説明

導電性樹脂組成物からなる成形品

【課題】本発明の目的は、導電性、低発塵性、流動性、特に揮発性有機ガスの発生量が少ない導電性樹脂組成物からなる成形品において、上記特性を保持しながらも、機械特性、特にウェルド強度保持率に優れる導電性樹脂組成物からなる成形品を提供することにある。
【解決手段】芳香族ポリカーボネート樹脂51〜95重量%(A成分)およびポリエチレンテレフタレート樹脂5〜49重量%(B成分)からなる樹脂成分100重量部に対し、導電性炭素材料(C成分)を1〜20重量部、およびスチレン含有量が20〜40重量%である水添スチレン系熱可塑性エラストマー(D成分)を0.1〜10重量部含有する導電性樹脂組成物からなる成形品であって、該成形品の表面抵抗率が1012Ω/sq以下、かつ10kVを印加したときの半減衰時間が10秒以下であることを特徴とする、電気電子部品、OA機器部品、半導体関連部材および自動車外装部品からなる群より選ばれる導電性樹脂組成物からなる成形品である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導電性樹脂組成物からなる成形品に関する。さらに詳しくは、本発明は、良好な導電性および迅速な帯電圧減衰特性を持ち、成形品の樹脂表面からの導電性炭素材料の脱落が少なく、成形品からの揮発性有機ガス量が少なく、更には流動性にも優れることに加えて、機械特性、特にウェルド強度に優れた、電気電子部品、OA機器部品、半導体関連部材および自動車外装部品からなる群より選ばれる成形品に関する。
【背景技術】
【0002】
ハードディスク関連部品およびその工程内容器、ICチップトレイ、ウェハー搬送容器、ガラスコンテナ等で例示される半導体関連部材において、OA機器や電子機器の小型軽量化や、高集積化、高精度化の進行とともに、関連する工程内での塵やほこりの付着低減や、OA機器や電子機器の静電気障害による誤作動防止という要求が、年々厳しくなってきている。静電気障害による誤作動を防止するには、ハードディスク周辺での塵やほこりの付着を防ぎ、かつ障害の基となる静電気を溜めないよう、ハードディスク周辺の部品の表面抵抗率を10〜1012Ω/sqに制御し、かつ帯電した電圧を迅速に減衰させることが通例である。また、カメラなどに組み込まれるシャッター地板、シャッター羽根押え、中間板といったカメラシャッター部品等の電気電子部品は、その動作の際の摩擦により少しでも帯電すれば、誤作動に陥る恐れがあるため、シャッター周辺の部品の表面抵抗率を1012Ω/sq以下に制御し、かつ帯電した電圧を迅速に減衰させる必要がある。また、自動車外装部品は、塗料の付着効率を向上させるために静電塗装が一般に行われている。静電塗装とは、アースした塗装物を陽極、塗装霧化装置を陰極とし、これに負の高電圧を与えて、両極間に静電界を作り、霧化した塗装粒子を負に帯電させて反対極である被塗物に効率よく塗料を吸着させる塗装方法である。熱可塑性樹脂は電気絶縁性であるため、静電塗装を行うには導電性の付与が必要であり、少量の導電性物質の配合で高い導電性を得るために導電性炭素材料を配合することが広く行われている。
【0003】
上記の製品に対し、製品の小型軽量化や、高集積化、高精度化が進んでおり、付着を防ぐための帯電防止機能に加えて、部品から発生するゴミ、いわゆる導電性炭素材料の脱落物に対する要求といった関連する工程内での塵やほこりの付着低減の要求、および微量の腐食性有機ガスによる動作ノイズに対する要求は年々厳しくなってきている。加えて、小型あるいは薄肉化が進んでいることから、かかる成形品に使用する樹脂組成物はより流動性の高いものが望まれている上、成形品の形状によっては、離型時に成形品にかかる負荷が増大する傾向にあるため、より強固な機械的強度が要求される。
【0004】
芳香族ポリカーボネートと熱可塑性ポリアルキレンフタレートとのアロイに導電性炭素材料を配合することは公知であり、特許文献1では芳香族ポリカーボネートと導電性カーボンブラックに熱可塑性ポリアルキレンフタレートを配合することで、ポリカーボネート樹脂の機械特性や成形加工性、更には導電性を損なうことなく、カーボンブラックの分散性を向上させている。しかしながら、ポリカーボネートとポリエチレンテレフタレートとのアロイにおいては界面の密着が悪く、ウェルド強度や衝撃強度が低下することが一般的に知られており、製品の小型軽量化や、高集積化、高精度化により高まっている機械的強度の要求に対応できない。また、特許文献2では、耐衝撃性、寸法安定性、流動性、外観等にも優れた導電性樹脂組成物を提供すべく、芳香族ポリカーボネートとポリエチレンテレフタレートとのアロイに導電性カーボンブラックを配合し、かつ導電性カーボンブラックの分散をポリエチレンテレフタレート相に偏在させることを提案しており、耐衝撃性を改良するためにゴム性重合体の含有を推奨している。さらに、特許文献3では、芳香族ポリカーボネートとポリエチレンテレフタレートとのアロイに導電性カーボンブラックを配合し、さらにスチレン系エラストマーを配合することで、表面光沢度の低い導電性樹脂組成物を提案している。しかしながら、これらの特許文献では成形品の表面抵抗率が例示されているが、これは通例の静電気障害対策であり、部材の小型軽量化や、高集積化、高精度化が進む中で、より厳しい静電気障害に対するユーザーの要求に応えていくには不十分である。現状では、万が一スパークが発生した場合でも精密部品が破壊に至らないようにスパーク電流を小さく抑えることが必要となってきている。さらに成形品の樹脂表面からの導電性炭素材料の脱落および腐食性有機ガスの発生が問題とされてきており、特に耐衝撃性を向上させるために一般的に知られているゴム性重合体の配合では、腐食性有機ガスが多量に発生するため、高レベルな静電気対策、かつ高クリーン性が要求される用途への展開に制限があった。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特許第3897512号公報
【特許文献2】特開2005−120323号公報
【特許文献3】特開2008−184482号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、良好な導電性および迅速な帯電圧減衰特性を持ち、成形品表面から発生するスパーク電流が小さく、成形品の樹脂表面からの導電性炭素材料の脱落が少なく、成形品からの揮発性有機ガス量が少なく、更には流動性にも優れることに加えて、機械特性、特にウェルド強度に優れた、電気電子部品、OA機器部品、半導体関連部材および自動車外装部品からなる群より選ばれる成形品を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは上記課題を解決するために、鋭意検討を重ねた結果、本発明を完成した。即ち、本発明者らは、芳香族ポリカーボネート樹脂51〜95重量%(A成分)およびポリエチレンテレフタレート樹脂5〜49重量%(B成分)からなる樹脂成分100重量部に対し、導電性炭素材料(C成分)を1〜20重量部、およびスチレン含有量が20〜40重量%である水添スチレン系熱可塑性エラストマー(D成分)を0.1〜10重量部含有する電気電子部品、OA機器部品、半導体関連部材および自動車外装部品からなる群より選ばれる成形品であって、該成形品の表面抵抗率が1012Ω/sq以下であり、10kVを印加したときの半減衰時間が10秒以下である成形品が、静電気障害の一つとなるスパーク電流が低減され、良好な導電性および迅速な帯電圧減衰特性を有し、成形品の樹脂表面からの導電性炭素材料の脱落が少なく、流動性にも優れ、特に、成形品からの揮発性有機ガス量が少ないことを維持しつつ、機械特性、特にウェルド強度が良好であることを見出し、本発明を完成させた。
【0008】
スパーク電流が低減する機構は、導電性炭素材料が成形品の樹脂表面に微細分散し樹脂に溜まった静電気が導電性炭素材料へ迅速に移動するためスパーク電流が低減したものと考えられる。スパーク電流は電界誘導法で高電圧を印加した成形品に端子を近づけてスパークさせそのスパーク電流を測定する方法で測定でき、JEDEC規格(JESD22−C1010C)に準拠した方法である。成形品の樹脂表面からの導電性炭素材料の脱落がポリエチレンテレフタレートの配合により抑制できるのは、導電性炭素材料がポリエチレンテレフタレートにのみ偏在すること、および導電性炭素材料表面とポリエチレンテレフタレートとの馴染みが良いためと考えられる。
【0009】
良好な導電性および迅速な帯電圧減衰特性、少ない導電性炭素材料の脱落および良好な流動性を維持しつつも、機械特性、特にウェルド強度を向上させることができる理由としては、スチレン含有量が20〜40重量%の水添スチレン系熱可塑性エラストマーが、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂との相溶性が良好であるため、ポリカーボネート樹脂と導電性炭素材料を含むポリエチレンテレフタレート樹脂の相構造には影響を及ぼさずに界面の強度を向上させることができるためであると考えられる。また、スチレン系熱可塑性エラストマーの中でも、耐熱性に優れる水添スチレン系熱可塑性エラストマーを使用することで、成形品からの揮発性有機ガスの発生を増大させずにすむ。
【発明の効果】
【0010】
本発明の樹脂組成物からなる成形品は、良好な導電性および迅速な帯電圧減衰特性を持ち、成形品の樹脂表面からの導電性炭素材料の脱落が少なく、成形品からの揮発性有機ガス量が少なく、更には流動性にも優れることに加えて、機械特性、特にウェルド強度に優れるため、電気電子部品、OA機器部品、半導体関連部材並びに自動車外装部品等に有用である。
【0011】
<A成分:芳香族ポリカーボネート>
芳香族ポリカーボネート(A成分)とは、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応の方法としては界面重縮合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
【0012】
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも靭性に優れる点からビスフェノールA(以下“BPA”と略称することがある)が特に好ましく、汎用されている。
【0013】
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
【0014】
上記二価フェノールとカーボネート前駆体を界面重合法によってポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明のポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネートを含む。また、得られたポリカーボネートの2種以上を混合した混合物であってもよい。
【0015】
分岐ポリカーボネートは、本発明の樹脂組成物の溶融張力を増加させ、かかる特性に基づいて押出成形、発泡成形およびブロー成形における成形加工性を改善できる。結果として寸法精度により優れた、これらの成形法による成形品が得られる。
【0016】
かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、および4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノールが好適に例示される。その他多官能性芳香族化合物としては、フロログルシン、フロログルシド、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、並びにトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が例示される。中でも1,1,1−トリス(4−ヒドロキシフェニル)エタンおよび1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
【0017】
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、二価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル部中、0.03〜1モル部、好ましくは0.07〜0.7モル部、特に好ましくは0.1〜0.4モル部である。
【0018】
また、かかる分岐構造単位は、多官能性芳香族化合物から誘導されるだけでなく、溶融エステル交換反応時の副反応の如き、多官能性芳香族化合物を用いることなく誘導されるものであってもよい。尚、かかる分岐構造の割合についてはH−NMR測定により算出することが可能である。
【0019】
一方、脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましく、その具体例としては、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸等の直鎖飽和脂肪族ジカルボン酸並びにシクロヘキサンジカルボン酸等の脂環族ジカルボン酸が挙げられる。二官能性アルコールとしては脂環族ジオールが好適であり、例えば、シクロヘキサンジメタノール、シクロヘキサンジオール、トリシクロデカンジメタノール等が例示される。さらに、ポリオルガノシロキサン単位を共重合したポリカーボネート−ポリオルガノシロキサン共重合体の使用も可能である。
【0020】
A成分は、二価フェノール成分の異なるポリカーボネート、分岐成分を含有するポリカーボネート、各種のポリエステルカーボネート、ポリカーボネート−ポリオルガノシロキサン共重合体等を2種以上混合したものであってもよい。さらに、製造法の異なるポリカーボネート、末端停止剤の異なるポリカーボネート等を2種以上混合したものを使用することもできる。本発明の芳香族ポリカーボネートの製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
【0021】
本発明のA成分の芳香族ポリカーボネートとしては、バージン原料だけでなく、使用済みの製品から再生された芳香族ポリカーボネート、いわゆるマテリアルリサイクルされた芳香族ポリカーボネートの使用も可能である。使用済みの製品としては防音壁、ガラス窓、透光屋根材、および自動車サンルーフなどに代表される各種グレージング材、風防や自動車ヘッドランプレンズなどの透明部材、水ボトルなどの容器、並びに光記録媒体などが好ましく挙げられる。これらは多量の添加剤や他樹脂などを含むことがなく、目的の品質が安定して得られやすい。殊に自動車ヘッドランプレンズや光記録媒体などは上記の粘度平均分子量のより好ましい条件を満足するため好ましい態様として挙げられる。尚、上記のバージン原料とは、その製造後に未だ市場において使用されていない原料である。
【0022】
本発明の成形品における表面抵抗率は、樹脂組成物の流動性に大きく影響を受けることがあるため、その調整方法の一つに流動性を制御する方法を取ることができる。芳香族ポリカーボネートの粘度平均分子量は、好ましくは1×10〜5×10、より好ましくは1.4×10〜3×10、更に好ましくは1.8×10〜2.5×10である。1×10〜5×10の範囲においては、特に良好な耐衝撃性と流動性との両立に優れ、樹脂組成物からなる成形品の表面抵抗率を導電性領域に調整することが容易となる。更に最も好適には、1.9×10〜2.4×10である。尚、かかる粘度平均分子量はA成分全体として満足すればよく、分子量の異なる2種以上の混合物によりかかる範囲を満足するものを含む。
【0023】
本発明でいう粘度平均分子量はまず次式にて算出される比粘度を塩化メチレン100mlに芳香族ポリカーボネート0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mを求める。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
【0024】
<B成分:ポリエチレンテレフタレート>
ポリエチレンテレフタレート(B成分)とは、芳香族ジカルボン酸成分としてテレフタル酸を主成分とし、かつ、ジオール成分としてエチレングリコールを主成分とし、これらの縮合反応によって得られる飽和ポリエステル重合体又は共重合体であり、繰返し単位としてエチレンテレフタレート単位を好ましくは70モル%以上、より好ましくは80モル%以上含む熱可塑性ポリエステル樹脂である。ポリエチレンテレフタレート樹脂の製造は、常法に従い、チタン、ゲルマニウム、アンチモン等を含有する重縮合触媒の存在下に、加熱しながら前記のジカルボン酸成分とジオール成分とを反応させ、副生する水又は低級アルコールを系外に排出することにより行われる。例えば、ゲルマニウム系重合触媒としては、ゲルマニウムの酸化物、水酸化物、ハロゲン化物、アルコラート、フェノラート等が例示でき、更に具体的には、酸化ゲルマニウム、水酸化ゲルマニウム、四塩化ゲルマニウム、テトラメトキシゲルマニウム等が例示できる。このとき、バッチ法、連続式のいずれの重合方法を取ることも可能であり、固相重合により重合度を上げることも可能である。
【0025】
また使用するポリエチレンテレフタレートの末端基構造は特に限定されるものではなく、末端基における水酸基とカルボキシル基の割合がほぼ同量の場合以外に、一方の割合が多い場合であってもよい。またかかる末端基に対して反応性を有する化合物を反応させる等により、それらの末端基が封止されているものであってもよい。
【0026】
また本発明では、従来公知の重縮合の前段階であるエステル交換反応において使用される、マンガン、亜鉛、カルシウム、マグネシウム等の化合物を併せて使用でき、およびエステル交換反応終了後にリン酸または亜リン酸の化合物等により、かかる触媒を失活させて重縮合することも可能である。
【0027】
またポリエチレンテレフタレート(B成分)の分子量については特に制限されないが、樹脂組成物からなる成形品の表面抵抗率を制御するために好適な流動性を得るためには、o−クロロフェノールを溶媒として25℃で測定した固有粘度が、好ましくは0.4〜1.2、より好ましくは0.65〜1.15である。
【0028】
かかるポリエチレンテレフタレート(B成分)の含有量は、芳香族ポリカーボネート(A成分)との合計100重量%当り、5〜49重量%であり、10〜45重量%が好ましく、15〜45重量%がより好ましく、20〜45重量%が最も好ましい。ポリエチレンテレフタレートを配合することによって、導電性炭素材料がポリエチレンテレフタレート相に偏在するため、より少ない導電性炭素材料の添加量で導電性を得ることができる。しかし、ポリエチレンテレフタレートの配合が5重量%より小さくなると、ポリエチレンテレフタレートの配合量が少ないために導電性炭素材料の脱落を抑制できなくなり好ましくない。49重量%を超えると、ポリエチレンテレフタレート相の導電性炭素材料が希釈され、かかる表面抵抗率は1012Ω/sqより大きくなり、成形品表面に塵やほこりが付着しやすくなるため、好ましくない。
【0029】
<C成分:導電性炭素材料>
導電性炭素材料(C成分)は、樹脂組成物に導電性を付与し、導電性樹脂組成物からなる成形品の表面抵抗率と帯電半減衰時間を制御するために配合するものである。
導電性炭素材料としては、カーボンブラック、カーボンナノチューブ、無定形炭素、グラファイト、繊維状炭素、ナノカーボン等が挙げられるが、これらの中でもアウトガス、表面仕上がりおよび光沢性、流動性、スパーク電流等の点から、導電性カーボンブラックおよびカーボンナノチューブが好ましい。
【0030】
(導電性カーボンブラック)
導電性カーボンブラックとしては、ケッチェンブラック、アセチレンブラック、ファーネスブラック、サーマルブラック等が挙げられるが、これらの中でも従来の導電性カーボンブラックと比較して極少量で優れた導電性を示し、少量の添加で優れた導電性が得られる点で、ケッチェンブラックが好ましい。
【0031】
この導電性カーボンブラックは、特に原料、製法に制限されるものではないが、そのDBP吸油量が400ml/100g以上で、かつBET比表面積が1000m2/g以上のカーボンブラックがより好適に使用できる。DBP給油量は400〜1000ml/100gがより好ましく、400〜600ml/100gがさらに好ましい。このDBP吸油量が400ml/100gより小さく、かつBET比表面積が1000m2/gより小さい場合、またはDBP吸油量が400ml/100g、BET比表面積が1000m2/gのいずれかが前記数値より小さい場合には、所望の表面抵抗率と帯電圧半減衰時間を得るためにより多くの配合量が必要となり、結果的に導電性炭素材料の脱落が多くなりかつ流動性が低下する可能性がある。また、BET比表面積の上限については特に制限はないが、作業性を大きく損なわせる虞がある点で、1,500m2/g以下がより好ましい。
【0032】
ここでDBP吸油量とは、ジブチルフタレートアブソープトメーターによって測定された値で、導電性カーボンブラック100g当りに包含されるジブチルフタレートのml容量で、導電性カーボンブラックのストラクチャーの程度を示し、樹脂組成物に配合した際の導電性に影響するとされている。また、BET比表面積は液体窒素吸着法によって求めた値で、導電性カーボンブラック単位重量当たりの表面積を示す。
【0033】
(カーボンナノチューブ)
カーボンナノチューブとしては、特に原料、製法に制限されるものではないが、グラフェンシートの層数が1層、2層、または2層を超える複数層であってもよく、特に2層を超える複数層が好ましい。カーボンナノチューブの直径は0.7〜100nmが好ましく、7〜100nmがより好ましく、15〜90nmが更に好ましい。カーボンナノチューブのアスペクト比は5以上が好ましく、50以上がより好ましく、100以上が更に好ましい。
【0034】
アスペクト比は、走査型電子顕微鏡倍率3〜10万倍にて長さと直径を測定し、その比より求めることができる。なお、長さの測定は以下の方法で実施する。まずその観察像をCCDカメラに画像データとして取り込む。次に得られた画像データを、画像解析装置を使用して繊維長を算出する。測定本数は5000本以上として行う。また、直径の測定は以下の方法で実施する。まず電子顕微鏡の観察で得られる画像に対して、直径を測定する対象のカーボンナノチューブをランダムに抽出し、中央部に近いところで直径を測定する。なお、断面が円でない場合はその最大値を直径とする。得られた測定値から数平均直径を算出する。近年の電子顕微鏡はその観察画面上の長さを算出する機能が備えられているため、かかる直径も比較的容易に算出可能である。測定本数は1000本以上として行う。
【0035】
かかる導電性炭素材料(C成分)の含有量は、樹脂成分の合計100重量部に対し1〜20重量部であり、2〜15重量部が好ましく、3〜10重量部がより好ましい。導電性炭素材料の配合量が1重量部未満であれば、表面抵抗率と帯電圧減衰時間が本発明の請求範囲に入らず、導電性炭素材料の配合量が20重量部を超えると導電性炭素材料の脱落が多くなり好ましくない。
【0036】
<D成分:水添スチレン系熱可塑性エラストマー>
本発明で使用される水添スチレン系熱可塑性エラストマーはポリカーボネート樹脂とポリエチレンテレフタレート樹脂との界面強度の向上のために配合するものであり、耐熱性に優れるため、成形品からの揮発性有機ガスの発生が抑制される。また上記エラストマーのスチレン含有量は20〜40重量%であり、23〜37重量%が好ましく、25〜35重量%がより好ましい。スチレン含有量が20〜40重量%の範囲を外れると、相溶性が悪化し、強度向上の効果が低下するため、望ましくない。この理由としてはかかるエラストマーは、電気特性に影響を与えないためにはポリカーボネート樹脂とポリエチレンテレフタレート樹脂との相構造を維持しつつ、界面強度を向上させる必要があるためであり、双方の樹脂との相溶性の観点から、さらに、ハードブロックとしては両末端がスチレン成分であり、ソフトブロックとしては強度向上の効果の高いポリブチレンおよびポリイソプレン等のポリオレフィン構造を有していることが好ましい。
【0037】
水添スチレン系熱可塑性エラストマーの具体例としては、スチレン−水添ポリブタジエン−スチレン共重合体(SEBS)、スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)、スチレン−水添ポリ(イソプレン/ブタジエン)−スチレン共重合体(SEEPS)等を挙げることができる。このうち、より耐熱性に優れる、スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)、スチレン−水添ポリ(イソプレン/ブタジエン)−スチレン共重合体(SEEPS)が好ましく、その中でもスチレン−水添ポリ(イソプレン/ブタジエン)−スチレン共重合体(SEEPS)がより好ましい。
【0038】
かかるスチレン系熱可塑性エラストマー(D成分)の含有量は、樹脂成分の合計100重量部に対し、0.1〜10重量部であり、1〜8重量部が好ましく、1〜6重量部がより好ましい。0.1重量を下回ると、かかる界面強度の十分な向上効果を得ることができず、10重量部を上回ると揮発性有機ガスの発生量が多くなるため、好ましくない。
【0039】
<E成分:ポリテトラフルオロエチレン粒子>
本発明で使用されるポリテトラフルオロエチレン粒子は、成形品に摺動性を付与し、導電性炭素材料の脱落を抑制するために配合する。
本発明のポリテトラフルオロエチレン粒子としては、低分子量ポリテトラフルオロエチレン、ポリビニリデンフルオライド、テトラフルオロエチレン・パーフルオロメチルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体等が挙げられいずれの使用も可能であるが、中でも摺動性の面から低分子量ポリテトラフルオロエチレンの使用が好ましい。該低分子量ポリテトラフルオロエチレンには少量の共重合成分を含んでいるものも含まれる。低分子量ポリテトラフルオロエチレンとしては、通常乾性潤滑剤として使用されるものが使用でき、好ましくは、微粉末状である。微粉末の粒子径は、パークロルエチレン中に分散させた分散液を光透過法により測定する方法で平均0.1〜100μmのものが好ましい。またポリテトラフルオロエチレン微粉末の融点は、DSC法測定で320℃以上のものが好ましい。ポリテトラフルオロエチレン微粉末は再凝集しやすいので再凝集し難くするために焼成処理等の処理を施したものもあり、これらも好ましく使用できる。ポリテトラフルオロエチレン樹脂はダイキン工業(株)よりルブロンL−5,L−2,L−7として、また旭アイシーアイフロロポリマーズ(株)よりフルオンL−150J,L−169J,L−170J,L−172Jとして、また三井・デュポンフロロケミカル(株)よりTLP−10F−1として、またヘキストジャパン(株)よりホスタフロンTF9202,TF9205として市販されており、容易に入手可能である。
【0040】
かかるポリテトラフルオロエチレン粒子は、A成分とB成分の合計100重量部当り1〜10重量部配合するのが好ましく、1〜5重量部がより好ましい。1重量を下回ると所望の摺動性を得られないために導電性炭素材料の脱落が十分に抑制できず、10重量部を上回るとポリテトラフルオロエチレンの分散相が導電性炭素材料の導電経路を乱すため、成形品の表面抵抗率及び帯電圧半減衰時間に悪影響を及ぼす可能性がある。
【0041】
<F成分:安定剤>
安定剤(F成分)は、ホスファイト系化合物、ホスホナイト系化合物、ヒンダートフェノール系化合物およびチオエーテル系化合物からなる群より選ばれる少なくとも一種であることが好ましい。その中でも揮発性有機ガスの発生に影響の少ないホスファイト系化合物およびヒンダードフェノール系化合物からなる群より選ばれる少なくとも1種の安定剤が特に好ましい。
【0042】
(ホスファイト系化合物)
ホスファイト系化合物として、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイト等が挙げられる。
【0043】
さらに他のホスファイト系化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等が挙げられる。
【0044】
好適なホスファイト系化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
【0045】
(ホスホナイト系化合物)
ホスホナイト化合物として、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられる。テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用が可能である。
【0046】
ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
【0047】
(ヒンダードフェノール系化合物)
ヒンダードフェノール化合物としては、通常樹脂に配合される各種の化合物が使用できる。かかるヒンダードフェノール化合物としては、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル−6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレート等が例示される。
【0048】
上記化合物の中でも、本発明においてはテトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、および3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましく利用される。特に3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンが好ましい。上記ヒンダードフェノール系化合物は、単独でまたは2種以上を組合せて使用することができる。
【0049】
(チオエーテル系化合物)
チオエーテル系化合物の具体例として、ジラウリルチオジプロピオネート、ジトリデシルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオジプロピオネート、ペンタエリスリトール−テトラキス(3−ラウリルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ドデシルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−オクタデシルチオプロピオネート)、ペンタエリスリトールテトラキス(3−ミリスチルチオプロピオネート)、ペンタエリスリトール−テトラキス(3−ステアリルチオプロピオネート)等が挙げられる。
【0050】
かかる安定剤(F成分)の含有量は、A成分とB成分の合計100重量部当たり、0.001〜2重量部が好ましく、より好ましくは0.005〜1重量部、さらに好ましくは0.01〜0.5重量部である。かかる配合量が0.001重量部より少ない場合は安定効果が不足するため滞留熱安定性が低下し、2重量部を超えると、かえって安定効果が低下するばかりか、安定剤由来の揮発分による発生ガス量が多くなり、成形品のクリーン性を損ねる可能性がある。
【0051】
<その他の添加剤>
本発明の組成物には、本発明の効果を発揮する範囲で、A成分およびB成分を除く他の熱可塑性樹脂(例えば、ポリアリレート樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレンおよびポリプロピレンなどのポリオレフィン樹脂、ポリスチレン樹脂、アクリロニトリル/スチレン共重合体(AS樹脂)、アクリロニトリル/ブタジエン/スチレン共重合体(ABS樹脂)、ポリスチレン樹脂、高衝撃ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、ポリメタクリレート樹脂、並びにフェノキシまたはエポキシ樹脂など)、無機充填剤(ガラス繊維、ガラスフレーク、炭素繊維、炭素フレーク、タルク、ワラストナイトなど)、有機充填剤(アラミド繊維、ケナフ繊維など)、D成分を除く衝撃改質剤(コアシェル型アクリルゴム、コアシェル型ブタジエンゴムなど)、紫外線吸収剤(ベンゾトリアゾール系、トリアジン系、ベンゾフェノン系など)、光安定剤(HALSなど)、離型剤(飽和脂肪酸エステル、不飽和脂肪酸エステル、パラフィンワックス、蜜蝋など)、流動改質剤(ポリカプロラクトンなど)、着色剤(カーボンブラック、二酸チタン、各種の有機染料、メタリック顔料など)、帯電防止剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、赤外線吸収剤、並びにフォトクロミック剤紫外線吸収剤などを配合してもよい。これら各種の添加剤は、周知の配合量で利用することができる。
【0052】
<導電性樹脂組成物の製造>
本発明の導電性樹脂組成物の製造には、任意の方法が採用される。例えばA成分からF成分を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、および押出混合機などの予備混合手段を用いて充分に混合(いわゆるドライブレンド)した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより得られた予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、溶融混練後の組成物をペレタイザー等の機器によりペレット化する方法が挙げられる。
【0053】
他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。予備混合する方法としては例えば、A成分のパウダーの一部とC成分などの配合する添加剤とをドライブレンドして、パウダーで希釈された添加剤のマスターバッチを作成する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。これら溶融混練に際しての加熱温度は、通常250〜300℃の範囲で選ばれる。
【0054】
尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。かかる液注装置、または液添装置は加温装置が設置されているものが好ましく使用される。
【0055】
押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化することができる。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。得られたペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
【0056】
本発明の導電性樹脂組成物は、発生ガス量が2ppm以下であるものが好ましく、1ppm以下であるものがより好ましく、更には0.5ppm以下であるものがより好ましい。かかる発生ガス量が2ppmを超えると、成形品周辺の精密部品に影響を及ぼす可能性があるため、好ましくない。なお樹脂組成物の発生ガス量は下記の方法で測定した。すなわち、本発明の導電性樹脂組成物ペレットをガスクロマトグラム(アジレント社製 GC‐MS)を使用し揮発性有機ガス量を測定した。具体的には、押出した組成物ペレット3gを150℃にて1時間加熱し、ガスクロマトグラム(GC−MS)にて揮発性有機ガス量を測定し、その総量をトルエン換算したものを発生ガス量とした。
【0057】
<成形品の作成>
本発明の導電性樹脂組成物からなる成形品は、通常上記の如く製造されたペレットを射出成形して成形品を得ることにより各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体を注入する方法を含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などを挙げることができる。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。射出成形品は、従来公知の成形法が何ら限定なく適用できるが、射出成形時、外観を上げる観点から、金型温度は好ましくは30℃以上、より好ましくは40℃以上である。しかし、成形品の変形を防ぐ意味において、金型温度は、好ましくは100℃以下、さらに好ましくは90℃以下である。また本発明の導電性樹脂組成物からなる成形品は、押出成形、回転成形やブロー成形などにより得ることも可能である。
【0058】
さらに本発明の導電性樹脂組成物からなる成形品は、表面改質を施すことによりさらに他の機能を付与することが可能である。ここでいう表面改質とは、蒸着(物理蒸着、化学蒸着等)、メッキ(電気メッキ、無電解メッキ、溶融メッキ等)、塗装、コーティング、印刷等の樹脂成形品の表層上に新たな層を形成させるものであり、通常の樹脂成形品に用いられる方法が適用できる。
本発明の導電性樹脂組成物からなる成形品の用途は、電気電子部品、OA機器部品、半導体関連部材および自動車外装部品である。
【0059】
本発明の成形品の表面抵抗率は1012Ω/sq以下であり、10〜1012Ω/sqが好ましく、10〜1010Ω/sqがより好ましい。かかる表面抵抗率が1012Ω/sqより高いと電荷が帯電しやすく、成形品表面に塵やほこりが付着しやすくなることに加え、帯電した電荷が放電される際のスパーク電流が大きくなり、成形品周辺の精密機器に損傷を与える可能性が高いため好ましくない。なお、成形品の表面抵抗率の測定はそれぞれの抵抗値に合った抵抗率計を使用して測定した。すなわち、1010Ω/sq以上の場合は、TOA株式会社製 デジタル絶縁計DSM-8103(印加電圧100V、専用プローブ)、10〜1010Ω/sqの場合には、三菱化学株式会社製 ハイレスターUP MCP-HT400(印加電圧100V、UR-SSプローブ(JISK6911準拠))、10Ω/sq以下の場合には、三菱化学株式会社製 ロレスターGP MCP-T600(印加電圧90V、ESPプローブ(JISK7194準拠))を使用した。具体的な測定方法としては、成形品から試験片(縦×横×厚み=90mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記の抵抗率計を使用して試験片面内の中央部の表面抵抗率を測定し3個の試験片から得られた値の平均値を試験片の表面抵抗率とした。
【0060】
なお、本発明の成形品における表面抵抗率は、樹脂組成物の流動性に大きく影響を受けることがあるため、その調整方法の一つに流動性を制御する方法を取ることができる。具体的には、樹脂組成物のメルトボリュームフローレイト(MVR)は、好ましくは5〜80cm/10分、より好ましくは5〜50cm/10分、更により好ましくは10〜30cm/10分を示すとき、良好な表面抵抗率を得ることができる。かかる樹脂組成物のメルトボリュームフローレイトは、ISO1133(JIS K 7210)に準拠する方法で、シリンダー及びピストン温度を300℃、荷重2.16kgにて測定する。
【0061】
本発明の成形品の10kVを印加したときの半減衰時間は10秒以下であり、5秒以下であるものが好ましく、3秒以下がより好ましい。かかる帯電圧半減衰時間が10秒を超えると、帯電した電荷が完全に減衰する前に新たな帯電が発生し、結果として成形品表面に塵やほこりが付着しやすくなることに加え、帯電した電荷が放電される際のスパーク電流が大きくなり、成形品周辺の精密機器に損傷を与える可能性が高いため好ましくない。なお、成形品の半減衰時間は下記の方法で測定した。すなわち、本発明の導電性樹脂組成物からなる成形品を、スタチックオネストメーター(シシド静電気株式会社製 H−0110)を使用し印加電圧10kVにて測定した。具体的には、成形品から試験片(縦×横×厚み=60mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記したスタチックオネストメーターを使用して、試験片面内の中央部の帯電圧半減衰時間を測定し、3個の試験片から得られた値の平均値を試験片の帯電圧半減衰時間とした。
【図面の簡単な説明】
【0062】
【図1】本発明の実施例で使用される精密部材収納容器を示す概略図である。
【発明を実施するための形態】
【実施例】
【0063】
以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
【0064】
[実施例1〜13、比較例1〜10]
1.組成物ペレットの製造
下記の方法により、組成物ペレットの製造を行った。
表1および表2に記載の各成分を、表1および表2に示す割合にてドライブレンドした後、径30mmφ、L/D=33.2、混練ゾーン2箇所のスクリューを装備したベント付きニ軸押出機(神戸製鋼所(株)製:KTX30)を用い、シリンダー温度270℃にて溶融混練し、押出し、ストランドカットすることで、各組成物のペレットを得た。
【0065】
2.成形品の作成
かかる樹脂組成物を射出成形により、シリンダー温度300℃、金型温度80℃にて成形し、各種評価に合わせ試験片を切削した。
【0066】
3.評価方法
実施例中における各値は下記の方法で求めた。
(1)表面抵抗率
上記の方法で得た成形品をそれぞれの抵抗値に合った抵抗率計を使用して測定した。すなわち、1010Ω/sq以上の場合は、TOA株式会社製 デジタル絶縁計DSM-8103(印加電圧100V、専用プローブ)、10〜1010Ω/sqの場合には、三菱化学株式会社製 ハイレスターUP MCP-HT400(印加電圧100V、UR-SSプローブ(JISK6911準拠))、10Ω/sq以下の場合には、三菱化学株式会社製 ロレスターGP MCP-T600(印加電圧90V、ESPプローブ(JISK7194準拠))を使用した。具体的な測定方法としては、成形品から試験片(縦×横×厚み=90mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記の抵抗率計を使用して試験片面内の中央部の表面抵抗率を測定し3個の試験片から得られた値の平均値を成形品の表面抵抗率とした。
【0067】
(2)半減衰時間
上記の方法で得た成形品をスタチックオネストメーター(シシド静電気株式会社製 H−0110)を使用し印加電圧10kVにて測定した。具体的には、成形品から試験片(縦×横×厚み=60mm×50mm×2mmt)を3個切削し、温度23℃、湿度50%RHの条件下において前記したスタチックオネストメーターを使用して、試験片面内の中央部の帯電圧半減衰時間を測定し、3個の試験片から得られた値の平均値を成形品の帯電圧半減衰時間とした。
【0068】
(3)発生ガス量
上記の方法で得た組成物ペレット3gを150℃にて1時間加熱し、ガスクロマトグラム(アジレント社製GC−MS)にて揮発性有機ガス量を測定し、その総量をトルエン換算したものを発生ガス量とした。なお、成形品のクリーン性を確保するためには、発生ガス量は2.0ppm以下であることが必要である。
【0069】
(4)導電性炭素材料の脱落性
上記の方法で得た組成物ペレットを射出成形機(三菱重工業(株)製:80MSP−5)を使用して、シリンダー温度280℃、金型温度80℃にて、測定用の試験片(直径×高さ=10mm×20mmのピン状成形片)を成形し、往復動摩擦磨耗試験機((株)オリンテック製:AFT−15M)を使用し、23℃、50%RHの条件下において0.5kgの一定荷重の下で台紙の上で往復摩擦させ台紙に付着した導電性炭素材料の脱落跡を評価した。台紙に導電性炭素材料の脱落跡がほとんど見られない場合を○、若干の導電性炭素材料の脱落跡が認められる場合を△、導電性炭素材料の脱落跡がはっきり確認できる場合を×として評価した。
【0070】
(5)流動性
上記の方法で得た組成物ペレットを射出成形機(住友重機械工業(株)製:SG−150U)を使用して、シリンダー温度300℃、金型温度80℃、射出圧力119MPaにて、流路厚1mm、流路幅8mmのアルキメデス型スパイラル長を測定した。上記スパイラル長が10cm以上であるものを○、5〜10であるものを△、5以下であるものを×として評価した。
【0071】
(6)スパーク電流
上記の方法で得た成形品を、CDMテスター(阪和電子工業製 HED−C5000)を使用し、JEDEC/JESD22−C101−Cに準拠する方法で、印加電圧2000V/正極1回印加により測定した。具体的には、成形品から試験片(縦×横×厚み=45mm×45mm×2mmt)を切削し、温度25℃、湿度50%RHの条件下において前記したCDMテスターを使用して、面内9箇所を5mm間隔でスパーク電流を測定し得られた値の平均値を成形品のスパーク電流とした。このスパーク電流は10A以下であることが必要である。
【0072】
(7)ウェルド強度保持率
上記の方法で得た組成物ペレットを射出成形機(三菱重工業(株)製:80MSP−5)を使用して、シリンダー温度300℃、金型温度80℃にて、ASTM D638法に準じて作成した中央にウェルド部を有する引張試験片を用いて、ウェルド引張強度を測定し、ウェルド部を有しない引張試験片を用いて測定した引張強度と比較しウェルド強度保持率を計算した。なお、ウェルド強度保持率は70%以上であることが必要である。
ウェルド強度保持率(%)={(ウェルド有引張強度)/(ウェルド無引張強度)}×100
【0073】
各実施例および比較例の各評価結果を表1〜表2に示した。
なお、実施例及び比較例で使用した原材料は、下記の通りである。
(A成分:芳香族ポリカーボネート)
A−1:芳香族ポリカーボネート(帝人化成株式会社製 L−1225)
(B成分:ポリエチレンテレフタレート)
B−1:ポリエチレンテレフタレート樹脂(帝人株式会社製 TR−4550BH)
B−2:ポリエチレンテレフタレート樹脂(南亜プラスチック社製 TRN−8550FF)
(C成分:導電性炭素材料)
C−1:導電性カーボンブラック[ケッチェンブラックEC―600JD(ライオン株式会社製 DBP吸油量495ml/100g、BET比表面積1270m/g)]
C−2:導電性カーボンブラック[デンカブラック(電気化学工業株式会社製 DBP吸油量191ml/100g、BET比表面積68m/g)]
C−3:導電性カーボンブラック[MA−600(三菱化学株式会社製 DBP吸油量131ml/100g、BET比表面積140m/g)]
C−4:カーボンナノチューブ[15重量%カーボンナノチューブマスター MB6015−00(ハイペリオン社製 直径20nm、アスペクト比5以上)]
(D成分:水添スチレン系熱可塑性エラストマー)
D−1:スチレン−水添ポリ(イソプレン/ブタジエン)−スチレン共重合体(SEEPS)[セプトン4077(クラレ社製、スチレン含有量30重量%)]
D−2:スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)[セプトン2005(クラレ社製、スチレン含有量20重量%)]
D−3:スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)[セプトン2006(クラレ社製、スチレン含有量35重量%)]
D−4:スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)[セプトン2004(クラレ社製、スチレン含有量18重量%)]
D−5:スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)[セプトン2104(クラレ社製、スチレン含有量65重量%)]
D−6:スチレン−水添ポリブタジエン−スチレン共重合体(SEBS) [タフテックH1051(旭化成ケミカルズ社製、スチレン含有量42重量%)]
D−7:MBS[パラロイド EXL−2678(ローム・アンド・ハース・ジャパン社製、スチレン含有量40重量%)]
(E成分:ポリテトラフルオロエチレン粒子)
E−1:ルブロン L−5(ダイキン工業株式会社製)
(F成分:安定剤)
F−1:アデカスタブ PEP−24G(旭電化工業株式会社製)
【0074】
【表1】

【0075】
【表2】

【0076】
実施例1〜5に示すように、規定範囲量内のポリエチレンテレフタレートおよび水添スチレン系熱可塑性エラストマーを配合した樹脂組成物からなり、導電性炭素材料がポリエチレンテレフタレート相に偏在するため、より少ない導電性炭素材料の添加量で導電性を得ることができ、表面抵抗率及び帯電圧半減衰時間を制御した成形品は、成形品表面から発生するスパーク電流を抑制し、高いウェルド強度保持率を持ち、更には流動性、成形品表面からの導電性炭素材料の脱落性にも優れている。
【0077】
比較例1および比較例2はポリエチレンテレフタレートの配合量が規定範囲外であり、比較例1はポリエチレンテレフタレートが配合されておらず、導電性を得るために必要な導電性炭素材料の添加量が十分でなく、導電性炭素材料の脱落が抑制できず、流動性も悪い。比較例2はポリエチレンテレフタレートの配合量が多く、導電性を規定範囲内に制御することができない。
【0078】
比較例3および比較例4は導電性炭素材料の配合量が規定範囲外であり、比較例3は導電性炭素材料の配合量が少なく、導電性を得ることができない。比較例4は導電性炭素材料の配合量が多く、導電性炭素材料の脱落が多い。
【0079】
比較例5および比較例6は水添スチレン系熱可塑性エラストマーの配合量が規定範囲外であり、比較例5は水添スチレン系熱可塑性エラストマーが配合されていないため、ウェルド強度保持率が低く、十分な機械特性が得られない。比較例6は水添スチレン系熱可塑性エラストマーの配合量が多く、揮発性有機ガスの発生量が多いため、本発明における用途に展開が困難である。
【0080】
比較例7〜9はスチレン含有量が規定範囲外である水添スチレン系熱可塑性エラストマーを使用しており、比較例7はスチレン含有量が少ないため、ポリカーボネートとポリエチレンテレフタレートとの相溶性が悪く、相構造に影響を与えるため、導電性が悪化する。比較例8および比較例9はスチレン含有量が多いため、強度の向上の十分な効果が得られない。また、比較例10は水添でないスチレン系熱可塑性エラストマーを用いているため、揮発性有機ガスの発生量が多い。
【0081】
実施例6〜13は水添スチレン系熱可塑性エラストマーの種類を変えた場合、導電性カーボンブラックの種類を変えた場合、ポリテトラフルオロエチレン粒子を更に配合した場合、安定剤を更に配合した場合、ポリエチレンテレフタレートの種類を変えた場合を示しており、いずれも良好な評価結果を示す。
【符号の説明】
【0082】
1 容器本体
2 凹部

【特許請求の範囲】
【請求項1】
芳香族ポリカーボネート樹脂51〜95重量%(A成分)およびポリエチレンテレフタレート樹脂5〜49重量%(B成分)からなる樹脂成分100重量部に対し、導電性炭素材料(C成分)を1〜20重量部、およびスチレン含有量が20〜40重量%である水添スチレン系熱可塑性エラストマー(D成分)を0.1〜10重量部含有する導電性樹脂組成物からなる成形品であって、該成形品の表面抵抗率が1012Ω/sq以下、かつ10kVを印加したときの半減衰時間が10秒以下であることを特徴とする、電気電子部品、OA機器部品、半導体関連部材および自動車外装部品からなる群より選ばれる導電性樹脂組成物からなる成形品。
【請求項2】
導電性炭素材料(C成分)が導電性カーボンブラックあるいはカーボンナノチューブであることを特徴とする請求項1に記載の導電性樹脂組成物からなる成形品。
【請求項3】
導電性炭素材料(C成分)がn−ジブチルフタレート(DBP)吸油量が400ml/100g以上であるカーボンブラック、または直径0.7〜100nmであり、かつアスペクト比が5以上であるカーボンナノチューブであることを特徴とする請求項1または2に記載の導電性樹脂組成物からなる成形品。
【請求項4】
スチレン含有量が20〜40重量%である水添スチレン系熱可塑性エラストマー(D成分)がスチレン−水添ポリブタジエン−スチレン共重合体(SEBS)、スチレン−水添ポリイソプレン−スチレン共重合体(SEPS)およびスチレン−水添ポリ(イソプレン/ブタジエン)−スチレン共重合体(SEEPS)からなる群より選ばれるエラストマーである請求項1〜3のいずれかに記載の導電性樹脂組成物からなる成形品。
【請求項5】
(E)ポリテトラフルオロエチレン粒子(E成分)をA成分とB成分の合計100重量部当り1〜10重量部含有する請求項1〜4のいずれかに記載の導電性樹脂組成物からなる成形品。
【請求項6】
(F)安定剤(F成分)をA成分とB成分の合計100重量部当り0.001〜2重量部含有する請求項1〜5のいずれかに記載の導電性樹脂組成物からなる成形品。
【請求項7】
150℃にて1時間放置した後の揮発性有機ガス量が2ppm以下であることを特徴とする請求項1〜6のいずれかに記載の導電性樹脂組成物からなる成形品。

【図1】
image rotate


【公開番号】特開2011−184618(P2011−184618A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2010−53013(P2010−53013)
【出願日】平成22年3月10日(2010.3.10)
【出願人】(000215888)帝人化成株式会社 (504)
【Fターム(参考)】