説明

容量型圧力センサ

(a)共通電極と(b)中心電極およびリング電極を含む電極構造体とを含むダイアフラムであって、(i)ダイアフラムの両側の圧力が同一であるときのゼロ位置と(ii)ダイアフラムに対して測定可能な最大圧力差が与えられたときの最大の差動位置との間で移動可能なダイアフラムと、ダイアフラムが電極構造体に対して拘束され、共通電極が、中心電極およびリング電極から間隔を置かれ、マノメータのアライメント軸に対して中心電極およびリング電極と軸方向に位置合わせされるようにダイアフラムを支持するように配置された支持構造体とを備える改善された容量型マノメータであって、電極構造体が、ダイアフラムに対して、アライメント軸のまわりに角度間隔を置いて配置された少なくとも3つのクランプ位置で固定され、それぞれの適切な平面内に定義された角度がダイアフラムの拘束点を含み、ゼロ位置におけるダイアフラムの平面に対するそれぞれのクランプ位置の点が、電極ディスクの支持高さの変化を低減し、ダイアフラムと電極構造体の間に、より小さな間隙おとび改善された安定性を与えるように60°と90°の間にある改善された容量型マノメータ。複数のタブを含むスペーサリングと、アライメント軸のまわりに複数の等角度間隔で配置されたクランプ位置を定義するように、また、スペーサによって誘起される偶発的な半径方向せん断力、ならびに再現性および安定性に悪影響を与える恐れがある後続の考えられるスティックスリップの条件の可能性を解消するように、電極構造体を、スペーサリングに対してタブのそれぞれの位置でクランプするように構成されたクランプとを含むことにより、さらなる改善がもたらされる。

【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001]本出願は、2010年2月2日にSteven D.Blankenshipの名で出願され、本譲受人(弁理士整理番号056231−0984(MKS−217PR))に譲渡された「Capacitive Pressure Sensor」という名称の米国特許仮出願第61/300,620号に基づき、同出願の優先券を主張するものであり、同出願は、参照よってその全体が組み込まれる。
【0002】
[0002]本開示は、一般に容量型圧力センサに関し、より具体的には、特に極低圧(真空)において非常に精密かつ正確な圧力測定をもたらす改善されたセンサに関する。
【背景技術】
【0003】
[0003]圧力トランスデューサは、多種多様な用途で使用されている。このようなトランスデューサの1つに、ガス、蒸気または他の流体の非常に精密かつ正確な圧力測定をもたらす容量型マノメータがある。用途は、真空ベースの処理の精密な制御および半導体処理制御を含む。実例は、半導体エッチング処理および物理的気相成長法を含む。
【0004】
[0004]容量型マノメータは、一般に、(a)電極構造体を形成するかまたは含む可撓性ダイアフラムおよび(b)ダイアフラムとの間に静電容量を確立するようにダイアフラムから間隔を置いて固定電極構造体を使用する。ダイアフラムの一方の側の圧力がダイアフラムの反対側の圧力に対して変化すると、ダイアフラムが撓み、その結果、ダイアフラムの電極構造体と固定電極構造体の間の静電容量が、この圧力差の関数として変化する。通常、ダイアフラムの一方の側のガスまたは蒸気が測定される圧力(Px)にあり、ダイアフラムの反対側のガスまたは蒸気が、既知の基準圧力(Pr)にあり、後者は大気圧または何らかの固定された高圧もしくは低圧(真空)であり、その結果、ダイアフラムの測定側の圧力を静電容量測定値の関数として求めることができる。
【0005】
[0005]極低圧(高真空)を必要とする多くの用途があって開発され続けており、このような低圧力を測定することができる容量型マノメータに関する必要性が生じる。しかし、低圧力において非常に精密で正確な圧力測定をもたらすために容量型マノメータの感度を高めると、いくつかの設計問題の原因となる。容量型マノメータは、極低圧(高真空)を測定するために、圧力の小さな変化を検出することができるように、可撓性ダイアフラムと固定電極構造体の間に非常に狭い間隙を必要とする。
【0006】
[0006]非常に狭い間隙を用いることの短所に、ダイアフラムの両端の圧力差の測定とは無関係な電極ギャップの形状の小さな変化が検出されることがある。電極ギャップ間隔の変化は、電極ギャップの形状に対する有害な変化の1つである。2重電極の設計手法を用いることにより、電極ギャップ間隔の変化の影響を低減するのが産業界における一般的な方法であるが、電極ギャップ間隔の優れた制御は、センサ出力のさらなる高安定性をもたらす。狭い電極ギャップを用いることによって可能になる極低圧(非常に小さなダイアフラムの撓み)の測定では、これは特に重要なことである。
【0007】
[0007]静電容量の測定は、平行板の静電容量Cに関する周知の式
C=eA/s
に基づくものであって、この式で、Cは2つの平行板間の静電容量であり、
は自由空間の誘電率であり、
は、板の間の材料の比誘電率(真空についてはe=1)であり、
Aは板の間の共通面積であり、
sは板の間の間隔である。
【0008】
[0008]この式に基づいて、静電容量のわずかな変化が、各測定電極の電極ギャップ間隔のわずかな変化の負数に等しいという関係(ΔC/C=−ΔS/S)を導出することができる。
【0009】
[0009]次いで、各測定電極の静電容量を安定して制御するために、電極ギャップ間隔の優れた制御を維持するのが重要であることは容易に理解され得る。簡単な2重電極の設計では、これらの影響は、任意数の一般的に使用されるブリッジ設計を用いるものおよび他の電気的測定方法などの所与の電気計測技法向けの平坦なダイアフラムと電極の構造体(それぞれが真の平面から異なる平坦度および傾斜偏差の実際の値を有する)については、1次まで圧力差ゼロに平衡を保たれる。センサは、極低圧(非常に小さなダイアフラムの撓み)を測定するように構成されるので、安定した電極ギャップを作製することなく電極の平衡を保つだけでは、最も小さな圧力の安定した検知を達成するために圧力測定の不確実性を十分に低レベルにするには不十分である。
【0010】
[00010]低圧力でのマノメータの測定能力を改善するように、低圧測定における電極ギャップの安定性制御を改善することができる容量型圧力マノメータの必要性がある。
[00011]米国特許第7757563号、米国特許第7706995号、米国特許第7624643号、米国特許第7451654号、米国特許第7389697号、米国特許第7316163号、米国特許第7284439号、米国特許第7201057号、米国特許第7155803号、米国特許第7137301号、米国特許第7000479号、米国特許第6993973号、米国特許第6909975号、米国特許第6735845号、米国特許第6672171号、米国特許第6568274号、米国特許第6105436号、米国特許第6029525号、米国特許第5965821号、米国特許第5942692号、米国特許第5932332号、米国特許第5911162号、米国特許第5808206号、米国特許第5625152号、米国特許第4785669号および米国特許第4,499,773号、ならびに米国特許出願公開第20090255342号、米国特許出願公開第20070023140号、米国特許出願公開第20060070447号、米国特許出願公開第20060000289号、米国特許出願公開第20050262946号、米国特許出願公開第20040211262号、米国特許出願公開第20040099061号が参照され、すべてが本譲受人に譲渡されている。
【発明の概要】
【0011】
[00012]改善された容量型マノメータの一態様によれば、同マノメータは、
(a)共通電極と(b)中心電極およびリング電極を含む電極構造体とを含むダイアフラムであって、(i)ダイアフラムの両側の圧力が同一であるときのゼロ位置と(ii)ダイアフラムに対して測定可能な最大圧力差が与えられたときの最大の差動位置との間で移動可能なダイアフラムと、
ダイアフラムが電極構造体に対して拘束され、また、共通電極が、中心電極およびリング電極から間隔を置かれ、マノメータのアライメント軸に対して中心電極およびリング電極と軸方向に位置合わせされるようにダイアフラムを支持するように配置された支持構造体とを備え、
電極構造体が、ダイアフラムに対して、アライメント軸のまわりに角度間隔を置いて配置された少なくとも3つのクランプ位置で固定され、それぞれの適切な平面内に定義された角度がダイアフラムの拘束点を含み、また、ゼロ位置のダイアフラムの平面に対するそれぞれのクランプ位置の点が、電極ディスクの支持高さの変化を低減し、ダイアフラムと電極構造体の間に、より小さな間隙および改善された安定性を与えるように60°と90°の間にある。
【0012】
[00013]改善されたマノメータの別の態様によれば、同マノメータは、
(a)共通電極と(b)中心電極およびリング電極を含む電極構造体とを含むダイアフラムであって、(i)ダイアフラムの両側の圧力が同一であるときのゼロ位置と(ii)ダイアフラムに対して測定可能な最大圧力差が与えられたときの最大の差動位置との間で移動可能なダイアフラムと、
共通電極が、中心電極およびリング電極から間隔を置かれ、マノメータのアライメント軸に対して中心電極およびリング電極と軸方向に位置合わせされるようにダイアフラムを支持するように配置された支持構造体と、
複数のタブを含むスペーサリングと、
電極構造体をアライメント軸のまわりに等角度間隔に配置してクランプする複数の位置を定義するように、電極構造体をスペーサリングに対してタブのそれぞれの位置にクランプするように配置されたクランプとを備える。
【0013】
[00014]次に、これらおよび他の構成要素、ステップ、特徴、目的、利益、利点が、以下の例示的実施形態、添付図面、および特許請求の範囲の詳細な説明を吟味することから明らかになるであろう。
【図面の簡単な説明】
【0014】
[00015]
【図1】[00016]本明細書に説明された改善を組み込むセンサの一実施形態の、センサの軸に沿った断面図である。
【図2】[00017]図1の実施形態の一部分の、改善の幾何学的詳細を示す、より詳細な断面図である。
【図3】[00018]図1の実施形態の幾何学的特徴のうちのいくつかを示すための幾何学的図面である。
【図4】[00019]センサで使用されるスペーサの上面図である。
【図5】[00020]センサの一部分を通る、より詳細な軸方向の断面図である。
【図6】[00021]図7に詳細に示される改善で使用されるスペーサの上面図である。
【図7】[00022]図1の実施形態の一部分の、さらなる改善の詳細を示す、より詳細な断面図である。
【0015】
[00023]これらの図面は、例示的実施形態を開示するものである。これらの図面は、すべての実施形態を説明するわけではない。他の実施形態が、付加的に、または代わりに用いられ得る。明白または不必要と思われる詳細は、紙面の節約またはより効果的な説明のために省略されることがある。反対に、いくつかの実施形態は、すべての詳細が開示されることなく実施され得る。別々の図面に同じ数字が現われるとき、その数字は、同一または類似の構成要素またはステップを指す。
【発明を実施するための形態】
【0016】
[00024]次に例示的実施形態が論じられる。他の実施形態が、付加的に、または代わりに用いられ得る。明白または不必要と思われる詳細は、紙面の節約またはより効果的な紹介のために省略されることがある。反対に、いくつかの実施形態は、すべての詳細が開示されることなく実施され得る。
【0017】
[00025]図1に示される静電容量マノメータ10は、固定電極構造体14および可撓性ダイアフラム16を支持するための容器12を含む。容器12は、可撓性ダイアフラム16によって分割された2つの容器区間、処理容器区間18および基準容器区間20を含むことができる。処理容器区間18はPxカバー22を含む。基準容器区間20は、リング24およびPrカバー26を含む。図示の実施形態では、基準容器区間20のリング24は、固定電極構造体14および可撓性ダイアフラム16が、所定サイズの間隙30によって分離され、安定して離隔された関係で維持されるように、それらを所定の関係で受けて支持するための中空の空洞28を含む。示されるように、固定電極構造体14には、セラミック材料などの電気的絶縁性の材料から作製された、剛体の、非可撓性構造体に形成された基板32が含まれる。容器12に設けられたスペーサリング36の上背部を係合するために、基板32の周辺にへり34が設けられ得て、止めリング38および波ばね40で所定の位置に固定される。電極ギャップ間隔を所定の値に設定するために、1つまたは複数の薄いスペーサ41が好都合に使用され得る。また、過剰圧力性能と、電極ディスク構造体を、共通電極ダイアフラム16、容器リング24および半径方向に沿ったスペーサリング36に対する安定した幾何学的関係にクランプするのに必要な摩擦拘束力との、設計目的に合うように、クランプ力を所定の値に設定するために、波ばね空洞の高さを所定の値に好都合に設定するのに、1つまたは複数の薄いスペーサ43が使用されてもよい。一実施形態では、基板32のサイズおよび形状は、スペーサリング36と止めリング38の間に配置されたとき、基板が容器12内に正確に配置されることになり、その結果、基板32と容器リング24およびスペーサリング36との間に適切な半径方向の間隔を置いて、固定電極構造体14の中心が中心軸42に芯合わせされるものであり得る。このことは、電極と金属容器24の間の浮遊容量ならびに電極ディスクの半径方向位置の小さな変化に対する浮遊容量の変動を効果的に低減する。波ばね40は、半径方向に可撓性の止めリング38および薄いスペーサ43によって、軸42のまわりに120°の等角度間隔で配置された少なくとも3つの位置で固定電極構造体14のへり34に接触して軸力を加えるように設計される。同様に、波ばね40は、マノメータ10が完全に組み立てられたとき、軸42のまわりに120°変位されて固定電極構造体14のへり34との接触位置から60°の少なくとも3つの位置で、Prカバー26に接触して対向力を加えるように設計される。固定電極構造体14は、重心軸42に対して同心状に配置された中心電極44ならびに中心電極44および重心軸42と同心で好ましくはリング状の外側電極46も含む。
【0018】
[00026]可撓性ダイアフラム16は、共通電極を形成するように、適切な導電材料の層または被覆でできているか、あるいは適切な導電材料の層または被覆が備わっている。ダイアフラム16は、ダイアフラムの一方の側に処理圧力(Px)室50を形成し、ダイアフラムの他方の側に間隙30を含む基準圧力(Pr)室を形成するように、容器に固定される。可撓性ダイアフラムと基準容器区間20の間に、経路が(例えばエッチングされたスペーサの薄くなった部分を通って)設けられ得て、この経路が、間隙30と容器のPr部分の残りの間の圧力が等しくなることを可能にすることに留意されたい。ダイアフラムは、処理圧力室50を基準圧力室の間隙30から封止して2つの室が異なる圧力に維持され得るように、容器に固定される。測定されるべきガスまたは蒸気は、部分的にPxカバー22で画定されたガス入口52を通って処理室50の中に導入され得る。静電容量マノメータ10は、通常動作では、絶対圧センサとして機能し、基準空洞28(および電極ギャップ30)は真空に密封され、また、一実施形態では、基準容器区間20には、基準空洞28および電極ギャップ30に極低圧(測定器の最小分解能より十分低い圧力)を供給するために、非蒸発型ゲッター真空ポンプ54が備わっている。これは絶対真空の基準であり、これに対して処理圧力が比較される。このモードでは、ダイアフラム両端の圧力差は絶対圧の測定値である。別の可能な構成法には、基準室の中へ、供給源から基準圧力のガスを導入するか、または周囲の大気から周囲圧力のガスを導入するために、基準容器区間20においてゲッター組立体54の代わりに第2のガス入口を使用するものがある。したがって、間隙30を含む基準室は、所定の基準圧力のガスまたは蒸気を含む。2つの室が逆にされ得て、したがって基準圧力室が処理圧力室として機能して処理圧力室が基準圧力室として機能し、例えば、処理ガスは、間隙30を含む室に設けられる電極および他の材料に対して不活性であることに留意されたい。
【0019】
[00027]中心電極44および外側電極46は、好ましくは両電極が均一の厚さで同一平面にあるように基板32の表面上に配置された好ましくは平坦な電極である。中心電極44およびリング電極46に対して、それぞれ適切な電気的リード(図示せず)が設けられる。一実施形態では、容器区間20と一体化して共通電極ダイアフラム16が形成され、これは電気的接続である。別の可能な構造には、ダイアフラム16の共通電極に電気的リード(図示せず)が設けられるものがある。好ましい実施形態では、電極縁端の静電容量を制御し、容器20に対する浮遊容量を最小化し、圧力差ゼロにおける2重電極の静電容量平衡を調整するために、測定電極に対して基板32上の電気的防護物45が与えられる。リードは、静電容量測定装置(図示せず)に適切に接続される。
【0020】
[00028]ダイアフラムの両側で圧力が同一のとき、すなわち圧力差がゼロであるとき、共通電極によって定義される平面が、中心電極44および外側電極46ならびに電気的防護物45の平面と実質的に平行になるように、ダイアフラム16は、好ましくは容器内に固定される。入口52を通って処理圧力室50の中に導入されるガスまたは蒸気が、基準室の基準圧力から異なる圧力にあるとき、ダイアフラムが撓んで、ダイアフラム16の共通電極と中心電極44の間の静電容量が、ダイアフラム16の共通電極と外側電極46の間の静電容量と異なる、ある静電容量を定義することになる。電気的防護物45は、この領域の浮遊容量に関する経路を遮断することにより、電極と金属容器間の寄生浮遊容量を低減する。図1に示されるように、基板32の大径と容器リング24の間の大きく均一な間隙を利用し、また、図1に示されるように、電極ディスクの周辺に電気的防護物45を配置することにより、起こり得る電極ディスクのわずかな横変位によるこれら浮遊容量のいかなる変化も、センサの静電容量の変化範囲よりずっと小さく、したがって、圧力測定と無関係なセンサ出力の変化を導入することなく、はるかにより精密な圧力差の測定が可能になることを理解されたい。したがって、処理圧力室50の圧力は、ダイアフラム16の共通電極と中心電極44の間の測定された静電容量およびダイアフラム16の共通電極と外側電極46の間の測定された静電容量の関数である。
【0021】
[00029]そのため、ダイアフラムの共通電極構造体と、中心電極44および外側電極46のそれぞれとの間に、所定の静電容量が確立され、ダイアフラム上の圧力差がゼロであるとき、この構造体が測定可能な「基本」静電容量を定義する。実際には、基本静電容量は、電極ギャップにおける有効な静電容量と容器に対する浮遊容量との和である。また、ダイアフラムが測定可能な最大の圧力差に晒されたとき、ダイアフラムの共通電極構造体が、センサの「変化範囲」を定義するように、電極44および46に対して湾曲することになる。センサの変化範囲の指標の1つに「静電容量」の変化範囲があり、これは、ダイアフラム16の共通電極に対する中心電極44の静電容量から、ダイアフラム16の共通電極に対する外側電極46静電容量を差し引いたものが、ゼロ差圧とフルスケール差圧の間で変化する範囲と等しい。ダイアフラムの撓みの、ゼロ差圧からフルスケール差圧までの最大の変化が、ダイアフラムの範囲である。
【0022】
[00030]センサの範囲を定義する主要なパラメータの1つに電極ギャップ間隔があり、これは、基準室の容器部分20(間隙30を含む)の内部が極低圧(真空基準圧力)で、処理室50内の測定器の分解能より十分に低い圧力での、間隙30で示された、(弛緩ゼロ位置にあるときの)ダイアフラム16の共通電極構造体の平面と中心電極44および外側電極46の平面との間の距離に等しい。所与のセンサ構造に関して、「基本」静電容量は、電極ギャップ間隔によって確立される。極低圧(高真空)の測定用に設計された静電容量マノメータは、非常に小さな圧力変化を非常に高感度で測定することができなければならない。結果として、ダイアフラム16の共通電極の平面と中心電極44および外側電極46の平面の間の間隔は、差圧の小さな変化に応じてダイアフラムの撓みの小さな変化を検出することができるように、非常に小さくなければならない。
【0023】
[00031]より小さな差圧を測定するために、マノメータ10をより高感度にするように、間隙30をより小さくすると、ダイアフラムの両端の差圧の測定とは無関係な電極ギャップの形状の変化に対する感度が高くなる。電極ギャップ間隔の変化は、電極ギャップの形状に対する有害な変化の1つである。2重電極の設計手法を用いることにより、電極ギャップ間隔の変化の影響を低減するのが産業界における一般的な方法であるが、電極ギャップ間隔の優れた制御は、センサ出力のさらなる高安定性をもたらす。狭い電極ギャップを用いることによって可能になる極低圧の測定では、これは特に重要なことである。
【0024】
[00032]ますます小さな圧力を測定する必要がある現在の状況で、現在の容量型圧力センサには、安定した極低圧の測定に必要な本質的な電極ギャップの安定性がない。
[00033]本開示は、装置の構造が、さらに小さな間隙およびより低い差圧の測定を可能にし、ダイアフラムと電極の間により優れた安定性をもたらす、容量型マノメータを説明する。このような構造体をもたらす際に、センサの電極ギャップの寸法安定性が改善され、特に正常動作条件下のダイアフラムに対する電極ディスクの位置決めが改善され、また、特に温度、気圧、過剰圧力、機械的な衝撃および振動などの外的影響に対して改善される。新規の構造体を用いて対処される主要なセンサパラメータは、電極ギャップ間隔、電極傾斜および電極撓みを含む。これらの改善は、同等のフルスケール圧力範囲を測定するための従来技術のセンサと比較して、それほど高い電気的利得を必要とせず、(電気的利得が低いことの結果として)それほど高い電気的雑音を示すことなく、より優れたゼロ安定性能を有する変換器(すなわちセンサおよび高レベル直流出力を供給することができる信号処理電子装置(図示せず))を可能にする改善された性能をもたらす。前述のように、このセンサは、(ゼロ圧力および圧力下における)低い気圧感度、小さい温度係数、および小さいゼロ点変動を含むがこれらに限定されない、小さい電気的雑音およびより優れた総合的ゼロ安定性能の低圧力範囲の測定器をもたらすことができる。
【0025】
[00034]電極とダイアフラムの間に、安定している低減された間隙を実現するための従来の努力は、電極ディスクのへりを、ダイアフラム支持体のより近くへPrリングの段と接触させる試みにおいて、Prリング容器壁をいくぶんより薄くすることを含む。しかし、段をダイアフラム支持体に近づけるためにPr容器壁をより薄くすると、センサ容器(Prリング壁)が弱くなり、製造処理中に、より大きな撓みを許し、Prリング段が、温度差による膨張よって誘起される力に起因する撓みならびに気圧および何らかの外部の機械的荷重によって駆動されるセンサ上の面荷重の変化に対してさらに弱くなる。
【0026】
[00035]図2では、新規の改善されたマノメータと比較して、従来技術のマノメータの詳細が示される。従来技術では、ダイアフラム74は、その周辺のまわりの軌跡の諸点(そのうちの1つが62で示される)で、リング60に固定される。同様のやり方で、固定電極構造体64は、電極構造体64の周辺の縁端部に付けられた環状ディスク(ロックディスク)(図示せず)で所定の位置に保持され得て、少なくとも3箇所(そのうちの1つが70で示されている)で、波ばね(図2には示されていない)によって与えられる軸力68によって所定の位置に保持される。見られるように、この構造は、ダイアフラムがリング60に取り付けられている軌跡点62と電極構造体を所定の位置に維持するために軸力68がかけられる軌跡点70の間に形成される立体角を定義する。この角度は、45°として示される。ダイアフラムが取り付けられる(点62などの)箇所の軌跡の、センサの軸(図1の軸42など)からの半径方向距離は、軸のまわりの360°で同一である。
【0027】
[00036]本手法の利点は、ダイアフラムおよび電極構造体を、マノメータの内部で、片持ち梁の(間接的な)支持とは対照的に、より直接的に支持するために、ダイアフラム境界(および支持体)72を、加えられるクランプ荷重の下により直接的に配置するように、構成して固定することにより達成される。もたらされる改善された寸法形状は、ダイアフラム境界支持体72から、電極ディスク用のPr容器支持体の交点に(Pr容器とスペーサ66の間の境界面70にも)引かれた線の、ダイアフラム74の平面に対する角度α(図2および図3を参照されたい)を定義することによって、より解析的な用語で説明することもできる。この寸法形状の利益は2つある。第1の最も重要なことには、気圧または他の外部からPxカバーの表面に対して加えられる荷重に変化が生じるとき、この荷重によってカバーが曲がり、ダイアフラム境界におけるカバーの外径が、外表面に対する正圧に対して拡大する(サイズが増加する)。この拡大がPr容器を歪め、基本的に、Pr容器の下側区間のわずかな回転を引き起こし、この回転は、82における角度αの変化によって近似され得る(図2を参照されたい)。前述のように、少なくとも1つの従来技術のマノメータにおけるこの角度は、約45°である。改善されたマノメータは、この角度を、約60°から90°の範囲の値まで増加するように設計される。図3に見られるように、従来技術の実例などの小さな角度(約45°)については、この角度の変化に対して、支持高さの比較的大きな変化ΔYがある。本設計の一実施形態の1つの構造におけるもののような大きな角度(約75°)については、支持角度の同じ変化に対して、固定電極構造体の支持高さの変化ΔYは比較的小さい。ダイアフラムに対する電極ディスクの支持高さの変化がこのように低減すると、電極ギャップ間隔の安定性が改善される。第2に、新規の寸法形状の利益は、より堅い支持をもたらし、その結果、電極ディスクの上部に加えられる軸方向荷重にいかなる変化があっても、支持高さの変化がより小さくなり、続いて電極ギャップの安定性が改善される。
【0028】
[00037]図2の68で示されるように、(図1の)波ばね40によって与えられるものなどの波ばね力は、温度の変化、機械的衝撃および振動によって誘起され得るセンサ空洞における波ばねの取付けおよび配置の変化、また気圧変化によるPrカバー26(図1に示される)の撓みに起因する波ばね空洞の高さ変化によって変化する可能性がある。本明細書に開示される改善された構造体は、電極ディスク支持体(図1の容器リング24およびスペーサリング36)の寸法安定性の改善およびより大きな軸方向剛性をもたらし、波ばね40によって加えられる力の変動による電極ギャップ間隔の変化を低減する。
【0029】
[00038]改善されたセンサでは、ダイアフラムは、このように、片持ち梁の(間接的)支持とは反対に、より直接的に支持するために、ダイアフラム境界を、加えられるクランプ荷重(68で示される)の下に、より直接的に(図2の72に)配置するように構成されて固定される。これは、2組の点の軌跡の間の角度を、45°から、ダイアフラムと電極ディスク支持体(図1の容器リング24およびスペーサリング36)の間の軸方向の移動量を著しく低減する角度範囲の角度へと増加させる効果がある。最善の結果をもたらす角度の範囲は、約60°から90°の間にある。この範囲内の実際の選択肢は、電極ギャップ安定性の最大化と、製造が簡単で高品質な広がったダイアフラムを作製することの間の設計上の妥協である。妥協の1つは、82における角度α(図2および図3)が約75°である。
【0030】
[00039]角度を増加するための生産技術の1つに、図1に示されるように、リングを2つの部品にして、ダイアフラムの近くの小さな直径のもの(Prリング24)と、もう1つ(スペーサリング36)にすることである。2つの部分は、溶接または他の適切な手段によって一緒に固定することができる。これは、本発明のために必要な寸法形状をもたらし、センサ容器(Prリング24およびPxカバー22)に対するダイアフラム16の簡単な組立てを可能にする。
【0031】
[00040]さらなる改善は、半径方向に柔軟なスペーサに関するものである。図5は、内部センサ部分が所定の位置に落とされ、持ち上がったパッド116(ここにクランプ荷重が加えられる)が、中心軸100に対して半径方向にではなく、単に周囲に揃えられる従来技術の手法を示す。マノメータは、図5に示された条件下などで組み立てられ得て、スペーサ102は、(持ち上がったパッドにおける)(3つの)クランプ荷重のうち1つが波ばね(図示せず)から伝えられる位置108で、Prリング106の内壁104に触れるだけである。見られるように、位置108で、電極構造体の一部分が壁104から離隔されており、一方、反対位置108の電極構造体180°は、位置110でPrリング106の内壁104に触れている。
【0032】
[00041]従来技術のセンサにおけるこの位置合わせ不良で、温度が低下すると、Prリングの熱膨張率が電極ディスクの熱膨張率より大きいので、Prリング106が、電極構造体112より速く、より大幅に縮小して、センサに機械的歪みを誘起する。収縮の差異が、クランプ荷重107の位置(図5の右側に示される)において大きな半径方向せん断力を生成し、これが電極構造体112とスペーサ102の間の摩擦クランプ力を超過して、電極ディスクを新規の位置に滑らせる恐れがある。電極ディスク112は、この新規の組み立てられた位置で以前の温度に戻ると、反対方向にある点107で、大きな半径方向力を経験する。この力の組が、電極ギャップを含めてセンサを変形させ、ダイアフラムの張力を変化させる。これらの変化は、マノメータの精度に対して悪影響がある。
【0033】
[00042]前述の改善されたセンサは、半径方向に位置するタブ120だけがPrリング穴に触れ、持ち上がったパッド122(ここにクランプ荷重が加えられる)は、Prリング穴に対して常に半径方向の間隙を有するように設計された半径方向に柔軟なスペーサリング(図6および図7に示される118)を利用する。したがって、温度が低下したとき、半径方向の位置決めタブ120がPrリングの壁に触れていると、Prリングが、スペーサの位置決めタブを、図7の断面図の右側に示されるように電極ディスクを支持する持ち上がったパッドから60°離れた位置の半径方向内側へ駆動する。薄い柔軟なスペーサの60°部分は、クランプされた結合(図6の右側における140で示される)には小さな横方向の力だけが加えられればよいように、可撓性で、比較的容易に変形する。このことは、偶発力の組によるセンサの撓みおよび続いて起こるマノメータの精度の変化の、いかなる可能性も解消する。
【0034】
[00043]図6に示されるように、半径方向に柔軟なスペーサ118は、マノメータに配置されたときスペーサを中央におくように配置された半径方向タブ120を含む。3つのタブは、120°の間隔を置いて示されている。タブ120は、電極構造体にクランプ荷重が加えられる(この実例では3つの)位置122の間で(所与の例では60°)変位される。
【0035】
[00044]図7に示されるように、Prリング130の壁とクランプ力が加えられるパッドの間に常に空間があるように、半径方向に柔軟なスペーサ118がPrリング130内に設置される。スペーサは、依然として、半径方向の位置決めタブ(図7に示された断面図から60°移動されている)においてPrリング壁に時々触れることがある。しかし、薄いスペーサ材料で作製されて、クランプされず自由に移動する位置決めタブの両側に可撓性の60°部分があるので、取付けパッドにおいて電極ディスクに与えられるせん断力が大幅に低減される。
【0036】
[00045]説明された実施形態に対して、特許請求の範囲から逸脱することなく様々な変更がなされ得ることが明らかであろう。例えば、説明された実施形態は、防護物を有する2重電極を利用するが、単一の電極構造体および3つの以上の電極を有する複数の電極構造体を含む他の電極構成が可能である。示された実施形態は例示であり、電極ディスク上には任意数の導体および導体パターンがあってよい。さらに、電気的防護物および追加の導体は、信号用接地または他の何らかの固定電位に保たれ得る。さらに、防護物は能動的に駆動され得て、能動的に駆動される場合には、防護物の電圧および位相が、物理的に隣接した電極の瞬時の電圧および位相と一致するのが好ましい。
【0037】
[00046]論じられてきた構成要素、ステップ、特徴、目的、利益および利点は、単なる例示である。これらのいずれも、またこれらに関する議論も、決して保護の範囲を制限するように意図されたものではない。多数の他の実施形態も企図される。これらは、より少ない、追加の、かつ/または別の、構成要素、ステップ、特徴、目的、利益および利点を有する実施形態を含む。これらは、構成要素および/またはステップが、各様に配置され、かつ/また順序付けられた実施形態も含む。
【0038】
[00047]別様に明示されなければ、本明細書において、続く特許請求の範囲を含めて説明されたすべての測定値、値、定格、位置、大きさ、サイズ、および他の仕様は、正確なものではなく近似である。これらは、これらが関連する機能および関係する技術において通常のことと整合性のある適切な範囲を有するように意図されている。
【0039】
[00048]本開示で引用されたすべての論文、特許、特許出願および他の出版物は、参照によってここで本明細書に組み込まれる。
[00049]慣用句「〜の手段」は、請求項で用いられたとき、説明された対応する構造体および材料ならびにそれらの等価物を包含するように意図されており、そのように解釈されるべきである。同様に、慣用句「〜するステップ」は、請求項で用いられたとき、説明された対応する行為ならびにそれらと同等の行為を包含するように意図されており、そのように解釈されるべきである。請求項の中にこれらの慣用句がないときには、当該請求項が、対応する構造体、材料、もしくは行為のうちいずれか、またはそれらと等価のものに限定されないように意図されており、そのように解釈されるべきである。
【0040】
[00050]明示されたものまたは説明されたものは、特許請求の範囲において列挙されるかどうかにかかわらず、いかなる構成要素、ステップ、特徴、目的、利益、利点、または世間一般の等価物の専属も意図されておらず、そのように解釈されるべきである。
【0041】
[00051]保護の範囲は、次に続く特許請求の範囲によってのみ限定される。この範囲は、本明細書および続く審査履歴の観点から解釈されたときに特許請求の範囲で用いられる言語の通常の意味と整合性があるものと同様に広く、かつ構造上の等価物および機能上の等価物をすべて包含するように意図されており、そのように解釈されるべきである。

【特許請求の範囲】
【請求項1】
(a)共通電極と(b)中心電極およびリング電極を含む電極構造体とを含むダイアフラムであって、(i)ダイアフラムの両側の圧力が同一であるときのゼロ位置と(ii)ダイアフラムに対して測定可能な最大圧力差が与えられたときの最大の差動位置との間で移動可能なダイアフラムと、
前記ダイアフラムが前記電極構造体に対して拘束され、前記共通電極が、前記中心電極および前記リング電極から間隔を置かれ、マノメータのアライメント軸に対して前記中心電極および前記リング電極と軸方向に位置合わせされるように前記ダイアフラムを支持するように配置された支持構造体とを備え、
前記電極構造体が、前記ダイアフラムに対して、前記アライメント軸のまわりに角度間隔を置いて配置された少なくとも3つのクランプ位置で固定され、それぞれの適切な平面内に定義された角度がダイアフラムの拘束点を含み、前記ゼロ位置における前記ダイアフラムの前記平面に対する前記それぞれのクランプ位置の点が、電極ディスクの支持高さの変化を低減し、前記ダイアフラムと電極構造体の間に、より小さな間隙および改善された安定性を与えるように60°と90°の間にある容量型マノメータ。
【請求項2】
前記支持構造体が、前記電極構造体を支持するように構成された基板を含む請求項1に記載の容量型マノメータ。
【請求項3】
前記支持構造体が、前記基板を前記ダイアフラムに対して前記少なくとも3つの位置で固定するように構成されたばねを含む請求項2に記載の容量型マノメータ。
【請求項4】
前記ばねが、前記ゼロ位置における前記ダイアフラムの前記平面に対して、前記基板上に適切な角度で力を与えるように構成された波ばねである請求項3に記載の容量型マノメータ。
【請求項5】
(a)共通電極と(b)中心電極およびリング電極を含む電極構造体とを含むダイアフラムであって、(i)ダイアフラムの両側の圧力が同一であるときのゼロ位置と(ii)ダイアフラムに対して測定可能な最大圧力差が与えられたときの最大の差動位置との間で移動可能なダイアフラムと、
前記共通電極が、前記中心電極および前記リング電極から間隔を置かれ、マノメータのアライメント軸に対して前記中心電極および前記リング電極と軸方向に位置合わせされるように前記ダイアフラムを支持するように配置された支持構造体と、
複数のタブを含むスペーサリングと、
前記電極構造体を前記アライメント軸のまわりに等角度間隔に配置してクランプする複数の位置を定義するように、前記電極構造体を前記スペーサリングに対してタブのそれぞれの位置にクランプするように配置されたクランプとを備える容量型マノメータ。
【請求項6】
前記電極構造体が、互いに120°の間隙を介した3つの位置で前記スペーサリングに対してクランプされ、前記スペーサリングが、互いに120°の等角度間隔で配置された3つのタブを含み、隣接したクランプ位置から60°に配置される請求項5に記載の容量型マノメータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2013−519091(P2013−519091A)
【公表日】平成25年5月23日(2013.5.23)
【国際特許分類】
【出願番号】特願2012−552040(P2012−552040)
【出願日】平成23年2月1日(2011.2.1)
【国際出願番号】PCT/US2011/023384
【国際公開番号】WO2011/097249
【国際公開日】平成23年8月11日(2011.8.11)
【出願人】(592053963)エム ケー エス インストルメンツ インコーポレーテッド (114)
【氏名又は名称原語表記】MKS INSTRUMENTS,INCORPORATED
【Fターム(参考)】