説明

封入装置および方法、ならびにこの装置を組み込んだマイクロカプセル

【課題】簡単に作成される封入装置を提供する。
【解決手段】本発明は、少なくとも微小空洞の一部を構成することのできる封入膜12を備え、支持体10上に形成される前記微小空洞内に素子を封入するための装置に関し、この装置は、封入膜を支持体に機械的に装着する少なくとも1つの腕を備え、この腕は、封入膜が封入される素子の上に覆い被さり、その周縁が、封入される素子の周りに広がる開口を構成する開放位置と、この開口を塞ぐため、封入膜の周縁が支持体上に配置される閉塞位置との間で膜を移動させるために曲がることができることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、支持体上に形成された微小空洞内に素子を封入するための装置および方法に関する。また、本発明は、この封入装置を組み込んだマイクロカプセルに関する。
【背景技術】
【0002】
本明細書では、「微小空洞」という用語は、幅が最大で1〜5mm、高さが最大で1mm〜500μmの空洞のことを言う。
【0003】
また「素子」という用語は、微小部品の他に、液体や気体のような材料のことも言う。
【0004】
微小部品は、MEMS(microelectromechanical systems)またはNEMS(nanoelectromechanical systems)として知られているマイクロ電子機械システムの他、電子的、光学的、光電子的な微小部品や生体素子のことである。また、集積回路も「微小部品」という用語に含まれる。
【0005】
微小空洞および微小部品は、製造方法の点において、空洞または微視的部品とは異なる。これらの微小空洞および微小部品は、微小電子素子の作成に用いられるのと同じ集合的製造方法によって製造される。例えば、微小空洞および微小部品は、フォトリソグラフィおよびエッチング(例えば、深層反応性イオンエッチング(DRIE:deep reactive ion etching))により機械加工されるか、および/または、金属材料のエピタキシャル成長、および蒸着によって形成された微小結晶シリコン、またはガラスからなるウエファより作成される。
【0006】
微小空洞および微小部品は、これらの製造方法を用いて、通常、少なくとも寸法の一つが、1μmのオーダの部品が機械加工される。1μmのオーダの寸法は、通常、200μmよりも小さく、例えば、1〜200μmの範囲である。
【0007】
絶縁して外部環境から保護するため、1つの素子を微小空洞の中に収容することが必要である。この目的を達成するために、種々の封入装置が知られている。これらの公知の装置は、少なくとも微小空洞の一部を構成可能な封入膜を備えている。
【0008】
例えば、封入装置は、「薄膜パッケージ」(TFP)として知られている封入方法を用いて製作することができる。この方法は、封入の集合方法であり、通常、微小部品を作成するのに使用される技術が用いられる。TFP法を用いた封入装置を作成するには、特に次のことが必要である。
−支持体の上に微小部品を形成し、
−前記微小部品の上に犠牲層を積層し、
−前記犠牲層の上に封入膜を積層し、
−前記犠牲層を放電するか、または剥離して、前記封入膜に開放孔を開け、
−前記開放孔により前記犠牲層を剥離し、
−前記犠牲層の剥離によって生成された微小空洞を閉塞するため、前記開放孔を塞ぐ。
【0009】
封入装置を作成するためのこの方法では、封入膜に孔を開けることが必要である。次いで、これらの孔を塞ぐことが必要であるが、これによって、例えば、孔閉塞材料の残留物で、微小空洞内が汚染されることがある。
【0010】
他のタイプの封入装置は、支持体に蓋を装着することにより作成される。蓋は、微小部品を作成するために使用されたものと同じ技術によって機械加工される。蓋は、封入される支持体とは別に機械加工される。次いで、蓋は、封入される素子を受け入れる微小空洞を形成するために、支持体上に組み付けられる。この組み付け作業は、複雑な作業の一つである。例えば、蓋を、封入される素子に対して正確に配置し、次いで、支持体に封止することが必要である。
【0011】
上述した先行技術については、非特許文献1に詳細に記載されている。
【先行技術文献】
【非特許文献】
【0012】
【非特許文献1】J. L. Pornin & al,"Wafer Level Thin Film Encapsulation for BOW RF MEMS", CEA-LETI, 57th ECTC (Electronic Component and Technology Conference), June 2007.
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明は、簡単に作成しうる封入装置を提供することを目的としている。
【課題を解決するための手段】
【0014】
本発明の対象は、封入膜を支持体に機械的に装着する少なくとも1つの腕を備え、前記腕は、開放位置と閉塞位置との間で前記封入膜を移動させるために曲げることができ、
− 前記開放位置では、前記封入膜が封入される素子の上に覆い被さり、前記封入膜の周縁が、封入される素子の周りに広がる開口を構成し、
− 前記閉塞位置では、前記封入膜の周縁が、前記開口を閉塞するために、前記支持体上に配置されている封入装置である。
【0015】
「流体伝達」の用語は、空洞の内部と外部との間で物質を交換することを意味し、物質は、例えば、液体、ガス、および/またはプラズマである。
【0016】
上記の装置によれば、封入膜に開放孔を開ける必要はない。その代わりに、外部と流体伝達する状態で、微小空洞の内部に配置するため、封入膜を開放位置に移動させるだけでよい。封入膜には、孔が開けられていないため、孔を閉塞する必要はない。従って、微小空洞の内部が、閉塞材料の残留物により汚染される危険性は回避される。
【0017】
上記の装置は、支持体と別に構成される蓋の組み付けを必要としない。実際、微小空洞を閉塞するためには、支持体の閉塞位置に予め固定されている封入膜を移動させるだけでよい。この閉塞作業は、支持体に別の蓋を結合することと較べると、全く複雑ではない。
【0018】
この封入装置の実施形態は、以下の特徴の1つ以上を備えることができる。
・封入膜は、閉塞位置における微小空洞の頂壁を形成している。
・封入装置は、封入膜の一部と支持体の一部とに結合され、開放位置と閉塞位置との間で、前記封入膜を移動させることができる駆動手段を有する。
・駆動手段は、熱手段、静電手段、電磁手段、またはピエゾ電気手段の1つ、または、これらの組合せからなっている。
・熱駆動手段は、少なくとも封入膜を支持体に装着する腕を備え、この腕は、少なくとも一部が重畳され、温度変化に応じた膨張係数を持つ材料からなる少なくとも2つの層を有し、曲がることにより、開放位置と閉塞位置との間で封入膜を移動させる。
・封入膜は、使用する温度で、封入膜が素子を受け入れる微小空洞の側壁および頂壁を構成するように膨らむ膨張係数が選択されている材料からなる、少なくとも2つの重畳された層を備えている。
・封入膜は、少なくとも1つがピエゾ電気特性を示す材料からなる、少なくとも2つの重畳された層を備え、前記材料に与えられる所定の電位差により、封入膜は、素子を受け入れる微小空洞の側壁および頂壁を形成するように膨らむ。
・微小空洞に連通する封入膜の層の材料は、ゲッター材である。
・装置は、腕、および/または封入膜を加熱するため、支持体に連結固定される少なくとも1つの電極を備えている。
・腕、および/または封入膜の少なくとも1つの層は、他の層の材料とは異なる膨張係数を有し、電流が流れると、熱の形態で、電気エネルギを散逸させることのできる抵抗材料であり、従って、この層は、加熱電極を構成している。また、装置は、抵抗材料の層を電源の連結端子に電気的に連結する導線を備えている。
・封入膜は、回転軸を中心とする円形の縁を有し、封入膜の層は、この回転軸を回転対称軸としている。
・封入膜は、多角形の縁を有し、封入膜の少なくとも1つの層は、
− 封入膜の平面の異なる方向に沿って異なる膨張係数、またはピエゾ電気特性を有する異方性の材料、または、
− 層内に不均一に分布する材料からなり、この材料は、封入膜の多角形の縁が、閉塞位置において同一面となるように、前記層で調整される。
【0019】
封入装置の実施形態は、次の利点を有する。
− 異なる膨張係数を有する2つの層を重畳させて構成されている腕を使用することにより、開放位置と閉塞位置との間で、封入膜を移動するための機構が簡易となる。
− 異なる膨張係数を有する材料から封入膜を作成することにより、微小空洞の側壁を、平面の封入膜から簡単に作成することができる。
− 封入膜の層の1つをゲッター材を材料とすることにより、ゲッター材の機能とバイメタル片の機能との両方の機能が得られる同じ層を使用することができる。
− 加熱電極を腕または封入膜に組み入れることにより、支持体とは別に外部に加熱手段を設ける必要がない。
− 電源端子に連結された抵抗材料の層を、腕または封入膜に組み入れることにより、他の層の材料と膨張係数が異なる材料の1つから、加熱電極を簡単に得ることができる。
− 封入膜の層を回転対称とすることにより、異方性の材料を用いることなく、可能な限り不浸透である微小空洞の閉塞状態を得ることができる。
− 縁が多角形で、閉塞位置において平面である封入膜を使用することにより、側壁は多角形の外縁部に沿って広がる微小空洞を得ることができると同時に、可能な限り不浸透である微小空洞の閉塞状態を得ることができる。
【0020】
また、本発明の対象は、微小空洞の中に受け入れられた素子を備えるマイクロカプセルおよび上記封入装置である。
【0021】
さらに、本発明の対象は、支持体上に形成された微小空洞内に素子を封入する方法であって、この方法は、開放位置と閉塞位置との間で封入膜を移動させ、封入膜を支持体に機械的に装着する少なくとも1つの腕を曲げる動作を備える。
− 前記開放位置では、封入膜が封入される素子の上に覆い被さり、封入膜の周縁が、封入される素子の周りに広がる開口を構成し、
− 前記閉塞位置では、封入膜の周縁が、前記開口を閉塞するために前記支持体上に配置される。
【0022】
この封入方法の実施形態は、次の特徴の1つ以上を備えている。
・この封入方法は、封入膜を支持体に装着する腕の温度を変更する方法を備え、それに応じて、この腕は、開放位置と閉塞位置との間で封入膜を移動させる。
・この封入方法は、
− 支持体上に封入される素子を形成し、
− 前記素子の上に犠牲層を積層し、
− 前記犠牲層の上に封入膜を形成し、
− 前記素子が受け入れられる前記微小空洞を生成するために前記犠牲層を剥離し、
− 前記犠牲層の剥離前または剥離中において、前記犠牲層の剥離を容易にするため、前記封入膜を開放位置に移動させ、
− 前記犠牲層を剥離した後、腕を曲げ、封入膜を閉塞位置に移動させる。
【図面の簡単な説明】
【0023】
図面を参照して次に述べる非制限的な例に関する次の説明により、本発明をより明確に理解できると思う。
【図1】封入装置を備えるマイクロカプセルの断面図である。
【図2】封入装置を備えるマイクロカプセルの断面図である。
【図3】図1および図2のマイクロカプセルの概略平面図である。
【図4】図1〜図3のマイクロカプセルを得るための封入方法を示す図である。
【図5】封入方法のあるステップのより詳細な説明図である。
【図6】封入方法のあるステップのより詳細な説明図である。
【図7】封入方法のあるステップのより詳細な説明図である。
【図8】封入方法のあるステップのより詳細な説明図である。
【図9】封入方法のあるステップのより詳細な説明図である。
【図10】封入方法のあるステップのより詳細な説明図である。
【図11】封入方法のあるステップのより詳細な説明図である。
【図12】封入方法のあるステップのより詳細な説明図である。
【図13】封入方法のあるステップのより詳細な説明図である。
【図14】封入方法のあるステップのより詳細な説明図である。
【図15】凸構造からなる封入膜の概略斜視図である。
【図16】開放位置における封入装置の第2実施形態の概略図である。
【図17】閉塞位置における封入装置の第2実施形態の概略図である。
【図18】開放位置における封入装置の第3実施形態の概略図である。
【図19】閉塞位置における封入装置の第3実施形態の概略図である。
【図20】封入装置の第4実施形態の概略図である。
【図21】封入膜の他の可能な実施形態の概略図である。
【0024】
これらの図において、同一の要素には、同一の符号を付してある。
【発明を実施するための形態】
【0025】
以下の記載において、当業者によく知られている特徴および機能については、詳細に記載しない。さらなる情報については、例えば、非特許文献1を参照されたい。
【0026】
図1〜図3は、微小空洞4に封入された素子を有するマイクロカプセル2を示す。図1および図2は、図3のI−I線における縦断面図である。
【0027】
ここに記載するマイクロカプセル2は、素子がMEMSのような微小部品6である特別な場合である。
【0028】
マイクロカプセル2は、微小部品6を微小空洞4に封入するための封入装置8を備えている。
【0029】
封入装置8は、
− 支持体10、
− 封入膜12、および
− 封入膜12を支持体10に固定するための腕14〜16を備えている。
【0030】
支持体10は、微小部品6が固定される水平の上面を有する。支持体10は、例えばシリコーンまたはガラスから形成されている。
【0031】
封入膜12は、回転の軸20を中心とする円形の縁18を有する円板形状である。軸20は、支持体10の上面と直交している。軸20は、封入される微小部品6の中心にある。軸20は、例えば微小部品6の重心を通っている。
【0032】
封入膜12は、3つの腕14〜16により、支持体10に直接かつ恒久的に固定されている。各腕14〜16は、それぞれが縁18および支持体10に直接機械的に連結される第1および第2の端部を有する。第1および第2の端部は、それぞれ基本的には、水平方向および鉛直方向に延びている。
【0033】
封入膜12は、開放位置と閉塞位置との間を移動することができる。
− 開放位置(図2)では、微小空洞4の内部は、開口により、微小空洞4の外部と流体伝達する。
−閉塞位置(図1)では、封入膜12は、この開口を塞ぐ。
【0034】
開放位置では、封入膜12は、微小部品6の上に覆い被さり、封入膜12の周縁、すなわち、この場合には、その円形の縁18と支持体10とで、微小部品6の周りに伸びる開口が形成されている。ここで、支持体10上の封入膜12の周辺の直交する突出部は、好ましくは、微小部品6全体を囲むのであれば、開口は微小部品6の周りに広がると考えられる。
【0035】
この目的を達成するために、腕14〜16は、開放位置と閉塞位置との間で、封入膜12を駆動する手段として機能する。
【0036】
さらに、封入膜12は、凹形構造と凸形構造との間で変形できる。
− 内側に曲がった凹形構造(図1)では、円形の縁18は、支持体10側に曲がる。
− 外側に曲がった凸形構造(図2)では、円形の縁18は、支持体10と反対側に曲がる。
【0037】
凹形構造では、封入膜12は、微小空洞4の側壁および屋根を構成する。
【0038】
第1実施形態において、閉塞位置と開放位置との間の封入膜12の移動と、凹形構造と凸形構造との間の封入膜12の推移とは、同じ温度変化で同時に動作する。閉塞位置および凹形構造は、閉塞温度で達成される。例えば、閉塞温度は、25℃以下である。開放位置および凸形構造は、閉塞温度よりも高い、少なくとも50℃以上の開放温度で達成される。例えば、開放温度は、200〜250℃よりも高い。
【0039】
この目的を達成するために、腕14〜16と同様に、封入膜12は、バイメタル片のように作動する。腕14〜16は、膨張係数が他の層と異なる材料からなる複数の層を重ね合わせて形成される。第1実施形態において使用される材料は、等方性材料である。すなわち、それらの熱膨張係数は、どの方向でも同じである。さらに、各材料は、構成する層において均一に分布する。従って、層は固体層である。
【0040】
ここで、各層の材料の膨張係数は、微小部品6から離れるに従って小さくなる。
【0041】
封入膜12は、微小空洞4に閉じ込められる流体で密封されている。例えば、封入膜12は、ヘリウムのようなガスで密封される。層の材料は、この程度の不通気性を有するものである。
【0042】
図示のように、封入膜12および腕14〜16は、2つの重畳層22、24だけから形成されている。これらの重畳層22、24は、金属層である。例えば、微小部品6側の重畳層22は、チタンからなっている。重畳層22の上に積層された重畳層24は、ジルコニウムからなっている。
【0043】
これらの材料は、異なる膨張係数を有することに加えて、ゲッター材でもある。これらの材料は、動作するときには、微小空洞4に含まれるガスを吸収し、密閉されたときには、この微小空洞4の中を真空にできる特性を有する。
【0044】
図4は、素子を微小空洞4の中に封入して、マイクロカプセル2を形成する方法を示す。
【0045】
先ず、ステップ30において、微小部品6が支持体10上に形成される。このステップ30は、微小部品6を製造するための古典的な方法によって行われる。また、このステップ30は、必要に応じて、微小部品6を支持体10に対して電気的に絶縁するための手段を備えている。
【0046】
図5および図6は、それぞれ、ステップ30の終了時に得られる生産物の側面図および平面図である。
【0047】
次いで、ステップ32において、犠牲層34(図7)が、微小部品6および支持体10の全表面に被覆される。例えば、この犠牲層34は、ポジ型感光性樹脂の層である。この犠牲層34の厚さは、数μmであり、例えば、2μm以下である。
【0048】
図7および図8は、それぞれ、ステップ32の終了時に得られる生産物の側面図および平面図を示す。
【0049】
次いで、ステップ35において、腕14〜16を支持体10に固定するように設計されている凹所36(図9)は、犠牲層34から刳り抜かれて形成されている。凹所36は、支持体10の上面まで刳り抜かれる。例えば、この目的を達成するために、犠牲層34を露光した後、現像処理により刳り抜かれる。
【0050】
図9および図10は、それぞれ、ステップ35の終了時に得られる生産物の側面図および平面図である。
【0051】
次いで、ステップ38において、フィルム40(図11)が犠牲層34の全表面に被覆される。このフィルム40は、凹所36の底、および側壁にも被覆される。従って、フィルム40は、犠牲層34を介して、支持体10に直接固定される。
【0052】
フィルム40は、重畳層22、24から構成されている。フィルム40の異なる層は、開放温度と閉塞温度との間の中間温度で被覆されている。中間温度は、開放温度と閉塞温度との平均の±20%に等しいことが好ましい。例えば、フィルム40の層は、125℃で被覆される。
【0053】
図11および図12は、それぞれ、ステップ38の終了時に得られる生産物の側面図および平面図である。
【0054】
フィルム40が被覆されると、ステップ42でエッチング処理され、封入膜12および腕14〜16が得られる。得られた結果は、図13に平面図で示されている。
【0055】
フィルム40は、例えば、リソグラフィおよび金属エッチングのような従来の方法によりエッチング処理される。
【0056】
次いで、ステップ44において、犠牲層34が剥離される。このステップ44は、開放温度で行われる。従って、封入装置8は、図2に示す開放位置に同時に移動する。しかしながら、図2では、剥離される過程における犠牲層34を示していない。
【0057】
犠牲層34は、プラズマ処理または化学処理のような他の方法により剥離することができる。この場合、ステップ44において、犠牲層34は、プラズマ処理により剥離される。プラズマ処理では、封入装置8を加熱する。通常、このステップ44において、温度は200℃〜250℃以上に達する。この加熱により、重畳層22は、重畳層24よりも大きく膨張し、その結果、封入膜12は凸状となる。凸状は、図15の斜視図にも示される。なお、この図においては、図示を簡単にするため、腕14〜16の第1の端部だけが示されている。
【0058】
さらに、この温度上昇により、封入膜12を微小部品6から離すために、腕14〜16が曲げられる。
【0059】
開放位置において、封入膜12は、犠牲層34の剥離を促進する円形の縁18と支持体10との間に位置する大きな開口を有する。
【0060】
犠牲層34が剥離されると、ステップ46において、封入膜12が開放位置から閉塞位置に移動し、凸形状から凹形状に変化する。
【0061】
封入膜12を閉塞位置まで移動させるため、温度は、閉塞温度まで下げられる。この温度において、重畳層22は、重畳層24よりも縮み、封入膜12が凹状となる。同時に、円形の縁18が、支持体10の上面部よって直接支持されるまで、腕14〜16が曲がって、封入膜12を移動させる。
【0062】
微小空洞4は、封入膜12を凹状とするために、従来技術のように感光性樹脂を硬化させることなく得られる。犠牲層34を硬化させないため、ステップ44での剥離が促進される。
【0063】
封入膜12が閉塞位置となり、凹状となれば、微小空洞4は、ステップ50において確実に閉塞される。例えば、この目的を達成するために、微小空洞4を密閉するため、層52が、支持体10および封入膜12(図4)の外面に設けられる。例えば、層52は、ヘリウムを密封する材料からなっている。
【0064】
また、層52を形成するために選択される材料は、微小空洞4を構成する壁の機械的剛性を増加させるため、高い機械的剛性を有することが好ましい。例えば、金属層である。この金属層は、電気化学蒸着(ECD)または2つのステップによって被覆される。第1のステップは、支持体10の封入膜12の外面に金属材料を吹き付けるステップである。第2のステップは、電解成長により金属材料を成長させるステップである。
【0065】
他の多くの実施形態が可能である。例えば、図16および図17は、封入膜12および腕14〜16を、膜60、1つ以上の腕62、および微小部品6を囲撓する壁64に、それぞれ置き換えた第2実施形態を示す。図16および図17では、簡単化のため、1つの腕62だけを示している。
【0066】
壁64は、基本的には、微小部品6を囲撓する垂直壁を構成するために、垂直に延びている。壁64の基部は、如何なる自由度もない密閉状態で、支持体10上に固定されている。壁64は、温度の変化に応答して曲がることはない。この目的を達成するために、1つの同じ材料で形成されている。壁64は、支持体10の一部を構成している。
【0067】
膜60は、平面の膜であり、基本的には、水平面に広がっている。膜60は、温度の変化に応じて曲がることはない。膜60は、例えば、全体が同じ材料からなっている。膜60に用いられる材料は、側部の壁64に用いられる材料と同じである。
【0068】
膜60は、腕62によって支持体10に固定されている。この腕62は、温度の変化に応じて曲がるように、異なる膨張係数を有する材料からなり、互いに重畳される複数の層を有する。腕62は、温度の変化に応じて、膜60を開放位置(図16)と閉塞位置(図17)との間で移動するように成形されている。開放位置において、膜60は、微小空洞4の内側と外側との間で、流体伝達を引き起こす開口を形成するため、距離d1だけ、壁64から離間する。この開口は、微小部品6を囲撓する。閉塞位置において、腕62は、壁64の上部の支持位置で膜60を支持し、支持体10上に置かれるために変形される。この位置において、距離d1の空間が無くなり、微小空洞4が閉塞される。
【0069】
閉塞位置において、確実な密閉構造が要求される場合には、層52のような密閉層が、膜60上および支持体10上に施こされる。
【0070】
第2実施形態では、微小空洞4の側壁を構成するために、膜60を曲げる必要はない。これは、壁64に対する補完物とすることができる。
【0071】
封入膜の移動は、他の駆動手段によって行うことができる。例えば、図18および図19は、封入膜12および腕14〜16を、膜70およびピエゾ電気材料からなる腕72に、それぞれ置き換えた第3実施形態を示す。
【0072】
第3実施形態では、膜70は、腕72の変形に応じて、開放位置(図18)と閉塞位置(図19)との間で移動させることができる。腕72の変形は、垂直方向から角度を変化させて腕72を傾斜させることである。図18および図19は、簡単のため2つの腕72だけを示している。
【0073】
ここで、腕72の変形は、これらの腕72の端部間に電位差を与えることにより制御される。これらの目的を達成するために、腕72の低い方の端部は、電源と連結する端子78が連結される導線74に連結されている。腕72の一部である高い方の端部は、膜70に接続して固定される導線80により、電気的に互いに連結されている。
【0074】
第3実施形態では、膜70は、温度変化に応じて曲がることはない。膜70は、例えば、1つの同じ材料からなっている。膜70は、微小空洞4の頂壁および側壁の両方を構成するように成形される。
【0075】
他の実施形態では、腕72は、一部が重畳された少なくとも2つの部分を有する少なくとも2つの層を備える腕と置き換えられている。これらの少なくとも1つの層の材料は、この材料に電位差を付与することにより機械的応力を生じさせることのできるピエゾ電気特性を有する。これらの機械的応力は、膜70を、開放位置と閉塞位置との間で移動させる。例えば、これらの機械的応力は、腕72を曲げさせる。
【0076】
また、膜70は、電位差を付与することにより、微小空洞4の屋根と少なくとも1つの側壁の一部を構成するために曲がる、ピエゾ電気材料の少なくとも1つの層を有する膜と置き換えることができる。例えば、膜70の、少なくとも1つは、ピエゾ電気特性を有する材料からなる少なくとも2つの重畳された層を有する。
【0077】
図20は、腕が2層以上を積み重ねて構成される特有の実施形態である。図20では、簡単化のため、封入膜は示されておらず、2つの腕90だけが、微小部品6の左右の概略断面として示されている。これらの腕90は、3つの連続する層92、93、94を積み重ねて構成されている。層92〜94の膨張係数は、微小部品6から離れるに従って大きくなる。この種の実施形態は、各層92〜94間の内面に発生するせん断応力を制限する。
【0078】
さらに、少なくとも1つの層は、電流を流すと発熱する抵抗材料からなっている。この層は、さらに、加熱電極として機能する。例えば、層92は、この抵抗材料からなっている。この目的を達成するために、層92は、導線96によって電源が供給される端子98に連結されている。このように、腕90を動かすためには、抵抗層92に電流を流すだけで十分である。
【0079】
変形例として、層92を、バイメタル片としての機能を備えていないものとすることもある。この場合、層92の膨張係数は、層93の材料の膨張係数と等しいか、または非常に近い。従って、この層92は、腕90のための加熱電極としてのみ機能する。
【0080】
このように、図20の第4実施形態では、開放位置と閉塞位置との間で、封入膜を移動させるために、腕90の周囲全体の温度を上げる必要はない。
【0081】
また、抵抗材料の層は、封入膜を加熱する加熱電極を構成するため、封入膜の中に組み込むことができる。
【0082】
膜を開放位置と閉塞位置との間で移動させるための手段としては、他の多くの実施形態が可能である。これらの手段の、少なくとも一部は、駆動腕の中に組み込まれていることが好ましい。例えば、移動は、静電的に行われる。このような実施形態では、支持体10に固定された他の電極に向き合うように、膜または腕に固定された電極が、少なくとも一部に配置される。電源によるこれらの電極の極性を変更することにより、開放位置と閉塞位置との間で、膜を移動させることのできる斥力または引力を発生させることができる。例えば、電極を分極するために、電位差がこれらの電極間に付与される。
【0083】
他の実施形態では、膜を移動させるために、磁気駆動手段が用いられる。例えば、駆動手段は、膜の腕に配置された少なくとも1つの電極と、少なくとも一部が電極に対向し、支持体に配置された磁気誘導手段とを備えている。誘導手段は、開放位置と閉塞位置との間で、膜を移動させるための磁場を生成する。また、電極と誘導手段の位置とは、反対にすることができる。この場合、誘導手段は、腕に設けられる。
【0084】
駆動手段は、磁石で構成することができる。例えば、反対の磁極を有する互いに対向する永久磁石を、一方の膜および/または腕と他方の支持体10とに固定する。これらの磁石を引き付け、または、反発させるため、磁石の磁性は、キュリー温度を超えると失われるという事実を利用することができる。
【0085】
封入膜は、形状記憶材料から成形される腕により、開放位置と閉塞位置との間を移動させることができる。この実施形態では、膜を移動させるのに、膨張係数の差よりも、これらの材料の形状記憶が採用されている。材料の1つの形状から他の形状への切り替えは、温度の変化によって制御することができる。
【0086】
腕の垂直な端部を、組織的に曲げたり変形させたりする必要はない。この垂直な端部は、水平な端部と異なるように形成することができる。例えば、垂直な端部は、単一の材料からなっている。
【0087】
層または封入膜の層を、ゲッター材から形成することは、必ずしも必要ではない。
【0088】
この層の中に均一に広がる各層の材料に対しても、必要なものではない。
【0089】
他の実施形態では、膜は、多角形の周辺に沿って広がる微小空洞の側壁を形成する多角形の縁を有する。できるだけ密閉された閉塞状態を得るため、封入膜の縁は、閉塞位置において支持体の上面と平行な同じ平面でなければならない。このことは、広がる距離が、封入膜の平面の全ての方向に沿って同じにならないことを要求する。この目的を達成するために、複数の解決方法が可能である。第1の解決方法として、封入膜の1つ以上の層を形成するために使用される材料は、異方性の膨張係数を有する。この種の異方性材料は、想定される方向に対して異なる膨張係数を有する。例えば、直交異方性の材料は、2つの直交する方向に沿って膨張係数が異なる。直交異方性材料は、長方形の封入膜の1つ以上の層の形成に用いることができる。この実施形態では、材料の最大の膨張方向は、短辺に平行であり、最小の膨張方向は、長辺と平行である。この場合、閉塞位置において、封入膜の縁は、支持体の上面に当接して平らになる。
【0090】
第2の解決方法として、不均一に分布する等方性材料を、封入膜の1つ以上の層に使用することが挙げられる。図21は、この第2の解決方法で作成された封入膜110を示す。封入膜110は、長方形である。その長辺および短辺は、それぞれX方向およびY方向に平行に延びている。封入膜110は、等方性材料よりなる層112を有する。等方性材料は、層112に均一に広がり、完全な層を構成する。この層112の上に層114(図21にハッチングで示す。)が重畳される。層114は、層114内に不均一に広がる等方性材料からなっている。層114は、所定位置に隙間を有している。層114の広がりは、隙間により、X方向およびY方向で一致していない。層114に形成された隙間は、封入膜の長方形の縁が閉塞位置で平面となるように、寸法および位置が設定されている。
【0091】
図21には、封入膜110を支持体に固定するための4つの腕116〜119の第1の端部だけが示されている。
【0092】
適用すべき対象に従い、微小空洞を密閉するためのステップ50が、必要に応じて遂行される。この密閉処理は、特に、微小空洞に収容される流体が密封されることを保証することを目的とする。ステップ50は、膜の周辺と支持体との間の接触領域を密閉するためのステップである。この密閉処理は、異なる種々の方法で行うことができる。例えば、この密閉処理のために、チタニウム層、高分子樹脂層、または、他の如何なる密閉材料を膜の上に積層させることができる。
【0093】
封入装置を、微小部品が封入される特別な場合として説明した。しかしながら、封入装置によって構成される微小空洞には、どのような種類の素子も封入することができる。
液体は、この封入装置によって封入される。この目的を達成するために、封入装置が図1の方法に従って作成される場合、封入するために、装置全体を液体に浸漬し、次いで、微小空洞の中の液体の一部分を封入するため、膜を、開放位置から閉塞位置に移動させる。
【符号の説明】
【0094】
2 マイクロカプセル
4 微小空洞
6 微小部品
8 封入装置
10 支持体
12 封入膜
14、15、16、62、72、90 腕
18 円形の縁
20 軸
22、24 重畳層
34 犠牲層
36 凹所
40 フィルム
52、92、93、94 層
60 封入膜
64 壁
70 封入膜
74、80 導線
78、98 端子
110 封入膜
112、114 層
116〜119 腕

【特許請求の範囲】
【請求項1】
微小空洞の一部を構成することができる封入膜(12、60、70、110)を備え、支持体(10)上に形成される前記微小空洞内に素子を封入する装置であって、
前記封入膜を前記支持体に機械的に装着する少なくとも1つの腕を備え、この腕は、開放位置と閉塞位置との間で、前記封入膜を移動させるために曲げることができ、
− 前記開放位置では、前記封入膜が封入される前記素子の上に覆い被さり、前記封入膜の周縁が、封入される前記素子の周りに広がる孔を形成し、
− 前記閉塞位置では、前記封入膜の周縁が、前記孔を閉塞するために、前記支持体上に位置するようになっていることを特徴とする封入装置。
【請求項2】
前記封入膜は、前記閉塞位置における前記微小空洞の頂壁を形成していることを特徴とする請求項1に記載の封入装置。
【請求項3】
前記封入装置は、前記封入膜(12、60、70、110)の一部と前記支持体(10)の一部とに結合され、前記開放位置と前記閉塞位置との間で、前記封入膜を移動させることができる駆動手段(14〜16、62、72、90、116〜119)を有することを特徴とする請求項1または2に記載の封入装置。
【請求項4】
前記駆動手段(14〜16、62、72、90、116〜119)は、熱手段、静電手段、電磁手段、またはピエゾ電気手段の1つ、または、これらの結合から選択されていることを特徴とする請求項3に記載の封入装置。
【請求項5】
前記熱駆動手段は、少なくとも前記封入膜(12、60、70、110)を、前記支持体に装着する腕(14〜16、62、90、116〜119)を備え、前記腕は、少なくとも一部が重畳され、温度変化に応じた異なる膨張係数を持つ材料からなる少なくとも2つの層(22、24)を有し、曲がることにより、前記開放位置と閉塞位置との間で、前記封入膜を移動させるようになっていることを特徴とする請求項4に記載の封入装置。
【請求項6】
前記封入膜(12、110)は、使用する温度で、前記封入膜が前記素子を受け入れる前記微小空洞の側壁および頂壁を構成するように膨らむような膨張係数が選択された材料からなる、少なくとも2つの重畳された層(22、24、112、114)を備えていることを特徴とする請求項1〜5のいずれか1項に記載の封入装置。
【請求項7】
前記封入膜は、少なくとも1つがピエゾ電気特性を示す材料からなる、少なくとも2つの重畳された層を備え、前記材料に与えられる電位差により、前記封入膜は、前記素子を受け入れる前記微小空洞の側壁および頂壁を構成するように膨らむようになっていることを特徴とする請求項1〜6のいずれか1項に記載の封入装置。
【請求項8】
前記微小空洞に接触する前記封入膜(10)の層(22)の材料は、ゲッター材からなることを特徴とする請求項6または7に記載の封入装置。
【請求項9】
前記封入装置は、前記腕および/または前記封入膜を加熱するため、前記支持体に連結されている少なくとも1つの電極を備えることを特徴とする請求項5〜8のいずれか1項に記載の封入装置。
【請求項10】
− 前記腕および/または前記封入膜の少なくとも1つの層(92)は、他の層の材料とは異なる膨張係数を有し、電流が流れると、熱の形態で電気エネルギを散逸させることのできる抵抗材料であり、この層は、加熱電極を構成し、
− 前記封入装置は、抵抗材料の層を電源の連結端子に電気的に連結する導電トラック(96)を備えることを特徴とする請求項9に記載の封入装置。
【請求項11】
前記封入膜(12)は、回転軸(20)を中心とする円形の縁(18)を有し、前記封入膜の層(22、24)は、前記回転軸を回転対称軸としていることを特徴とする請求項6〜10のいずれか1項に記載の封入装置。
【請求項12】
前記封入膜(110)は、多角形の縁を有し、少なくとも前記封入膜の層(114)の1つは、
− 前記封入膜の平面の異なる方向に沿って異なる膨張係数、またはピエゾ電気特性を有する異方性の材料、または、
− 前記層内に不均一に分布する材料から構成され、
この材料は、前記封入膜の多角形の縁が前記閉塞位置において平面状になるように、前記層で調整されることを特徴とする請求項6〜10のいずれか1項に記載の封入装置。
【請求項13】
微小空洞の中に受け入れられた素子(6)を備えるマイクロカプセルであって、
請求項1〜12のいずれか1項に記載の封入装置を備えることを特徴とするマイクロカプセル。
【請求項14】
支持体上に形成された微小空洞内に素子を封入する方法であって、
開放位置と閉塞位置との間で封入膜を移動させ、前記封入膜を支持体に機械的に装着する少なくとも1つの腕を曲げる動作を備え、
− 前記開放位置では、前記封入膜が封入される前記素子の上に覆い被さり、前記封入膜の周縁が、封入される前記素子の周りに広がる開口を構成し、
− 前記閉塞位置では、前記封入膜の周縁が、前記開口を閉塞するために、前記支持体上に置かれることを特徴とする封入方法。
【請求項15】
前記封入膜を前記支持体に装着する前記腕の温度を変更(46)し、それに応じて、前記腕が前記開放位置と前記閉塞位置との間で前記封入膜を移動させることを特徴とする請求項14に記載の封入方法。
【請求項16】
− 前記支持体上に封入される素子を形成し(30)、
− 前記素子の上に犠牲層を積層し(32)、
− 前記犠牲層の上に前記封入膜を形成し(42)、
− 前記素子が受け入れられる前記微小空洞を生成するために前記犠牲層を剥離し(44)、
− 前記犠牲層の剥離前または剥離中において、前記犠牲層の剥離を容易にするため、前記封入膜を前記開放位置に移動させ(44)、
− 前記犠牲層を剥離した後、腕を曲げ、前記封入膜を前記閉塞位置に移動させる(46)ことを特徴とする請求項14または15に記載の封入方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−51091(P2011−51091A)
【公開日】平成23年3月17日(2011.3.17)
【国際特許分類】
【外国語出願】
【出願番号】特願2010−195247(P2010−195247)
【出願日】平成22年9月1日(2010.9.1)
【出願人】(510132347)コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ (51)
【Fターム(参考)】