流れの流量は、ロッドの回転頻度に比例し、ロッドの回転頻度は、モータの速度に比例する。このようにして、回転ロッドは、上述のようにおよび図1から図2において図示されるように、弁ロッド98により流体が定量流体移送システム10内に進むことが可能となるのと同様の様式にて、変位ボア30内に流体を律動的に送ることが可能となる。
【0060】
図8は、別の例示の実施形態による本発明の定量流体移送システムを図示する。具体的には、図8は、上述のおよび図1から図2において図示される、定量流体移送システム10、とりわけ、単一の流体変位ボア30を備える定量流体弁12を図示する。この特定の実施形態は、第2の流体変位ボアを伴うことなく、上述のおよび図1から図2において図示される実施形態と同一の機能を果たす。そのため、上記に示される説明が、この場合において組み込まれ、図8に示される実施形態の構造および作動を説明するために、全体的にまたは部分的に参照され得る。
【0061】
さらに、図8に図示される定量流体移送システムは、当技術において知られている、複数のバンド弁700またはバンド弁のアレイを備えることが可能である。バンド弁は、バンド弁を作動させるために前後に往復移動することが可能な並進ロッド704に結合され得る。バンド弁は、上述のようにおよび図1から図2において図示されるように、弁ロッド98により流体が定量流体移送システム10内に進むことが可能となるのと同様の様式にて、変位ボア20内に流体を律動的に送るように、所望のシーケンスにおいて作動され得る。
【0062】
図7および図8は、可動プラグが中に配置される第2のチャンバの一方の端部を流体源と流体連通状態に交互に配置し、第2のチャンバの他方の端部をシンクと流体連通状態に配置するために使用される、方向弁についての他の実装形態を図示する。当技術において知られている他の実装形態を使用して、流体源およびシンクを可動プラグの両端部のそれぞれに交互に流体的に結合することもまた可能であることが、理解されよう。
【0063】
さらに、本発明は、弁本体内に配設され、少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する第1のチャンバを備える、定量弁を調達することを含む、弁により流体流れを調整するための方法をさらに特徴として含む。定量弁は、第1のチャンバ内に可動式に配設された弁ロッドをさらに有することが可能である。弁ロッドは、弁ロッドに沿って長手方向に離された複数の流体通路を有することが可能である。弁ロッドは、流体が、選択された流体通路に対応する選択された入口ポートおよび出口ポートを通り流れることが可能となるように、入口ポートの中の1つに複数の流体通路の中の少なくとも1つを整列させ、出口ポートの中の1つに複数の流体通路の中の少なくとも1つを整列させるように、移動可能なものであることが可能である。さらに、定量弁は、第2のチャンバの第1の端部および第2の端部にて第1のチャンバと流体連通状態になることが可能な弁本体内に配設された第2のチャンバを有することも可能である。さらに、定量弁は、第2のチャンバ内にて第1の端部と第2の端部との間に可動式に配設され得るプラグを有することも可能である。流れを調整するためのこの方法は、第1のチャンバを流体源と流体連通状態にさせることを含むことが可能である。弁ロッドは、流体源からの流体が、第1のチャンバおよび第2のチャンバの第1の端部に進入し、プラグを第2のチャンバ内において変位させて、ある体積の流体を第2のチャンバの第2の端部から吐出することが可能となるように、配置され得る。
【0064】
前述の詳細な説明は、特定の例示の実施形態を参照として、本発明を説明する。しかし、添付の特許請求の範囲において示される本発明の範囲から逸脱することなく、様々な修正および変更をなし得ることが、理解されよう。詳細な説明および添付の図面は、限定的なものとしてではなく、単なる例示として見なされるべきであり、このような修正または変更がなされる場合には、それらは全て、説明された、および本明細書において示された、本発明の範囲内に含まれることが意図される。
【0065】
さらに具体的には、本発明の図示された例示の実施形態が、本明細書において説明されたが、本発明は、これらの実施形態には限定されず、前述の詳細な説明にもとづいて当業者により気づかれるであろう、修正、省略、組合せ(例えば種々の実施形態にわたる態様の)、適合化、および/または改変がなされた任意のならびに全ての実施形態を含む。特許請求の範囲における限定は、特許請求の範囲において用いられた言葉にもとづいて広く解釈されるべきであり、前述の詳細な説明において、または出願の手続き処理の際に説明される例に限定されず、それらの例は、非限定的なものとして見なされるべきである。例えば、本開示においては、「好ましくは」という語は、非限定的なものであり、この語は、「好ましくは、しかし限定されないが」を意味するように意図される。任意の方法クレームまたはプロセスクレームにおいて列挙される任意のステップが、任意の順序において実行されてよく、特許請求の範囲において提示された順序には限定されない。ミーンズプラスファンクションまたはステッププラスファンクションによる限定は、ある特定のクレームの限定に関して、以下の条件、すなわち、a)「するための手段」または「するための方法」と明記される、およびb)対応する機能が明記される、という条件の全てが、この限定内に存在する場合にのみ、採用される。ミーンズプラスファンクションを支持する構造、材料、または作用は、本明細書における説明中において明記される。したがって、本発明の範囲は、上述にて提示された説明および例によってではなく、添付の特許請求の範囲およびそれらの法的均等物によってのみ、決定されるべきである。

【特許請求の範囲】
【請求項1】
非常に少量の離散増分の流体を流通可能にすることにより、流体の流量を調整するように構成された、小型定量弁において、
a)互いに流体連通状態にある第1のチャンバおよび第2のチャンバを有する弁本体であって、前記第1のチャンバおよび前記第2のチャンバはそれぞれ、第1の端部および第2の端部を有し、前記第1のチャンバは、加圧流体を受けるための少なくとも1つの圧力入口、および流体を放出するための少なくとも1つの戻り出口を有する、弁本体と、
b)前記第1のチャンバ内に移動可能に配設された弁ロッドであって、この弁ロッドに沿って長手方向に離れた複数の流体通路を有し、流体が前記第1のチャンバおよび前記第2のチャンバを通り流れるのを可能にするように、前記第1のチャンバ中の前記少なくとも1つの圧力入口ポートまたは前記戻り出口ポートの一方に前記流体通路の中の1つを整列させるように移動可能である、弁ロッドと、
c)前記第2のチャンバ内にて前記第2のチャンバの前記第1の端部と前記第2の端部との間に移動可能に配設されたプラグであって、ある体積の加圧流体が前記第1の端部または前記第2の端部の一方にて前記第1のチャンバから前記第2のチャンバに進入すると、前記第1の端部または前記第2の端部の他方の方向に移動するように構成され、さらに、対応する特定体積の流体を、前記流体が進入した端部の対向側の端部にて前記第2のチャンバから送り、最終的に前記少なくとも1つの戻り出口から出すように構成された、プラグと、
を備える、小型定量弁。
【請求項2】
前記弁本体は、
a)前記加圧流体が、加圧流体源から前記第2のチャンバの前記第1の端部まで前記少なくとも1つの圧力入口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第1の端部間に延在する、第1の加圧流体通路と、
b)流体が、前記第2のチャンバの前記第1の端部から流体シンクまで前記少なくとも1つの戻り出口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第1の端部間に延在する、第1の戻り流体通路と、
c)前記加圧流体が、加圧流体源から前記第2のチャンバの前記第2の端部まで前記少なくとも1つの圧力入口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第2の端部間に延在する、第2の加圧流体通路と、
d)流体が、前記第2のチャンバの前記第2の端部から前記流体シンクまで前記少なくとも1つの戻り出口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第2の端部間に延在する、第2の戻り流体通路と
を備える、請求項1に記載の定量弁。
【請求項3】
前記弁本体は、
プラグを有する第3のチャンバであって、前記プラグは、この第3のチャンバの第1の端部と第2の端部との間にて移動可能であり、前記プラグは、ある体積の流体が前記第1の端部または前記第2の端部の一方にて前記第1のチャンバからこの第3のチャンバに進入する場合に、前記第1の端部または前記第2の端部の他方の方向に移動するように構成され、さらに対応する特定体積の流体を、前記流体が進入した端部の対向側の端部にてこの第3のチャンバから送り出すように構成される、第3のチャンバ
を備える、請求項1に記載の定量弁。
【請求項4】
前記第1のチャンバの前記少なくとも1つの圧力入口は、共通の加圧流体源と流体連通状態にあり、前記第1のチャンバの前記少なくとも1つの戻り出口は、共通の流体シンクと流体連通状態にある、請求項1に記載の定量弁。
【請求項5】
前記少なくとも1つの戻り出口は、方向弁と流体連通状態にある、請求項1に記載の定量弁。
【請求項6】
前記方向弁は、4方向スプール弁をさらに備える、請求項5に記載の定量弁。
【請求項7】
前記定量弁が前記方向弁を2進法式またはデジタル式の態様において機能させることが可能になるように、前記プラグの前記移動によって、離散時間中に前記方向弁に移送される流体の離散体積が規定される、請求項5に記載の定量弁。
【請求項8】
前記少なくとも1つの戻り出口は、アクチュエータと流体連通状態にある、請求項1に記載の定量弁。
【請求項9】
非常に少量の離散増分の流体を流通可能にすることにより、流体の流量を調整するように構成された、小型定量弁において、
a)加圧流体を受けるための少なくとも1つの圧力入口、および流体を放出するための少なくとも1つの戻り出口を有する、弁本体と、
b)前記弁本体中に配設され、少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する、第1のチャンバと、
c)前記第1のチャンバ内に移動可能に配設された弁ロッドであって、この弁ロッドに沿って長手方向に離れた複数の流体通路を有し、流体が前記第1のチャンバを通り流れることが可能となるように、前記複数の流体通路の中の少なくとも1つを前記第1のチャンバの前記入口ポートの中の1つと整列させ、前記複数の流体通路の中の少なくとも1つを前記第1のチャンバの前記出口ポートの中の1つと整列させるように移動可能である、弁ロッドと、
d)前記弁本体内に配設され、前記第1のチャンバの前記入口ポートおよび前記出口ポートのそれぞれの中の一方を介して、前記第1のチャンバの第1の端部および第2の端部のそれぞれにて前記第1のチャンバと流体連通状態にある、第2のチャンバと、
e)前記第2のチャンバ内にて前記第1の端部と前記第2の端部との間に移動可能に配設されたプラグであって、流体が前記第1の端部に進入することにより、前記第2の端部の方向に移動可能であり、流体が前記第2の端部に進入することにより、前記第1の端部の方向に移動可能であり、変位されると同時に前記第2のチャンバからある体積の流体を送り出すように構成された、プラグと
を備える、小型定量弁。
【請求項10】
前記弁本体は、
a)前記加圧流体が、加圧流体源から前記第2のチャンバの前記第1の端部まで前記少なくとも1つの圧力入口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第1の端部間に延在する、第1の加圧流体通路と、
b)流体が、前記第2のチャンバの前記第1の端部から流体シンクまで前記少なくとも1つの戻り出口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第1の端部間に延在する、第1の戻り流体通路と、
c)前記加圧流体が、加圧流体源から前記第2のチャンバの前記第2の端部まで前記少なくとも1つの圧力入口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第2の端部間に延在する、第2の加圧流体通路と、
d)流体が、前記第2のチャンバの前記第2の端部から前記流体シンクまで前記少なくとも1つの戻り出口の中の1つを通り流れることが可能となるように、前記第1のチャンバおよび前記第2のチャンバのそれぞれの前記第2の端部間に延在する、第2の戻り流体通路と
を備える、請求項9に記載の定量弁。
【請求項11】
前記弁本体は、
プラグを有する、前記弁本体内の第3のチャンバであって、前記プラグは、この第3のチャンバの第1の端部と第2の端部との間にて移動可能であり、前記プラグは、ある体積の流体が前記第1の端部または前記第2の端部の一方にて前記第1のチャンバからこの第3のチャンバに進入する場合に、前記第1の端部または前記第2の端部の他方の方向に移動するように構成され、さらに対応する体積の流体を、前記流体が進入した端部の対向側の端部にてこの第3のチャンバから押し出すように構成される、第3のチャンバ
を備える、請求項9に記載の定量弁。
【請求項12】
前記少なくとも1つの圧力入口は、共通の加圧流体源と流体連通状態にあり、前記少なくとも1つの戻り出口は、共通の流体シンクと流体連通状態にある、請求項9に記載の定量弁。
【請求項13】
前記少なくとも1つの戻り出口は、方向弁と流体連通状態にある、請求項9に記載の定量弁。
【請求項14】
前記方向弁は、4方向スプール弁をさらに備える、請求項13に記載の定量弁。
【請求項15】
前記定量弁が前記方向弁を2進法式またはデジタル式の態様において機能させることが可能になるように、前記プラグの前記移動によって、離散時間中に前記方向弁に移送される流体の離散体積が規定される、請求項13に記載の定量弁。
【請求項16】
弁により流体流れを調整するための方法において、
a)定量弁を調達するステップであって、前記定量弁は、
i)弁本体内に配設され、少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する、第1のチャンバと、
ii)前記第1のチャンバ内に移動可能に配設された弁ロッドであって、この弁ロッドは、この弁ロッドに沿って長手方向に離れた複数の流体通路を有し、この弁ロッドは、選択された流体通路に対応する選択された入口ポートおよび出口ポートを流体が通り流れるのを可能にするように、前記複数の流体通路の中の少なくとも1つを前記入口ポートの中の1つと整列させ、前記複数の流体通路の中の少なくとも1つを前記出口ポートの中の1つと整列させるように移動可能である、弁ロッドと、
iii)前記弁本体と流体連通状態にある第2のチャンバであって、この第2のチャンバの前記第1の端部および前記第2の端部にて前記第1のチャンバと流体連通状態にある、第2のチャンバと、
iv)前記第2のチャンバ内にて前記第1の端部と前記第2の端部との間に移動可能に配設されたプラグと
を備える、調達するステップ、
b)前記第1のチャンバを流体源と流体連通状態にさせるステップ、
c)前記流体源からの流体が、前記第1のチャンバおよび前記第2のチャンバの前記第1の端部に進入することが可能となるように前記弁ロッドを配置するステップ、ならびに
d)前記第2のチャンバの第2の端部からある特定体積の前記流体を吐出するように、前記流体に応じて、前記プラグを前記第2のチャンバ内において変位させるステップ
を含む、方法。
【請求項17】
前記流体源からの流体が、前記第1のチャンバおよび前記第2のチャンバの前記第2の端部に進入し、前記プラグを前記第2のチャンバ内において変位させて、前記第2のチャンバの前記第1の端部からある体積の流体を吐出すること可能となるように、前記弁ロッドを配置するステップをさらに含む、請求項16に記載の方法。
【請求項18】
前記プラグは、流体が前記第1の端部に進入することにより、前記第2の端部に移動可能であり、流体が前記第2の端部に進入することにより、前記第1の端部に移動可能であり、端部から端部まで移動する際に、ある体積の流体を前記第2のチャンバから押し出すように構成される、請求項16に記載の方法。
【請求項19】
前記弁ロッドの上の第1の流体通路を第1の入口ポートおよび第1の出口ポートと整列させ、第2の流体通路を第2の入口ポートおよび第2の出口ポートと整列させて、ある体積の流体が前記第1の入口ポートおよび前記第1の出口ポートを通り、前記弁本体内の前記第2のチャンバの前記第1の端部内に流れることが可能となるように、前記弁本体の前記第1のチャンバ内の前記弁ロッドを移動させるステップであって、前記流体は、前記プラグを前記第1の端部から前記第2の端部まで移動させ、前記プラグは、ある体積の流体を前記第2の端部より前記第2のチャンバから押し出す、移動させるステップをさらに含む、請求項16に記載の方法。
【請求項20】
前記第1の流体通路を第3の入口および出口ポートと整列させ、前記第2の流体通路を第4の入口および出口ポートと整列させて、ある体積の流体が前記第3の入口および出口ポートを通り前記第2のチャンバの前記第2の端部内に流れることが可能となるように、前記弁ロッドを移動させるステップであって、前記流体は、前記プラグを前記第2の端部から前記第1の端部まで移動させ、前記プラグは、ある体積の流体を前記第1の端部より前記第2のチャンバから押し出す、移動させるステップをさらに含む、請求項19に記載の方法。
【請求項21】
定量流体移送/荷重体作動システムにおいて、
比例関係により作動するように構成された定量弁であって、
加圧流体を受けるための少なくとも1つの圧力入口および流体を放出するための少なくとも1つの戻り出口を有する、弁本体と、
前記弁本体内に配設され、少なくとも1つの入口ポートおよび少なくとも1つの出口ポートを有する、第1のチャンバと、
前記第1のチャンバ内に移動可能に配設され、前記入口ポートおよび前記出口ポートを介して前記第1のチャンバを通る流体流れを促進するように適合された複数の流体通路を有する、弁ロッドと、
前記弁本体内に配設され、前記第1のチャンバの前記入口ポートおよび前記出口ポートを介して前記第1のチャンバと流体連通状態にある、第2のチャンバと、
変位する際にある特定体積の流体を出力するように前記第2のチャンバ内に移動可能に配設されるプラグと
を備える、定量弁、
前記定量弁からの出力としての前記特定体積の流体を受けるように、前記定量弁と共に作動可能な方向弁であって、前記方向弁は、アナログ式の態様においてではなく2進法式またはデジタル式の態様において作動し、前記特定体積の流体を受けると種々の作動位置間においてデジタル式に切り替わることが可能となる、方向弁、ならびに
前記方向弁によって作動可能なアクチュエータであって、前記定量弁からの前記特定体積の流体出力により、前記アクチュエータの比例的変位が決定される、アクチュエータ
を備える、定量流体移送/荷重体作動システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2010−526972(P2010−526972A)
【公表日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2010−507656(P2010−507656)
【出願日】平成20年5月8日(2008.5.8)
【国際出願番号】PCT/US2008/063051
【国際公開番号】WO2008/137986
【国際公開日】平成20年11月13日(2008.11.13)
【出願人】(508177024)レイセオン・サルコス・エルエルシー (22)
【Fターム(参考)】