説明

導電性樹脂組成物

【課題】本発明は、樹脂本来の物性を維持しながら、高い導電性を有する樹脂組成物を提供することを目的とする。
【解決手段】(a)樹脂成分、および(b)前記樹脂成分中に分散され、炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2〜30個積み重なって集合体を形成し、前記集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維を含有する導電性樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、成形加工性に優れる導電性樹脂組成物に関し、より具体的には導電材料として極細炭素繊維を含有する樹脂組成物に関する。
【背景技術】
【0002】
電気絶縁性の樹脂に帯電防止その他の目的で導電性を付与するため導電性フィラーを混練分散して導電性樹脂とすることは良く知られている。樹脂に混練する導電性フィラーとしては、一般にイオン導電性の有機系界面活性剤、金属繊維及び粉末、導電性金属酸化物粉末、カーボンブラック、炭素繊維、黒鉛粉末などが利用され、これを樹脂中に溶融混練し、分散させた導電性樹脂組成物を成形加工することによって10−1〜1012Ω・cmの体積抵抗値を有する成形品を得ることができる。
【0003】
導電性フィラーとしては、アスペクト比(長さ/外径)の大きいフレーク状、ウイスカー状、繊維状の材料を使用することにより、比較的少量の配合で樹脂に導電性を付与することができる。これはアスペクト比が大きな導電性フィラーの方が、同じ配合量でフィラー間の繋がりが効果的に形成されるため、より少量で導電性を得ることが可能となるからである。
【0004】
しかし、金属系フィラーは耐食性、耐薬品性に劣る。無機系の導電性フィラーは、一般に粒状であるため組成物総質量に対して50質量%を越える多量の配合が必要となり、そのため樹脂物性が低下し、成形が困難となる。カーボンブラックは、鎖状構造の導電回路を形成するケッチェンブラック(ケッチェン・ブラック・インターナショナル社の登録商標)およびアセチレンブラックが利用できるので、15質量%以下の配合で高い導電性が得られるが、これらは樹脂への分散制御が難しく、安定した導電性を得るためには独特な配合、混合技術が必要とされる。また充分な導電性が得られたとしても、加工性が著しく低下するのみならず、導電性樹脂組成物の引張り強度、曲げ強度、耐衝撃強度等の物性は、導電性フィラーを含有しない樹脂本来の物性に比べ著しく低下する。
【0005】
また、フレーク状の黒鉛粉末およびウイスカー状の炭素繊維等のアスペクト比が高い導電性フィラーも、導電性を発現させるには15質量%を超える量が必要であり、樹脂本来の物性が低下し、複雑形状の成形品を得ようとすると繊維の偏りと方向性が現れ、成形性と導電性が阻害される。また、成形体表面からカーボン粒子や炭素繊維が脱落(スラフ性)しやすく半導体デバイス工程での環境汚染、デバイスへの損傷等の問題がある。
【0006】
炭素繊維は、同質量が配合され場合、繊維径が細い方が繊維間の導電回路網の形成が容易になるため導電性付与に優れる。近年、従来の炭素繊維より繊維径が2〜3桁程細い中空の極細炭素繊維いわゆるカーボンナノチューブが開示され、導電性フィラーとして各種樹脂、ゴム等に配合することも提案され(特許文献1:特開平1−131251、特許文献2:特開平3−74465、特許文献3:特開平02−235945)、従来の導電性フィラーの欠点を解消する有効な導電性フィラーとして考えられている。
【0007】
しかし、カーボンナノチューブは、樹脂への均一分散が困難であり、カーボンナノチューブの非分散部分は樹脂中に凝集体として残るため、紡糸不能(糸切れ)、成形機吐出部分のフィルター閉塞、耐衝撃性等の成形品の機械的強度、表面外観が損なわれる等の問題があり、満足のできるものではない。このため、樹脂分子量の最適化(特許文献4:特開2001−310994)、変性樹脂、エラストマー、相溶化剤の配合(特許文献5:特開2007−231219、特許文献6:特開2004−230926、特許文献7:特開2007−169561、特許文献8:特開2004−231745)、カーボンナノチューブの表面改質処理(特許文献9:特開2004−323738)等の特別な組成物の配合及び混合、特殊な表面改質処理を必要とし、樹脂の種類、組成等が制約される。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平1−131251号公報
【特許文献2】特開平3−74465号公報
【特許文献3】特開平02−235945号公報
【特許文献4】特開2001−310994号公報
【特許文献5】特開2007−231219号公報
【特許文献6】特開2004−230926号公報
【特許文献7】特開2007−169561号公報
【特許文献8】特開2004−231745号公報
【特許文献9】特開2004−323738号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、特別な混練・混合手法や配合処方、例えばゴム成分、界面活性剤、相溶化剤等の添加を用いなくても、樹脂中への極細炭素繊維の混合・分散が達成され、樹脂本来の物性を維持しながら、高い導電性を有する樹脂組成物を提供することである。
【課題を解決するための手段】
【0010】
本出願は、以下の事項を開示している。
【0011】
1. (a)樹脂成分、および
(b)前記樹脂成分中に分散され、炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2〜30個積み重なって集合体を形成し、前記集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維
を含有する導電性樹脂組成物。
【0012】
2. 前記微細な炭素繊維の前記胴部の母線と繊維軸とのなす角θが15°より小さいことを特徴とする上記1記載の組成物。
【0013】
3. 前記微細な炭素繊維の前記集合体胴部の端の外径Dが5〜40nm、内径dが3〜30nmであり、該集合体のアスペクト比(L/D)が2から30であることを特徴とする上記1または2記載の組成物。
【0014】
4. 前記微細な炭素繊維が、Fe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒を用いた気相成長法により製造され、前記微細な炭素繊維中の灰分が4質量%以下であることを特徴とする上記1〜3のいずれか1項に記載の組成物。
【0015】
5. 前記微細な炭素繊維が、100個以下の前記集合体が連結して構成されている微細な炭素短繊維であることを特徴とする上記1〜4のいずれか1項に記載の組成物。
【0016】
6. 前記微細な炭素短繊維が、ずり応力を加えて短繊維化されて製造されたことを特徴とする上記5記載の組成物。
【0017】
7. 組成物総質量に対して、前記微細な炭素繊維を0.1質量%以上、40質量%未満の量で含有する上記1〜6のいずれか1項に記載の組成物。
【0018】
8. 前記樹脂成分が、熱可塑性樹脂から選ばれることを特徴とする上記1〜7のいずれか1項に記載の組成物。
【0019】
9. 前記樹脂成分が、ポリアミドであることを特徴とする上記8記載の組成物。
【0020】
10. 上記1〜7のいずれか1項に記載の組成物とストラクチュア構造を有する炭素材料とが複合化されていることを特徴とする導電性バインダー。
【0021】
11. (a)樹脂成分の水分散液および/または水溶液に、微細な炭素繊維(微細な炭素短繊維を含む)とストラクチュア構造を有する炭素材料を、剪断力を有する攪拌機にて分散させる工程、
(b)前記(a)の工程で作製される分散液に、アルコールあるいは金属塩水溶液を加えて、複合材料を析出させる工程、および
(c)前記複合材料を濾過、洗浄および乾燥する工程
を含むことを特徴とする上記10に記載の導電性バインダーの製造方法。
【0022】
12. 上記10に記載の導電性バインダーを含む蓄電デバイス電極。
【0023】
13. 上記12に記載の蓄電デバイス電極を含む蓄電デバイス。
【発明の効果】
【0024】
本発明によれば、樹脂本来の物性を維持しながら高い成形性と導電性を有する樹脂組成物が提供される。本発明の導電性樹脂組成物では、少ない量の微細な炭素繊維の添加により、高い導電性が達成されている。そのため、樹脂本来の性質、例えば成形性等が大きく損なわれることなく、導電性樹脂組成物が得られる。本発明の導電性樹脂組成物が導電性に優れる理由は、次のように考えられる。
【0025】
まず、従来のいわゆるカーボンナノファイバーまたはカーボンナノチューブと総称される極細炭素繊維は、その形状、形態、構造から、
(1)多層カーボンナノチューブ(グラファイト層が多層同心円筒状)(非魚骨状)
特公平3−64606、同3−77288
特開2004−299986
(2)カップ積層型カーボンナノチューブ(魚骨状(フィッシュボーン))
USP 4,855,091
M.Endo,
Y.A.Kim etc.:Appl.Phys.Lett.,vol80(2002)1267〜
特開2003−073928
特開2004−360099
(3)プレートレット型カーボンナノファイバー(トランプ状)
H.Murayama、
T.maeda,:Nature, vol345[No28](1990)791〜793
特開2004−300631
の3つのナノ構造炭素材料に大別される。
【0026】
(1)多層カーボンナノチューブは、カーボンナノチューブ長さ方向の導電性はグラファイト網面(C軸)方向の電子の流れとなるため良好である。一方、カーボンナノチューブ繊維間の導電性は、グラファイト網面(C軸)方向と垂直となり繊維同士が直接接触することにより電子が流れるが、樹脂中においては、繊維同士の接触がゆるいため繊維自体の電子の流れよりむしろ導電性フィラー表面層からの電子の飛び出しによる電子の流れが重要な役割を果たすとされる。電子の飛出し易さがフィラーの導電性能に関わる。カーボンナノチューブにおいては、グラファイト網面が円筒状に閉じているためπ電子の飛び出しによるジャンピング効果(トンネル効果説)があまり期待できないことが推定される。
【0027】
(2)魚骨状構造、および(3)トランプ状構造の極細炭素繊維は、側周面にグラファイト網面の開放端が露出するため、隣接する繊維間の導電性はカーボンナノチューブに比べ向上する。しかしながら、グラファイト網面のC軸が繊維軸方向に対し傾斜あるいは直交して積層した構造であるため、単独の繊維における繊維軸長軸方向の導電性は低下してしまい、組成物全体としての導電性が低下する。
【0028】
これらに対して、本発明の組成物に含有される微細な炭素繊維は、(1)〜(3)の三つの分類に属さない導電性炭素繊維であり、後述するように、繊維自体の長さ方向の電子流れは、外側に僅かに傾斜した釣鐘状胴部が担い、また繊維間の電子の流れは釣鐘状胴部の開放端からの電子の飛び出しが担うことが可能であり、これにより樹脂中での導電性能が向上しているものと推定される。
【0029】
また、活性な部位である開放端が存在するため、樹脂との親和性が高く、混練での分散性が向上し、同時に樹脂物性の維持、向上に寄与するものと推察される。
【0030】
また、ファンデルワールス力の弱い力で結合している釣鐘状構造単位の集合体(後述する)の連結部は、混練における剪断力によりその接合部で容易に分離する。一般に、大量生産を行う方式として現在最も有望とされる触媒気相成長方法では、1μm以上の糸状の長い繊維が複雑に絡み合った凝集体(数μmから1mmの毛玉)で生成する。しかし、本発明で使用される微細な炭素繊維は、剪断力を調節することにより適度な長さに切断されて繊維集合体の短繊維化と開繊が進むことから、特殊な分散技術、分散装置を用いることなく導電性樹脂組成物を得ることができる。
【0031】
また、微細な炭素短繊維は、接合部で繊維が切断されて短繊維化されており、さらに分散性に優れる。
【図面の簡単な説明】
【0032】
【図1】(a)微細な炭素繊維を構成する最小構造単位(釣鐘状構造単位)を模式的に示す図である。(b)釣鐘状構造単位が、2〜30個積み重なった集合体を模式的に示す図である。
【0033】
【図2】(a)集合体が間隔を隔てて連結し、繊維を構成する様子を模式的に示す図である。(b)集合体が間隔を隔てて連結する際に、屈曲して連結した様子を模式的に示す図である。
【図3】参考例A1で製造した微細な炭素繊維のTEM写真像である。
【図4】参考例A2で製造した微細な炭素繊維のTEM写真像である。
【図5】参考例A3で製造した微細な炭素繊維のTEM写真像である。
【図6】微細な炭素繊維が、ずり応力により微細な炭素短繊維に引き抜かれる様子を模式的に示す図である。
【図7】参考例B1で短繊維化された微細な炭素短繊維のTEM像である。
【図8】図7と同様に参考例B1で短繊維化された微細な炭素短繊維のTEM像である。
【図9】実施例18および比較例11で作製したコイン電池の放電容量を示すグラフである。
【発明を実施するための形態】
【0034】
以下、本発明を詳細に説明する。本発明において、「微細な炭素短繊維」は「微細な炭素繊維」に包含される概念であり、「微細な炭素繊維」の中でも後述するように繊維長が短い短繊維を意味する。以下の説明では、「微細な炭素繊維」は、通常、短繊維化されていない「微細な炭素繊維」を意味する。また、「微細な炭素繊維」および「微細な炭素短繊維」は、明示的に示さない限り、以下に説明される特定構造の炭素繊維を意味し、公知の構造の炭素繊維を意味しない。
【0035】
<<微細な炭素繊維および微細な炭素短繊維>>
本発明の組成物中に配合される微細な炭素繊維および微細な炭素短繊維の代表的な特徴および代表的な製造方法は、次の項目にまとめられる。
【0036】
1. 好ましくは気相成長法により製造される微細な炭素繊維であって、
炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、好ましくは前記胴部の母線と繊維軸とのなす角θが15°より小さく、
前記釣鐘状構造単位が、中心軸を共有して2〜30個積み重なって集合体を形成し、
前記集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成していることを特徴とする微細な炭素繊維。
【0037】
2. 前記集合体胴部の端の外径Dが5〜40nm、内径dが3〜30nmであり、該集合体のアスペクト比(L/D)が2から30であることを特徴とする上記1記載の微細な炭素繊維。
【0038】
3. 含有する灰分が4重量%以下であることを特徴とする上記1または2記載の微細な炭素繊維。
【0039】
4. X線回折法により測定される微細な炭素繊維の002面のピーク半価幅W(単位:degree)が、2〜4であることを特徴とする上記1〜3のいずれか1項に記載の微細な炭素繊維。
【0040】
5. X線回折法により測定される微細な炭素繊維のグラファイト面間隔(d002)が0.341〜0.345nmであることを特徴とする上記1〜4のいずれか1項に記載の微細な炭素繊維。
【0041】
6. Fe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒、より好ましくはマグネシウムが置換固溶したコバルトのスピネル型酸化物を含む触媒上に、CO及びHを含む混合ガスを供給して反応させ、微細な炭素繊維を成長させることを特徴とする微細な炭素繊維の製造方法。
【0042】
7. 前記スピネル型酸化物を、MgCo3−xで表したとき、マグネシウムの固溶範囲を示すxの値が、0.5〜1.5であることを特徴とする上記6記載の微細な炭素繊維の製造方法。
【0043】
8. 前記スピネル型酸化物のX線回折測定による結晶格子定数a(立方晶系)が0.811〜0.818nmであることを特徴とする上記6または7記載の微細な炭素繊維の製造方法。
【0044】
9. 前記混合ガス中のCO/Hの容積比が、70/30〜99.9/0.1の範囲であり、反応温度が400〜650℃の範囲であることを特徴とする上記6〜8のいずれか1項に記載の微細な炭素繊維の製造方法。
【0045】
10. 好ましくは気相成長法により製造される微細な炭素繊維を短繊維化した微細な炭素短繊維であって、グラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2〜30個層状に積み重なって集合体を形成し、前記集合体が、Head−to−Tail様式で1個ないし数十個連結していることを特徴とする微細な炭素短繊維。
【0046】
11. 前記胴部の母線と繊維軸とのなす角θが15°より小さいことを特徴とする上記10記載の微細な炭素短繊維。
【0047】
12. 前記集合体胴部の端の外径Dが5〜40nm、内径dが3〜30nmであり、該集合体のアスペクト比(L/D)が2から30であることを特徴とする上記10または11記載の微細な炭素短繊維。
【0048】
13. 含有する灰分が4重量%以下であることを特徴とする上記10〜12のいずれか1項に記載の微細な炭素短繊維。
【0049】
14. X線回折法により測定される微細な炭素繊維の002面のピーク半価幅W(単位:degree)が、2〜4であることを特徴とする上記10〜13のいずれか1項に記載の微細な炭素短繊維。
【0050】
15. X線回折法により測定される微細な炭素繊維のグラファイト面間隔(d002)が0.341〜0.345nmであることを特徴とする上記10〜14のいずれか1項に記載の微細な炭素短繊維。
【0051】
16. 上記1〜5のいずれか1項に記載の炭素繊維にずり応力を加えて短繊維化して製造される微細な炭素短繊維。
【0052】
17. 上記6〜9のいずれか1項に記載の製造方法により微細な炭素繊維を製造した後、ずり応力を加えてさらに短繊維化することを特徴とする微細な炭素短繊維の製造方法。
【0053】
上記事項を以下に詳細に説明する。
【0054】
微細な炭素繊維および微細な炭素短繊維は、図1(a)に示すような釣鐘状構造を最小構造単位として有する。釣鐘(temple bell)は、日本の寺院で見られ、比較的円筒形に近い胴部を有しており、円錐形に近いクリスマスベルとは形状が異なる。図1(a)に示すように、構造単位11は、釣鐘のように、頭頂部12と、開放端を備える胴部13とを有し、概ね中心軸の周囲に回転させた回転体形状となっている。構造単位11は、炭素原子のみからなるグラファイト網面により形成され、胴部開放端の円周状部分はグラファイト網面の開放端となる。なお、図1(a)において、中心軸および胴部13は、便宜上直線で示されているが、必ずしも直線ではなく、後述する図3、図7および図8のように曲線の場合もある。
【0055】
胴部13は、開放端側に緩やかに広がっており、その結果、胴部13の母線は釣鐘状構造単位の中心軸に対してわずかに傾斜し、両者のなす角θは、15°より小さく、より好ましくは1°<θ<15°、更に好ましくは2°<θ<10°である。θが大きくなりすぎると、該構造単位から構成される微細繊維が魚骨状炭素繊維様の構造を呈してしまい、繊維軸方向の導電性が損なわれてしまう。一方θが小さいと、円筒チューブ状に近い構造となり、構造単位の胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が低くなるため、隣接繊維間の導電性が悪化する。
【0056】
微細な炭素繊維および微細な炭素短繊維には、欠陥、不規則な乱れが存在するが、このような不規則性を排除して、全体としての形状を捉えると、胴部13が開放端側に緩やかに広がった釣鐘状構造を有していると言える。本発明の微細な炭素短繊維、および微細な炭素繊維は、すべての部分においてθが上記範囲を示すことを意味しているのではなく、欠陥部分や不規則な部分を排除しつつ、構造単位11を全体的に捉えたときに、総合的にθが上記範囲を満たしていることを意味している。そこで、θの測定では、胴部の太さが不規則に変化していることもある頭頂部12付近を除くことが好ましい。より具体的には、例えば、図1(b)に示すように釣鐘状構造単位集合体21(下記参照)の長さをLとすると、頭頂側から(1/4)L、(1/2)Lおよび(3/4)Lの3点においてθを測定してその平均を求め、その値を、構造単位11についての全体的なθとしてもよい。また、Lについては、直線で測定することが理想であるが、実際は胴部13が曲線であることも多いため、胴部13の曲線に沿って測定した方が実際の値に近い場合もある。
【0057】
頭頂部の形状は、微細な炭素繊維(微細な炭素短繊維においても同じ)として製造される場合、胴部と滑らかに連続し、上側(図において)に凸の曲面となっている。頭頂部の長さは、典型的には、釣鐘状構造単位集合体について説明するD(図1(b))以下程度であり、d(図1(b))以下程度であるときもある。
【0058】
さらに、後述するように活性な窒素を原料として使用しないため、窒素等の他の原子は、釣鐘状構造単位のグラファイト網面中に含まれない。このため繊維の結晶性が良好である。
【0059】
本発明の微細な炭素繊維および微細な炭素短繊維においては、図1(b)に示すように、このような釣鐘状構造単位が中心軸を共有して2〜30個積み重なって釣鐘状構造単位集合体21(以下、単に集合体という場合がある。)を形成している。積層数は、好ましくは2〜25個であり、より好ましくは2〜15個である。
【0060】
集合体21の胴部の外径Dは、5〜40nm、好ましくは5〜30nm、更に好ましくは5〜20nmである。Dが大きくなると形成される微細繊維の径が太くなるため、ポリマーとのコンポジットにおいて導電性能等の機能を付与するためには、多くの添加量が必要となってしまう。一方、Dが小さくなると形成される微細繊維の径が細くなって繊維同士の凝集が強くなり、例えばポリマーとのコンポジット調製において、分散させることが困難になる。胴部外径Dの測定は、集合体の頭頂側から、(1/4)L、(1/2)Lおよび(3/4)Lの3点で測定して平均することが好ましい。なお、図1(b)に胴部外径Dを便宜上示しているが、実際のDの値は、上記3点の平均値が好ましい。
【0061】
また、集合体胴部の内径dは、3〜30nm、好ましくは3〜20nm、更に好ましくは3〜10nmである。胴部内径dの測定についても、釣鐘状構造単位集合体の頭頂側から、(1/4)L、(1/2)Lおよび(3/4)Lの3点で測定して平均することが好ましい。なお、図1(b)に胴部内径dを便宜上示しているが、実際のdの値は、上記3点の平均値が好ましい。
【0062】
集合体21の長さLと胴部外径Dから算出されるアスペクト比(L/D)は、2〜150、好ましくは2〜50、より好ましくは2〜30、更に好ましくは2〜20である。アスペクト比が大きいと、形成される繊維の構造が円筒チューブ状に近づき、1本の繊維における繊維軸方向の導電性は向上するが、構造単位胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が低くなるため、隣接繊維間の導電性が悪化する。一方、アスペクト比が小さいと構造単位胴部を構成するグラファイト網面の開放端が繊維外周面に露出する頻度が高くなるため、隣接繊維間の導電性は向上するが、繊維外周面が、繊維軸方向に短いグラファイト網面が多数連結して構成されるため、1本の繊維における繊維軸方向の導電性が損なわれる。
【0063】
微細な炭素繊維および微細な炭素短繊維は、釣鐘状構造単位および釣鐘状構造単位集合体については、本質的に同じ構成を有しているが、以下のように繊維長が異なる。
【0064】
まず、微細な炭素繊維は、図2(a)に示すように、前記集合体がさらにHead−to−Tailの様式で連結することにより形成される。Head−to−Tailの様式とは、微細な炭素繊維の構成において、隣り合った前記集合体どうしの接合部位が、一方の集合体の頭頂部(Head)と他方の集合体の下端部(Tail)の組合せで形成されていることを意味する。具体的な接合部分の形態は、第一の集合体21aの下端開口部において、最内層の釣鐘状構造単位の更に内側に、第二の集合体21bの最外層の釣鐘状構造単位の頭頂部が挿入され、さらに、第二の集合体21bの下端開口部に、第三の集合体21cの頭頂部が挿入され、これがさらに連続することによって繊維が構成される。
【0065】
微細な炭素繊維の1本の微細繊維を形成する各々の接合部分は、構造的な規則性を有しておらず、例えば第一の集合体と第二の集合体の接合部分の繊維軸方向の長さは、第二の集合体と第三の集合体の接合部分の長さと必ずしも同じではない。また、図2(a)のように、接合される二つの集合体が中心軸を共有して直線状に連結することもあるが、図2(b)の釣鐘状構造単位集合体21bと21cのように、中心軸が共有されずに接合して、結果として接合部分において屈曲構造を生じることもある。前記釣鐘状構造単位集合体の長さLは繊維ごとにおおむね一定である。しかしながら、気相成長法では、原料及び副生のガス成分と触媒及び生成物の固体成分が混在するため、発熱的な炭素析出反応の実施においては、前記の気体及び固体からなる不均一な反応混合物の流動状態によって一時的に温度の高い局所が形成されるなど、反応器内に温度分布が生じ、その結果、長さLにある程度のばらつきが生じることもある。
【0066】
このようにして構成される微細な炭素繊維は、前記釣鐘状構造単位下端のグラファイト網面の開放端の少なくとも一部が、前記集合体の連結間隔に応じて、繊維外周面に露出する。この結果、1本の繊維における繊維軸方向の導電性を損なうことなく、前記π電子の飛び出しによるジャンピング効果(トンネル効果)によって隣接する繊維間の導電性を向上させることができる。以上のような微細な炭素繊維の構造は、TEM画像によって観察できる。また、微細な炭素繊維の効果は、集合体自体の曲がり、集合体の連結部分における屈曲が存在しても、ほとんど影響がないと考えられる。従って、TEM画像の中で、比較的直線に近い形状を有する集合体を観察して、構造に関する各パラメータを求め、その繊維についての構造パラメータ(θ、D、d、L)としてよい。
【0067】
次に、微細な炭素短繊維は、このようにして構成される微細な炭素繊維をさらに短繊維化して得られる。具体的には、微細な炭素繊維にずり応力を加えることにより、集合体接合部で黒鉛基底面間の滑りを生じ、微細な炭素繊維が前記集合体接合部の一部で切断されて短繊維化される。このような短繊維化により得られる微細な炭素短繊維は、集合体が1個から数十個程度(即ち100個以下、80個程度まで、好ましくは70個程度まで)、好ましくは、1個から20個連結した繊維長さに短繊維化されている。この微細な炭素短繊維の集合体のアスペクト比は2ないし150程度である。混合に適する微細な炭素短繊維の集合体のアスペクト比は2ないし50である。ずり応力を加えても、集合体の炭素SP2結合から成る繊維直胴部分では、繊維の切断が起こらず、集合体よりも小さく切断することはできない。
【0068】
微細な炭素短繊維においても、グラファイト網の端面が露出する結果、1本の繊維における繊維軸方向の導電性を損なうことなく、前記π電子の飛び出しによるジャンピング効果(トンネル効果)によって隣接する繊維間の導電性は短繊維化前の微細な炭素繊維と同様に良好である。以上のような短繊維化後の微細な炭素短繊維の構造は、TEM画像によって観察できる(図7および図8を参照)。また、微細な炭素短繊維の効果は、集合体自体の曲がり、集合体の接合部分における屈曲が存在しても、ほとんど影響がないと考えられる。図7の微細な炭素短繊維は、釣鐘状構造単位集合体が、図に示したように4−a〜4−dの4個連結されており、それぞれのθおよびアスペクト比(L/D)は、4−a:θ=4.8°、(L/D)=2.5、4−b:θ=0.5°、(L/D)=2.0、4−c:θ=4.5°、(L/D)=5.0、4−d:θ=1.1°、(L/D)=5.5である。また、図8の微細な炭素短繊維は、釣鐘状構造単位集合体が、図に示したように5−a〜5−dの4個連結されており、それぞれのθおよびアスペクト比(L/D)は、5−a:θ=10°、(L/D)=4.3、5−b:θ=7.1°、(L/D)=3.4、5−c:θ=9.5°、(L/D)=2.6、5−d:θ=7.1°、(L/D)=4.3である。
【0069】
微細な炭素繊維および炭素短繊維の学振法によるXRDにおいて、測定される002面のピーク半価幅W(単位:degree)は、2〜4の範囲である。Wが4を超えると、グラファイト結晶性が低く導電性も低い。一方、Wが2未満ではグラファイト結晶性は良いが、同時に繊維径が太くなり、ポリマーに導電性等の機能を付与するためには多くの添加量が必要となってしまう。
【0070】
微細な炭素繊維および炭素短繊維の学振法によるXRD測定によって求められるグラファイト面間隔d002は、0.350nm以下、好ましくは0.341〜0.348nmである。d002が0.350nmを超えるとグラファイト結晶性が低くなり、導電性が低下する。一方、0.341nm未満の繊維は、製造の際に収率が低い。
【0071】
微細な炭素繊維および炭素短繊維に含有される灰分は、4重量%以下であり、通常の用途では、精製を必要としない。通常、0.3重量%以上4重量%以下であり、より好ましくは0.3重量%以上3重量%以下である。尚、灰分は、繊維を0.1グラム以上燃焼して残った酸化物の重量から決定される。
【0072】
また、炭素短繊維は、好ましくは100〜1000μm、より好ましくは100〜300μmの繊維長を有する。このような長さを有し、且つ上述の002面のピーク半価幅W(単位:degree)が2〜4、且つグラファイト面間隔d002が、0.350nm以下、好ましくは0.341〜0.348nmであるような微細な炭素短繊維は従来存在しなかった新規な繊維である。
【0073】
次に、微細な炭素繊維および炭素短繊維の製造方法について説明する。微細な炭素短繊維は、微細な炭素繊維を短繊維化して製造される。
【0074】
<微細な炭素繊維の製造方法>
まず、微細な炭素繊維の製造方法は、次のとおりである。微細な炭素繊維は、触媒を用いて、気相成長法により製造される。触媒としては、好ましくはFe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒が使用され、供給ガスは、好ましくはCO及びHを含む混合ガスである。最も好ましくは、コバルトのスピネル型結晶構造を有する酸化物に、マグネシウムが固溶置換した触媒を用いて、CO及びHを含む混合ガスを触媒粒子に供給して気相成長法により、微細な炭素繊維を製造する。
【0075】
Mgが置換固溶したコバルトのスピネル型結晶構造は、MgCo3−xで表される。ここで、xは、MgによるCoの置換を示す数であり、形式的には0<x<3である。また、yはこの式全体が電荷的に中性になるように選ばれる数で、形式的には4以下の数を表す。即ち、コバルトのスピネル型酸化物Coでは、2価と3価のCoイオンが存在しており、ここで、2価および3価のコバルトイオンをそれぞれCoIIおよびCoIIIで表すと、スピネル型結晶構造を有するコバルト酸化物はCoIICoIIIで表される。Mgは、CoIIとCoIIIのサイトの両方を置換して固溶する。MgがCoIIIを置換固溶すると、電荷的中性を保つためにyの値は4より小さくなる。但し、x、y共に、スピネル型結晶構造を維持できる範囲の値をとる。
【0076】
触媒として使用できる好ましい範囲として、Mgの固溶範囲は、xの値が0.5〜1.5であり、より好ましくは0.7〜1.5である。xの値が0.5未満の固溶量では、触媒の活性は低く、生成する微細な炭素繊維の量は少ない。xの値が1.5を超える範囲では、スピネル型結晶構造を調製することが困難である。
【0077】
触媒のスピネル型酸化物結晶構造は、XRD測定により確認することが可能であり、結晶格子定数a(立方晶系)は、0.811〜0.818nmの範囲であり、より好ましくは0.812〜0.818nmである。aが小さいとMgの固溶置換が充分でなく、触媒活性が低い。また、0.818nmを超える格子定数を有する前記スピネル型酸化物結晶は調製困難である。
【0078】
このような触媒が好適である理由として、本発明者らは、コバルトのスピネル構造酸化物にマグネシウムが置換固溶した結果、あたかもマグネシウムのマトリックス中にコバルトが分散配置された結晶構造が形成されることにより、反応条件下においてコバルトの凝集が抑制されていると推定している。
【0079】
また、触媒の粒子サイズは、適宜選ぶことができるが、例えばメジアン径として、0.1〜100μm、好ましくは、0.1〜10μmである。
【0080】
触媒粒子は、一般に基板または触媒床等の適当な支持体に、散布するなどの方法により載せて使用する。基板または触媒床への触媒粒子の散布は、触媒粒子を直接散布して良いが、エタノール等の溶媒に懸濁させて散布し、乾燥させることにより所望の量を散布しても良い。
【0081】
触媒粒子は、原料ガスと反応させる前に、活性化させることも好ましい。活性化は通常、HまたはCOを含むガス雰囲気下で加熱することにより行われる。これらの活性化操作は、必要に応じて、HeやNなどの不活性ガスで希釈することにより実施することができる。活性化を実施する温度は、好ましくは400〜600℃、より好ましくは450〜550℃である。
【0082】
気相成長法の反応装置に特に制限はなく、固定床反応装置や流動床反応装置といった反応装置により実施することができる。
【0083】
気相成長の炭素源となる原料ガスは、CO及びHを含む混合ガスが利用される。
【0084】
ガスの添加濃度{(H/(H+CO)}は、好ましくは0.1〜30vol%、より好ましくは2〜20vol%である。添加濃度が低すぎると円筒状のグラファイト質網面が繊維軸に平行したカーボンナノチューブ様の構造を形成してしまう。一方、30vol%を超えると釣鐘状構造体の炭素側周面の繊維軸に対する傾斜角が大きくなり、魚骨形状を呈するため繊維方向の導電性の低下を招く。
【0085】
また、原料ガスは不活性ガスを含有していてもよい。不活性ガスとしては、CO、N、He、Ar等が挙げられる。不活性ガスの含有量は、反応速度を著しく低下させない程度が好ましく、例えば80vol%以下、好ましくは50vol%以下の量である。また、HおよびCOを含有する合成ガスまたは転炉排出ガス等の廃棄ガスを、必要により適宜処理して使用することもできる。
【0086】
気相成長を実施する反応温度は、好ましくは400〜650℃、より好ましくは500〜600℃である。反応温度が低すぎると繊維の成長が進行しない。一方、反応温度が高すぎると収量が低下してしまう。反応時間は、特に限定されないが、例えば2時間以上であり、また12時間程度以下である。
【0087】
気相成長を実施する反応圧力は、反応装置や操作の簡便化の観点から常圧で行うことが好ましいが、Boudouard平衡の炭素析出が進行する範囲であれば、加圧または減圧の条件で実施しても差し支えない。
【0088】
この微細な炭素繊維の製造方法によれば、触媒単位重量あたりの微細な炭素繊維の生成量は、従来の製造方法に比べて格段に大きいことが示された。この微細な炭素繊維の製造方法による微細な炭素繊維の生成量は、触媒単位重量あたり40倍以上であり、例えば40〜200倍である。その結果、前述のような不純物、灰分の少ない微細な炭素繊維の製造が可能である。
【0089】
この微細な炭素繊維の製造方法により製造される微細な炭素繊維に特有な接合部の形成過程は明らかではないが、発熱的なBoudouard平衡と原料ガスの流通による除熱とのバランスから、前記触媒から形成されたコバルト微粒子近傍の温度が上下に振幅するため、炭素析出が断続的に進行することにより形成されるものと考えられる。即ち、[1]釣鐘状構造体頭頂部形成、[2]釣鐘状構造体の胴部成長、[3]前記[1]、[2]過程の発熱による温度上昇のため成長停止、[4]流通ガスによる冷却、の4過程が触媒微粒子上で繰り返されることにより、微細な炭素繊維構造特有の接合部が形成されると推定される。
【0090】
<微細な炭素短繊維の製造方法>
以上により、微細な炭素繊維を製造することができる。次に、微細な炭素短繊維は、微細な炭素繊維を分離して短繊維とすることで製造することができる。好ましくは、微細な炭素繊維にずり応力を加えることにより製造する。具体的な短繊維化処理方法としては擂潰機、回転ボールミル、遠心ボールミル、遠心遊星ボールミル、ビーズミル、マイクロビーズミル、アトライタータイプの高速ボールミル、回転ロッドミル、振動ロッドミル、ロールミル、3本ロールミルなどが好適である。微細な炭素繊維の短繊維化は乾式でも、湿式でも行うことが可能である。湿式で行う場合、樹脂を共存させて、或は樹脂とフィラーを共存させて行うことも出来る。また短繊維化前の微細な炭素繊維は凝集した毛玉のような状態を構成しているので、このような状態を解きほぐす微小なメディアを共存させると解砕、短繊維化が進みやすい。また、微細なフィラーを共存させることで、微細な炭素繊維の短繊維化と、フィラーの混合および分散とを同時に行うことも出来る。乾式短繊維化における雰囲気は不活性雰囲気も酸化雰囲気も目的によって選択することが出来る。
【0091】
ずり応力を加えることにより容易に微細な炭素繊維が短繊維化する理由は、微細な炭素繊維の構造に由来する。つまり、微細な炭素繊維は、その釣鐘状構造単位集合体がHead−to−Tail様式で間隔をもって連結して繊維を形成しているためである。繊維にずり応力が加わると、繊維は図6の矢印方向の繊維軸方向に引っ張られて、接合部を構成する炭素基底面間で滑りが生じ(図6のA:カタカナの「ハ」形部分)、Head−to−Tail接続部で釣鐘状構造単位集合体が1個から数十個の単位で引き抜かれ、短繊維化が起きる。即ち、Head−to−Tail接合部は同心円状微細炭素繊維のように繊維軸方向に連続した炭素の二重結合で形成されているのではなく、結合エネルギーの低いファンデルワールス力を主体とする結合で形成されているからである。微細な炭素繊維と、これを短繊維化した微細な炭素短繊維の結晶性を炭素層間隔および真比重で比較すると、両者の炭素結晶性に差異は認められない。しかしながら、微細な炭素繊維と比較して、短繊維化後の微細な炭素短繊維は、2〜5%程度表面積が増加する。この程度の表面積の増加は短繊維化に起因するものと考えられ、微細な炭素繊維の短繊維化は微細な炭素繊維の釣鐘状構造単位集合体の炭素結晶性を損なうことなく、釣鐘状構造単位集合体を単にその接合部位で引き抜くように分離したものであることが分かる。
【0092】
<<樹脂成分>>
本発明において、微細な炭素繊維または微細な炭素短繊維が分散される樹脂成分としては、種々の樹脂を使用することができる。
【0093】
好ましい樹脂は、通常分子量1万以上の成形可能な高分子化合物であり、熱可塑性樹脂、エラストマー、熱硬化性樹脂、光及び電子線硬化性樹脂、反応性樹脂等のいずれであってもよい。また、高分子化合物は、主鎖が炭素で構成されている有機系子高分子、またはケイ素、硫黄、リンなどの無機元素を含有する無機系高分子であってもよい。
【0094】
好適な熱可塑性樹脂としては、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレン・酢酸ビニル・コポリマー樹脂、エチレン・ビニル・コポリマー樹脂、エチレン・アクリル酸エチル・コポリマー樹脂、アイオノマー等)、ポリアミド系樹脂(ナイロン6、ナイロン66、ナイロン12、ナイロン11等の脂肪族ポリアミドおよびその共重合体ナイロン66/6T、ナイロン6T/6I、ナイロンMXD6等の芳香族ポリアミドおよびその共重合体等)、ポリビニル系樹脂(ポリ塩化ビニル、スチレン、ABS樹脂等)、ポリエステル系樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフトレート、ポリカーボネート、液晶ポリマー等)、ポリエーテル系樹脂(ポリオキシメチレン、ポリフェニレン・エーテル、芳香族ポリサルホン、ポリエーテル・ケトン類、ポリフェニレン・サルファイド、ポリエーテル・イミド等)、フッ素樹脂(ポリテトラフルオロエチレン、ポリビニリデンフルオライド等)が挙げられ、これらの樹脂は単独または2種以上の混合物であってもよい。
【0095】
また、樹脂成分として、熱可塑性エラストマー(オレフィン系、スチレン系、エステル系、アミド系、ウレタン系、ポリブタジェン系等)、および生物分解樹脂なども使用できる。また、熱硬化性樹脂としては、フェノール、アミノ、不飽和ポリエステル、ポリイミド、ポリウレタン、エポキシ,シリコーン等が代表的である。
【0096】
樹脂成分として、分子量が1万未満のオリゴマー、低分子量化合物のグリース、オイル等も使用可能であり、微細な炭素繊維の機能が損なわれずに組成物とすることができる。
【0097】
<<導電性樹脂組成物>>
本発明の導電性樹脂組成物は、上述の微細な炭素繊維(微細な炭素短繊維を包含する)と樹脂成分を含有するものであり、微細な炭素繊維の優れた分散性のため、「従来の極細炭素繊維」に比べて広範囲で配合量を変化させることができる。微細な炭素繊維の配合量は、目的の導電性が得られる範囲で、かつ成形性の低下、成形品の機械的特性の低下を招かない範囲で適宜変更することができる。一般的には、配合量は、組成物総質量に対して、0.1〜40質量%、より好ましくは0.25〜10質量%、より好ましくは0.5〜8質量%である。
【0098】
本発明の導電性樹脂組成物では、樹脂に微細な炭素繊維を複合することにより、以下の各用途において、メリットが得られる。成型加工用途では、加工性が向上し、変形及び収縮が抑制される。電気及び電子用途では、帯電が防止され、導電性付与及び電磁波遮蔽が発現される。補強用途では、弾性率、剛性、引張強度及び耐衝撃性が改善される。熱的用途では、低膨張性、熱伝導及び耐熱性が改善される。音響及び振動用途では、振動減衰性及びスピーカー等振動子特性が改善される。トライポロジー用途では、耐摩耗性、摺動性及び粉落ち防止性が改善される。難燃用途では、ドリップ防止性等が改善される。
【0099】
本発明の導電性樹脂組成物は、目的とする機能をさらに効果的に発現するために、付加成分を併用することができる。このような付加成分としては、各種顔料、フィラー等が挙げられる。
【0100】
顔料としては、体質顔料(硫酸バリウム、炭酸カルシウム、シリカ、酸化アルミニウム等の透明性白色顔料)、黒色顔料(カーボンブラック、マグネタイト等)、白色顔料(二酸化チタン、酸化亜鉛、二酸化錫、酸化ジルコニウム等)、黒色及び有色顔料(コバルトブルー、チタンイエロー等)が挙げられる。
【0101】
フィラーとしては、導電性フィラー{金属系(銀、銅、ニッケル、ステンレス繊維等)、酸化物系(ZnO,ITO,ATO、窒化物、炭化物、ホウ化物)、炭素系(アセチレンブラック、ケッチェンブラック(ケッチェン・ブラック・インターナショナル社の登録商標))、有機系}、磁性フィラー(フェライト、Sm/Co、Nd/Fe/B等)、圧電性フィラー、熱伝導性フィラー(Ag、h−BN、AlN、Al)、補強性フィラー(ガラス繊維、炭素繊維、MOS、タルク、雲母等)、成形加工性フィラー、耐衝撃フィラー、耐摩耗性フィラー、耐熱性フィラー(粘土鉱物、タルク、炭酸カルシウム、沈降性硫酸バリウム等)、難燃性フィラー(ホウ酸亜鉛、赤燐、リン酸アンモニウム、水酸化マグネシウム等)、防音防振性フィラー(鉄粉、硫酸バリウム、雲母、フェライト等)、固体潤滑剤フィラー(黒鉛、二硫化モリブデン、フッ素樹脂粉末、タルク等)、熱線輻射フィラー(ハイドロタルサイト、酸化アルミニウム、木炭、酸化マグネシウム等)等が挙げられる。
【0102】
また、フィラーの形状は、粒状、真球状(易加工性、破壊靭性の向上)、偏平状(薄片状)(剛性、制振、表面潤滑性)、針状(機械的熱的補強、導電効率、制振)があり、目的に応じ利用できる。これらの付加成分は、導電性樹脂組成物の使用目的に合わせて適宜添加することができる。典型的には、付加成分は、導電性樹脂組成物の総質量の2質量%から40質量%の範囲で添加される。
【0103】
本発明の導電性樹脂組成物は、(a)樹脂成分、(b)微細な炭素繊維および任意成分として付加成分を、公知の混合方法によって混合して調製される。特に、微細な炭素繊維(微細な炭素短繊維を包含する)は、分散性に優れるため、公知の混練方法、混練機で製造することができる。
【0104】
例えば、樹脂に、微細な炭素繊維および必要に応じて付加成分を加えた後、ロールミル、溶融ブレンダー(バンバリーミキサー、ブラベンダー、コニーダー)、一軸または二軸押出混練機を用いて、溶融または軟化状態の樹脂へ分散させることにより実施できる。微細な炭素繊維および付加成分の供給方法は、一括でもよく多段でも良い。
【0105】
本発明の導電性樹脂の一つの用途として、電池、キャパシタおよび電気化学キャパシタ等の非水溶媒系蓄電デバイスの電極用に用いられる導電性バインダーが挙げられる。導電性バインダーは、微細な炭素繊維(微細な炭素短繊維を含む)とストラクチュア構造を有する炭素材料と樹脂成分とが複合化されていることを特徴とする。ストラクチュア構造とは、球状カーボン粒子多数が、ブドウの房状に連結あるいは分岐した構造のこと示す。ストラクチュア構造を有する炭素材料としては、一般的に導電材料として使用されるケッチェンブラック(ケッチェン・ブラック・インターナショナル社の登録商標)、アセチレンブラック、SUPER P(ティムカル・グラファイト・アンド・カーボン社の登録商標)、SUPER S、KS−4およびKS−6(これら3つは、ティムカル・グラファイト・アンド・カーボン社の製品名)等などが挙げられ、中でも表面積が20〜300m/gであるものが好ましい。
【0106】
導電性バインダーとして使用するとき、樹脂成分としては、従来から電極用バインダーとして使用されている樹脂が使用される。例えば、ポリテトラフルオロエチレン(PTFE)等のフッ素系重合体;ポリエチレン、ポリプロピレン、エチレン・プロピレン重合体等のオレフィン系重合体;アクリル酸メチル重合体等のビニル重合体;スチレン・ブタジエン重合体、スチレン・ブタジエン・イソプレン重合体等のジエン系重合体;カルボキシメチルセルロース等のセルロース類、及びこれらのアンモニウム塩並びにアルカリ金属塩;変性ポリ(メタ)アクリル酸等のポリカルボン酸類、及びこれらのアルカリ金属塩;ポリビニルアルコール、(メタ)アクリル酸とビニルアルコールの共重合体等、酸とアルコールの共重合体等の水酸基を有する重合体等が挙げられる。導電性バインダーの組成は、全導電材(微細な炭素繊維+ストラクチュア構造を有する炭素材料)と樹脂成分との質量比を0.5:1から4:1の範囲にすることが好ましい。導電性バインダーの場合、微細な炭素繊維の配合量は、組成物総質量に対して、前述の範囲を超えていてもよく、例えば70質量%程度まで含有されていてもよく、好ましくは、40〜70質量%である。
【0107】
この導電性バインダーを用いて電極を作製することにより、電極活物質間の結着が、導電性を損なうことなく行われるので、蓄電デバイスとしての放電特性あるいは充放電特性が劣化しない。また出力密度の増大を可能とする。
【0108】
導電性バインダーは、以下の(a)〜(c)の工程により製造されるのが好ましい。
(a)樹脂成分の水分散液および/または水溶液に、微細な炭素繊維(微細な炭素短繊維を含む)とストラクチュア構造を有する炭素材料を、剪断力を有する攪拌機にて分散させる工程、
(b)前記(a)の工程で作製される分散液に、アルコールあるいは金属塩水溶液を加えて、複合材料を析出させる工程、
(c)前記複合材料を濾過、洗浄および乾燥する工程
【0109】
微細な炭素繊維(微細な炭素短繊維を含む)を添加する場合は、固体で加えるよりも、界面活性剤などの分散剤を用いて分散させた水溶液として加える方が好ましい。分散剤の種類によっては、前記(b)工程の前にアンモニア水でアルカリ性にした後、複合材料を析出させるのが良い。
【0110】
前記(a)工程における樹脂成分濃度は適宜で良く、樹脂成分と微細な炭素繊維(微細な炭素短繊維を含む)および炭素材料の質量比も用途に応じて調整可能である。
【0111】
前記(b)工程にて加える溶剤は、金属塩不純物を混入しないという観点から、アルコールが好ましい。アルコールとしては、樹脂成分の融点以下で乾燥可能な低沸点溶剤が好ましく、メタノール、エタノールおよびイソプロピルアルコールがより好ましい。
【0112】
本発明の導電性樹脂組成物の成形法及び成形品の形状は、特に限定されない。成形法としては、溶融紡糸、押出成形、ブロー成形、射出成形、塗工、プレス成形等各種方法が利用でき、成形品の形状及び組成物に応じて適宜選択する。成形品の形状としては、フィルム、シート、フィラメント、棒、チューブ、ベルト、立体成形品などが挙げられる。本発明の組成物から得られる導電性成形加工品は、電気電子分野や自動車分野における電磁波遮蔽部材、帯電防止部品、静電塗装用部材、各種蓄電デバイス電極として、さらには、半導体デバイスの製造、搬送工程におけるトレー、包装材、クリーンルーム用の建材、無塵衣、また、電子機器導電部材(ベルト、鞘、ロール、コネクター、ギヤ、チューブ等)、などの用途に有用である。
【0113】
蓄電デバイス電極の塗工法については、特に限定されないが、水分散液での塗工が好ましい。水分散液で塗工する場合、セルロース誘導体の高分子水溶液、あるいはセルロース誘導体と他の水溶解性高分子を有する水溶液に、本発明の導電性バインダーを分散させることにより、電極活物質がゲル化せず、水分散液で使用可能である。セルロース誘導体はカルボキシメチルセルロース(CMC)の塩であることが好ましく、他の水溶解性高分子としては、ポリアニリンスルホン酸など酸性のものが好ましい。
【実施例】
【0114】
以下に実施例を比較例とともに説明する。
【0115】
参考例A1〜A3:微細な炭素繊維の製造
<参考例A1>
イオン交換水500mLに硝酸コバルト〔Co(NO・6HO:分子量291.03〕115g(0.40モル)、硝酸マグネシウム〔Mg(NO・6HO:分子量256.41〕102g(0.40モル)を溶解させ、原料溶液(1)を調製した。また、重炭酸アンモニウム〔(NH)HCO:分子量79.06〕粉末220g(2.78モル)をイオン交換水1100mLに溶解させ、原料溶液(2)を調製した。次に、反応温度40℃で原料溶液(1)と(2)を混合し、その後4時間攪拌した。生成した沈殿物のろ過、洗浄を行い、乾燥した。
【0116】
これを焼成した後、乳鉢で粉砕し、43gの触媒を取得した。本触媒中のスピネル構造の結晶格子定数a(立方晶系)は0.8162nm、置換固溶によるスピネル構造中の金属元素の比はMg:Co=1.4:1.6であった。
【0117】
石英製反応管(内径75mmφ、高さ650mm)を立てて設置し、その中央部に石英ウール製の支持体を設け、その上に触媒0.9gを散布した。He雰囲気中で炉内温度を550℃に加熱した後、CO、Hからなる混合ガス(容積比:CO/H=95.1/4.9)を原料ガスとして反応管の下部から1.28L/分の流量で7時間流し、微細な炭素繊維を合成した。
【0118】
収量は53.1gであり、灰分を測定したところ1.5重量%であった。生成物のXRD分析で観察されたピーク半価幅W(degree)は3.156、d002は0.3437nmであった。またTEM画像から、得られた微細な炭素繊維を構成する釣鐘状構造単位及びその集合体の寸法に関するパラメータは、D=12nm、d=7nm、L=114nm、L/D=9.5、θは0から7°であり、平均すると約3°であった。また、集合体を形成する釣鐘状構造単位の積層数は4乃至5であった。尚、D、dおよびθについては、集合体の塔頂から(1/4)L、(1/2)Lおよび(3/4)Lの3点について測定した。
【0119】
参考例A1で得られた微細な炭素繊維のTEM像を図3に示す。
【0120】
<参考例A2>
イオン交換水900mLに硝酸コバルト〔Co(NO・6HO:分子量291.03〕123g(0.42モル)を溶解させた後、さらに酸化マグネシウム(MgO:分子量40.30)17g(0.42モル)を加えて混合し原料スラリー(1)を調製した。また、重炭酸アンモニウム〔(NH)HCO:分子量79.06〕粉末123g(1.56モル)をイオン交換水800mLに溶解させ、原料溶液(2)を調製した。次に、室温で原料スラリー(1)と原料溶液(2)を混合し、その後2時間攪拌した。生成した沈殿物のろ過、洗浄を行い、乾燥した。これを焼成した後、乳鉢で粉砕し、48gの触媒を取得した。本触媒中のスピネル構造の結晶格子定数a(立方晶系)は0.8150nm、置換固溶によるスピネル構造中の金属元素の比はMg:Co=1.2:1.8であった。
【0121】
石英製反応管(内径75mmφ、高さ650mm)を立てて設置し、その中央部に石英ウール製の支持体を設け、その上に触媒0.3gを散布した。He雰囲気中で炉内温度を500℃の温度に加熱した後、反応管の下部からHを0.60L/分の流量で1時間流し、触媒を活性化した。その後、He雰囲気中で炉内温度を575℃まで上げ、CO、Hからなる混合ガス(容積比:CO/H=92.8/7.2)を原料ガスとして0.78L/分の流量で7時間流し、微細な炭素繊維を合成した。
【0122】
収量は30.8gであり、灰分は0.6重量%であった。生成物のXRD分析で観察されたピーク半価幅W(degree)は3.141、d002は0.3433nmであった。またTEM画像から、得られた微細な炭素繊維を構成する釣鐘状構造単位及びその集合体の寸法に関するパラメータは、D=10nm、d=5nm、L=24nm、L/D=2.4、θは1から14°であり、平均すると約6°であった。また、集合体を形成する釣鐘状構造単位の積層数は4乃至5であった。尚、D、dおよびθについては、集合体の塔頂から(1/4)L、(1/2)Lおよび(3/4)Lの3点について測定した。
【0123】
参考例A2で得られた微細な炭素繊維のTEM像を図4に示す。
【0124】
<参考例A3>
硝酸マグネシウムの代わりに酢酸マグネシウム〔Mg(OCOCH・4HO:分子量214.45〕86g(0.40モル)を用いたほかは、参考例A1と同様に触媒調製を行った。得られた触媒中のスピネル構造の結晶格子定数a(立方晶系)は0.8137nm、置換固溶によるスピネル構造中の金属元素の比はMg:Co=0.8:2.2であった。
【0125】
石英製反応管(内径75mmφ、高さ650mm)を立てて設置し、その中央部に石英ウール製の支持体を設け、その上に触媒0.6gを散布した。He雰囲気中で炉内温度を500℃の温度に加熱した後、反応管の下部からHを0.60L/分の流量で1時間流し、触媒を活性化した。その後、He雰囲気中で炉内温度を590℃まで上げ、CO、Hからなる混合ガス(容積比:CO/H=84.8/15.2)を原料ガスとして0.78L/分の流量で6時間流し、微細な炭素繊維を合成した。
【0126】
収量は28.2gであり、灰分は2.3重量%であった。生成物のXRD分析で観察されたピーク半価幅W(degree)は2.781、d002は0.3425nmであった。またTEM画像から、得られた微細な炭素繊維を構成する釣鐘状構造単位及びその集合体の寸法に関するパラメータは、D=12nm、d=5nm、L=44nm、L/D=3.7、θは0から3°であり、平均すると約2°であった。また、集合体を形成する釣鐘状構造単位の積層数は13であった。尚、D、dおよびθについては、集合体の塔頂から(1/4)L、(1/2)Lおよび(3/4)Lの3点について測定した。
【0127】
参考例A3で得られた微細な炭素繊維のTEM像を図5に示す。
【0128】
<参考例B1>
参考例A1と同様にして得た触媒を用いて、石英製反応管(内径75mmφ、高さ650mm)を立てて設置し、その中央部に石英ウール製の支持体を設け、その上に触媒0.9gを散布した。He雰囲気中で炉内温度を545℃に加熱した後、CO、Hからなる混合ガス(容積比:CO/H=95.5/4.5)を原料ガスとして反応管の下部から1.45L/分の流量で7時間流し、微細な炭素繊維を合成した。
【0129】
収量は56.7gであり、灰分を測定したところ1.4重量%であった。生成物のXRD分析で観察されたピーク半価幅W(degree)は3.39、d002は0.3424nmであった。
【0130】
以上により得られた微細な炭素繊維を直径2mmのセラミックボールミルで所定時間処理して微細な炭素短繊維を調製した。20時間後の微細な炭素短繊維のTEM画像を図7および図8に示す。また、図7および図8のTEM画像から、得られた微細な炭素短繊維を構成する釣鐘状構造単位及びその集合体の寸法に関するパラメータは、D=10.6〜13.2nm、L/D=2.0〜5.5、θ=0.5°〜10°であった。なお、ここに示すθはTEM画像の繊維軸中心に対して左右の炭素層傾斜の平均値を記載した。集合体を形成する釣鐘状構造単位の積層数は10〜20であった。
【0131】
<材料>
実施例、比較例で使用した各材料は次のとおりである。
【0132】
・極細炭素繊維
(1)多層カーボンナノチューブ(アルドリッチ試薬):
外径5〜25nm、内径3〜10nm、層数3〜17、長さ0.5〜10μm
(2)プレートレット型カーボンナノファイバー((株)ジェムコ製CNF−P):
外径20〜100nm、長さ0.1〜1μm
【0133】
・樹脂
(1)低密度ポリエチレン(日本ポリケム(株)製LF441H)
(2)ポリアミド6(宇部興産(株)製UBEナイロン1010X1)
(3)ポリアミド6(宇部興産(株)製UBEナイロン1030B)
(4)ポリアミド66(宇部興産(株)製UBEナイロン2015B)
(5)ポリアミド6/66(宇部興産(株)製UBEナイロン5013B)
(6)ポリアミド6/66(宇部興産(株)製UBEナイロン5034B)
(7)ポリアミド6/66/12(宇部興産(株)製TERPALEX6434B)
(8)ポリアミド12(宇部興産(株)製UBESTA3012U)
(9)ポリアミド12(宇部興産(株)製UBESTA3030XA)
(10)アモルファスポリアミド(三井デユポンポリケミカル(株)製シーラー)
(11)ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製ユーピロン H−4000、S−3000、E−2000)
(12)シリコーンゴム(東レダウコーニング(株)ゴム硬度30)
【0134】
<測定>
炭素繊維の粉末体積抵抗値は、粉体抵抗測定システムMCP−PD51型((株)ダイヤインスツルメンツ製)、樹脂組成物の体積抵抗値は、低抵抗率計ロレスタGP(MCP−T610)および高抵抗率計ハイレスタUP(MCP−HT450)((株)ダイヤインスツルメンツ製)で測定した。ゴム硬度は高分子計器(株)製アスカーゴム硬度計A型で測定した。
【0135】
ポリアミドの粘度は、96%硫酸でポリマー濃度1%で測定した相対粘度である。
【0136】
<実施例1>
参考例A1と同様にして製造した微細な炭素繊維と低密度ポリエチレン樹脂とを適当量配合し、3本ロールミルで160℃にて均一に加熱溶融混合して、繊維を樹脂中に分散させた。得られた溶融組成物をペレット化して、導電性樹脂組成物を得た。このペレットをフィルム成形機により厚さ50μmのフィルムに溶融成形した。得られたフィルムの体積抵抗値(Ω・cm)(印加電圧10V)の測定結果を、配合組成とともに表1に示す。
【0137】
<比較例1>
カーボンナノチューブおよびトランプ状(プレートレット)炭素繊維と、低密度ポリエチレン樹脂とを実施例1と同様に配合、溶融混合、フィルム成形を行った。得られたフィルムの体積抵抗値の結果を、配合組成とともに表1に示す。
【0138】
【表1】

【0139】
<実施例2>
微細な炭素繊維とシリコーン生ゴムとを適当量配合し、3本ロールミルで均一に混合、分散し、導電性シリコーン組成物を得た。これを500μmの厚みにシート状に成形し、加硫した。シートの体積抵抗値(Ω・cm)(印加電圧10V)とゴム硬度を、配合組成とともに表2に示す。
【0140】
<実施例3>
参考例B1と同様に24ボールミル処理して得た微細な炭素短繊維と、シリコーン生ゴムとを適当量配合し、実施例2と同様の方法で3本ロールミルで均一に混合、分散し、導電性シリコーン組成物を得た。これを500μmの厚みにシート状に成形し、加硫した。シートの体積抵抗値(Ω・cm)(印加電圧10V)とゴム硬度を、配合組成とともに表2に示す。
【0141】
<比較例2>
カーボンナノチューブとシリコーンゴムとを実施例2と同様に、配合、混合し、シート成形、加硫を行った。得られたシートの体積抵抗値の結果を、配合組成とともに表2に示す。カーボンナノチューブ20質量%の配合物は、シリコーンゴムが硬くなり、シート化ができなかった。
【0142】
【表2】

【0143】
<実施例4>
微細な炭素繊維を7質量%、アモルファスポリアミドを93質量%で配合し、ヘンシェルミキサーで予備混合した後、配合物を二軸押出機により250℃で溶融混合し、溶融混合物をペレット化して導電性樹脂組成物を得た。このペレットを270℃にて溶融紡糸機(300デニール、48穴)を通して、ポリアミド繊維を得た。得られた糸の外径は、SEM観察から50μmで、単位長さ当たりの電気抵抗値(印加電圧10V)は7×10Ω/cmであった。
【0144】
<比較例3>
カーボンナノチューブ7質量%を、実施例3と同様に、アモルファスポリアミドに溶融混合、ペレット化し、溶融紡糸を行ったが、糸切れし、紡糸ができなかった。
【0145】
<実施例5>
微細な炭素繊維を7質量%、ナイロン6(宇部興産(株)製1010X1;相対粘度2.00)を93質量%で配合し、ヘンシェルミキサーで予備混合した後、配合物を二軸押出機により250℃で溶融混合しペレット化して導電性樹脂組成物を得た。このペレットを250℃にて射出成形し、ASTM規格に準拠して樹脂特性を測定した。またこのペレットを250℃にて溶融プレス成形し、体積抵抗値を測定した。結果を表3に示す。
【0146】
<実施例6>
ナイロン6(宇部興産(株)製1030B;相対粘度4.07)を使用した以外は、実施例5と同様にサンプルを作成し、評価した。結果を表3に示す。
【0147】
<比較例4>
実施例5で用いたナイロン6を用いて、微細な炭素繊維を用いることなく、実施例5の方法で樹脂物性を測定した。結果を表3に示す。
【0148】
【表3】

【0149】
<実施例7>
ナイロン66(宇部興産(株)製2015B;相対粘度2.45)を使用し、ペレット化のときの二軸押出機の温度を280℃、ペレットの射出成形のときの温度を280℃、ペレットの溶融プレス成形のときの275℃に設定した以外は実施例5と同様にサンプルを作成し、評価した。結果を表4に示す。
【0150】
<比較例5>
実施例7で用いたナイロン66を用いて、微細な炭素繊維を用いることなく、実施例5と同様にサンプルを作成し、評価した。結果を表4に示す。
【0151】
【表4】

【0152】
<実施例8>
ナイロン6/66共重合体(宇部興産(株)製5013B;相対粘度2.45;ナイロン6とナイロン66の成分比が85/15)を使用した以外は実施例5と同様にサンプルを作成し、評価した。結果を表5に示す。
【0153】
<実施例9>
ナイロン6/66共重合体(宇部興産(株)製5034B;相対粘度4.05;ナイロン6とナイロン66の成分比が80/20)を使用した以外は実施例5と同様にサンプルを作成し、評価した。結果を表5に示す。
【0154】
<比較例6>
実施例8で用いたナイロン6/66共重合体を用いて、微細な炭素繊維を用いることなく、実施例5と同様にサンプルを作成し、評価した。結果を表5に示す。
【0155】
【表5】

【0156】
<実施例10>
ナイロン6/66/12共重合体(宇部興産(株)製6434B;相対粘度4.05;ナイロン6とナイロン66とナイロン12との成分比が80/10/10)を使用し、ペレット化のときの二軸押出機の温度を230℃、ペレットの射出成形のときの温度を230℃、ペレットの溶融プレス成形のときの235℃に設定した以外は実施例5と同様にサンプルを作成し、評価した。結果を表6に示す。
【0157】
<比較例7>
実施例10で用いたナイロン6/66/12共重合体を用いて、微細な炭素繊維を用いることなく、実施例5と同様にサンプルを作成し、評価した。結果を表6に示す。
【0158】
【表6】

【0159】
<実施例11>
ナイロン12(宇部興産(株)製3012U;相対粘度1.60)を使用し、ペレット化のときの二軸押出機の温度を230℃、ペレットの射出成形のときの温度を230℃、ペレットの溶融プレス成形のときの235℃に設定した以外は実施例5と同様にサンプルを作成し、評価した。結果を表7に示す。
【0160】
<実施例12>
ナイロン12(宇部興産(株)製3030XA;相対粘度2.25)を使用し、ペレット化のときの二軸押出機の温度を230℃、ペレットの射出成形のときの温度を230℃、ペレットの溶融プレス成形のときの235℃に設定した以外は実施例5と同様にサンプルを作成し、評価した。結果を表7に示す。
【0161】
<比較例8>
実施例11で用いたナイロン12を用いて、微細な炭素繊維を用いることなく、実施例5と同様にサンプルを作成し、評価した。結果を表7に示す。
【0162】
【表7】

【0163】
<実施例13>
微細な炭素繊維3質量%を、ポリカーボネート樹脂97質量%で配合し、ヘンシェルミキサーで予備混合した後、配合物を二軸押出混練機により250℃で溶融混合し、溶融混合物をペレット化して導電性樹脂組成物を得た。このペレットを290℃にて溶融し、押出成形装置により厚さ100μm及び30μmのフィルム(30cm幅)を作成した。得られたフィルムの表面抵抗値(印加電圧10V)を測定した。結果を表8に示す。
【0164】
<比較例9>
カーボンナノチューブ3質量%を、実施例13と同様に、ポリカーボネート樹脂に溶融混合、ペレット化し、押出成形装置を用い、フィルム成形を行った。厚さ100μmのフィルムは作成するとこができたが、厚さ30μmのフィルムはサージングし、フィルムが途切れ、フィルム化は困難あった。得られたフィルムの表面抵抗値(印加電圧10V)を測定した。結果を表8に示す。
【0165】
【表8】

【0166】
<実施例14>
導電性バインダーの製造
10質量%PTFE(四フッ化エチレン樹脂)水分散液50gを含む水溶液300gに、微細な炭素繊維を5質量%分散させた水溶液40gを加えた。この溶液をホモジナイザーで攪拌しながら、アセチレンブラック5gを徐々に投入した。投入30分後、メタノールを加えて複合化合物を析出させた。ここで、メタノールで沈殿しない場合は、水溶液が酸性であるので、1〜3規定アンモニア水でアンモニア臭がするまで加えてアルカリ性にして、その後、メタノール100mlを加えて、複合化合物を析出させてもよい。その複合化合物を濾過、洗浄した後、80℃で乾燥させることにより、約10gの導電性バインダーを得た。この時の導電性バインダーの組成は、全導電材(微細な炭素繊維+アセチレンブラック)とPTFEの質量比は2:1、アセチレンブラックと微細な炭素繊維の質量比は2:1であった。
【0167】
<実施例15>
導電性バインダーを含むLiCoO電極の製造
1.9%のCMC溶液8.77gに実施例14の導電性バインダー0.5gを加え、ジューサーミキサーを用いて15分間攪拌した。次いで電極活物質LiCoO6.0gを加え、さらに15分間攪拌することにより、電極用スラリーを作製した。得られたスラリーをアルミニウム箔に塗布、乾燥することにより電極を得た。電極中の組成は、活物質LiCoOが90%、全バインダー(PTFE+CMC)5%、全導電材(アセチレンブラック+微細な炭素繊維)が5%である。
【0168】
<実施例16>
導電性バインダーを含むLiCoO電極を用いた電池特性
正極に実施例15の電極、負極に金属Li、電解液に1M−LiPFのエチレンカーボネート(EC)およびメチルエチルカーボネート(MEC)溶液(容量比でEC:MEC=3:7)を用いてコイン電池を作製し、充放電容量を測定した。充放電容量の測定は、1Cレートでの定電流で充電し、電圧が4.2Vに達した後、放電を1Cレートの定電流で行い、電圧が3.0Vに達するまでの容量を放電容量とした。結果を表9に示す。
【0169】
<比較例10>
1.9%のCMC溶液11.68gに、10質量%PTFE水分散液2.22g、微細な炭素繊維を15質量%分散させた水溶液1.48g、アセチレンブラック0.296gを加え、ジューサーミキサーを用いて15分間攪拌した。次いで電極活物質LiCoO8.0gを加え、さらに15分間攪拌することにより、電極用スラリーを作製した。得られたスラリーをアルミニウム箔に塗布、乾燥することにより電極を得た。
【0170】
得られた電極を正極に用いて、実施例16と同様にコイン電池を作製し、充放電容量を測定した。結果を表9に示す。
【0171】
【表9】

【0172】
導電性バインダー用いた実施例16では、比較例10に比べ、1サイクル目の放電容量、1サイクル目の効率および5サイクル目の放電容量維持率が高く、電極活物質間の結着が導電性を損なうことなく行われていることがわかる。
【0173】
<実施例17>
導電性バインダーを含むLiFePO電極の製造
2.0%のCMC溶液10.0gに実施例14の導電性バインダー0.54gを加え、ジューサーミキサーを用いて15分間攪拌した。次いで電極活物質LiFePO4.27gを加え15分間攪拌し、さらに電極内の導電材などの分布を均一にするために、遊星型スラリー調整器を用いて、電極用スラリーを調整した。得られたスラリーをアルミニウム箔に塗布、乾燥、プレスすることにより電極を得た。電極中の組成は、活物質LiFePOが85.4%、全バインダー(PTFE+CMC)7.6%、全導電材(アセチレンブラック+微細な炭素繊維)が7.2%である。
【0174】
<実施例18>
導電性バインダーを含むLiFePO電極を用いた電池特性
正極に実施例17の電極、負極に金属Li、電解液に1M−LiPFのエチレンカーボネート(EC)およびメチルエチルカーボネート(MEC)溶液(容量比でEC:MEC=3:7)を用いてコイン電池を作製し、充放電容量を測定した。充放電容量の測定は、2Cレートでの定電流で充電し、電圧が4.2Vに達した後、放電を2Cレートの定電流で行い電圧が2.8Vに達するまでの容量を放電容量とした。結果を表10および図9に示す。
【0175】
<比較例11>
2.0%のCMC溶液10.0gに、PTFE0.18g、微細な炭素繊維0.18g、アセチレンブラック0.18gを加え、ジューサーミキサーを用いて15分間攪拌した。次いで電極活物質LiFePO4.27gを加え15分間攪拌後、さらに電極内の導電材などの分布を均一にするために、遊星型スラリー調整器を用いて、電極用スラリーを調整した。得られたスラリーをアルミニウム箔に塗布、乾燥、プレスすることにより電極を得た。
【0176】
得られた電極を正極に用いて、実施例18と同様にコイン電池を作製し、充放電容量を測定した。結果を表10に示す。
【0177】
【表10】

【0178】
導電性バインダー用いた実施例18は、比較例11に比べ放電容量が高く、電極活物質間の結着が導電性を損なうことなく行われていることがわかる。
【産業上の利用可能性】
【0179】
本発明の導電性樹脂組成物は、樹脂本来の物性を維持しながら、高い導電性を示す。従って、電気電子分野や自動車分野における電磁波遮蔽部材、帯電防止部品、静電塗装用部材として、さらには、半導体デバイスの製造、搬送工程におけるトレー、包装材、クリーンルーム用の建材、無塵衣、また、電子機器導電部材(ベルト、鞘、ロール、コネクター、ギヤ、チューブ等)、などの用途に有用である。
【符号の説明】
【0180】
11 構造単位
12 頭頂部
13 胴部
21、21a、21b、21c 集合体

【特許請求の範囲】
【請求項1】
(a)樹脂成分、および
(b)前記樹脂成分中に分散され、炭素原子のみから構成されるグラファイト網面が、閉じた頭頂部と、下部が開いた胴部とを有する釣鐘状構造単位を形成し、前記釣鐘状構造単位が、中心軸を共有して2〜30個積み重なって集合体を形成し、前記集合体が、Head−to−Tail様式で間隔をもって連結して繊維を形成している微細な炭素繊維
を含有する導電性樹脂組成物。
【請求項2】
前記微細な炭素繊維の前記胴部の母線と繊維軸とのなす角θが15°より小さいことを特徴とする請求項1記載の組成物。
【請求項3】
前記微細な炭素繊維の前記集合体胴部の端の外径Dが5〜40nm、内径dが3〜30nmであり、該集合体のアスペクト比(L/D)が2〜150であることを特徴とする請求項1または2記載の組成物。
【請求項4】
前記微細な炭素繊維が、Fe、Co、Ni、Al、MgおよびSiからなる群より選ばれる元素を含む触媒を用いた気相成長法により製造され、前記微細な炭素繊維中の灰分が4質量%以下であることを特徴とする請求項1〜3のいずれか1項に記載の組成物。
【請求項5】
前記微細な炭素繊維が、100個以下の前記集合体が連結して構成されている微細な炭素短繊維であることを特徴とする請求項1〜4のいずれか1項に記載の組成物。
【請求項6】
前記微細な炭素短繊維が、ずり応力を加えて短繊維化されて製造されたことを特徴とする請求項5記載の組成物。
【請求項7】
組成物総質量に対して、前記微細な炭素繊維を0.1質量%以上、40質量%未満の量で含有する請求項1〜6のいずれか1項に記載の組成物。
【請求項8】
前記樹脂成分が、熱可塑性樹脂から選ばれることを特徴とする請求項1〜7のいずれか1項に記載の組成物。
【請求項9】
前記樹脂成分が、ポリアミドであることを特徴とする請求項8記載の組成物。
【請求項10】
請求項1〜7のいずれか1項に記載の組成物とストラクチュア構造を有する炭素材料とが複合化されていることを特徴とする導電性バインダー。
【請求項11】
請求項10に記載の導電性バインダーを含む蓄電デバイス電極。
【請求項12】
請求項11に記載の蓄電デバイス電極を含む蓄電デバイス。

【図1】
image rotate

【図2】
image rotate

【図6】
image rotate

【図9】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−132011(P2012−132011A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2012−840(P2012−840)
【出願日】平成24年1月5日(2012.1.5)
【分割の表示】特願2009−204987(P2009−204987)の分割
【原出願日】平成21年9月4日(2009.9.4)
【出願人】(000000206)宇部興産株式会社 (2,022)
【Fターム(参考)】