説明

導電膜、導電性塗料、およびこれらの製造方法

【課題】 スクリーン印刷などで塗膜が可能であり、耐熱性と耐薬品性に優れ、さらに耐湿性にも優れた導電膜、導電性塗料、およびこれらの製造方法を提供する。
【解決手段】 基板2の表面2aにスクリーン印刷などで塗膜される導電性塗料60は、有機溶媒40とスメクタイト30を含んだゲル状であり、このゲル構造内に、導電性粒子20および溶媒に不溶な粒状のポリエーテルエーテルケトン樹脂材料10aが分散し、ゲル構造の内部に、導電性粒子20が沈降することなく保持されている。塗膜後に、加熱乾燥させて有機溶媒40を揮発させ、さらに加熱すると、ポリエーテルエーテルケトン樹脂10aが溶解し且つ固化して、耐熱性、耐湿性と耐薬品性に優れた合成樹脂内に導電性粒子20が分散した導電膜が得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、耐熱性、耐湿性と耐薬品性に優れた導電膜、およびスクリーン印刷などによって形成可能な導電性塗料、および前記導電性塗料および導電膜の製造方法に関する。
【背景技術】
【0002】
基板上に導電性塗料をスクリーン印刷等の方法でパターニングし、「焼結」または「焼成」することで、導電性の塗膜を形成することを、スパッタリングなどの物理蒸着法とフォトレジストとを用いて形成する「薄膜技術」と対比させて、一般に「厚膜技術」と呼んでいる。
【0003】
「厚膜技術」で用いられる塗料は、その基板に対する結合材で二分され、ガラスフリットの加熱冷却に伴う溶融固化を利用する「サーメット型」(別名「メタルグレーズ型」)と有機系高分子材料の接着力を利用する「有機バインダー型」がある。前者はセラミック、ガラス、金属、金属酸化物など、すべて無機系の材料で構成されるため、温度、湿度等の環境条件に対して安定であるという利点を持つものの、「焼結」温度が約1000℃必要であるなど、生産性、加工性に劣り高価であるという欠点をもつ。
【0004】
これに比べ、後者は導電性フィラー(導電性粒子)である金属粒子やカーボン材料を除けば、基板、結合材とも有機系材料であり、加熱温度も400℃以下であり、加工性も良く、比較的安価に生産できる。しかしながら、有機系高分子材料の性質は、熱膨張係数が大きく、吸脱湿による膨張収縮があり、導電性フィラー間の接触が変化しやすいために、抵抗値の安定性にかけるという欠点を有する。吸湿性が高い場合、導電性フィラーとして銀粒子を用いたものにおいては、銀マイグレーション現象を避ける工夫も必要である。そのため、従来は、種々の高分子材料が「有機バインダー型」塗料のバインダー(結合材)としての応用を試みられている。
【0005】
前記「有機バインダー型」塗料のバインダーに使われる合成樹脂には、塗料の時点では、スクリーン印刷などの塗布工程で流動する必要があるため、液状であるか、あるいは汎用の有機溶媒に溶解して、液状樹脂溶液であることが要求される。さらに、基板に塗布されて固化された後には、耐熱性、耐薬品性、耐湿性などの耐環境安定性が要求される。
【0006】
耐熱性を向上する為には、例えば、合成樹脂の分子量を大きくしたり、分子間相互作用を強くしたり(つまり、結晶性の樹脂にしたり)することが有効である。ところが、一般に、分子量の大きい樹脂は常温固体であり、有機溶媒への溶解性が悪い。結晶性を上げて分子間相互作用を高くすると、さらに有機溶媒への溶解性は悪くなる。そのため、汎用有機溶媒に溶解するレベルでは、十分な耐熱性は得られない。
【0007】
耐熱性を向上させる別の方法として、比較的低分子量のモノマー、オリゴマーを用いて三次元架橋させ、不溶不融の樹脂を作ることが挙げられる。代表的なものにはフェノール樹脂、エポキシ樹脂がある。これらの不溶不融の樹脂硬化物は耐熱性は良くなるが、内部にフェノール性水酸基やアミノ基、アミド基等の親水性官能基が残る。そのため、吸湿性、吸水性が高く、耐湿性に劣る。これを改善するためには、フェノール樹脂をクレゾールやキシレンで変性することなどが必要である。
【0008】
以下の特許文献1には、導電性フィラーであるカーボンブラック等を分散させるバインダー樹脂として、前述したようなキシレン変性フェノール樹脂やエポキシ樹脂を使用することが、開示されている。
【特許文献1】特開2004−79591号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
しかしながら、フェノール樹脂をクレゾールやキシレンで変性したものを導電膜のバインダー樹脂(結合材)として使用したものにおいても、吸湿性や吸水性を十分に満足するには至っていない。
【0010】
一方、耐熱性が高く、吸水性、吸湿性が低く、耐薬品性に優れた合成樹脂としてポリエーテルエーテルケトン樹脂が存在している。この合成樹脂を導電膜のバインダー(結合材)に使用できれば、耐環境安定性に優れた導電膜が得られる。このポリエーテルエーテルケトン樹脂は、さらに摩擦係数が低いため、この合成樹脂を接点が摺動するスイッチや可変抵抗器の導電膜(抵抗膜を含む)に使用することも考えられる。またこの合成樹脂は吸水率が低いため、導電性フィラー(導電性粒子)として銀粒子を用いた場合も、銀マイグレーションが起きにくく、また、導電性フィラーとしてカーボン粉を用いたものにおいては、抵抗値の安定した導電膜(抵抗膜)が得られることが期待できる。
【0011】
しかし、ポリエーテルエーテルケトン樹脂は汎用の有機溶媒に溶けず、スクリーン印刷などが可能な樹脂溶液を作ることができず、導電性粒子を分散した導電性塗料を作ることはできない。そのため、ポリエーテルエーテルケトン樹脂の分子量を低くしたり、側鎖を導入して結晶性を低下させ、有機溶媒に溶解できるようにすることも考えられる。しかし、分子量を下げたり側鎖を導入しても、スクリーン印刷が可能な程度に有機溶媒内に溶解させることはできない。また、分子量を下げたり側鎖を導入することによって、本来期待されるべき耐熱性や耐薬品性が大幅に劣化してしまう。
【0012】
本発明は、上記従来の課題を解決するものであり、有機溶媒に不溶なポリエーテルエーテルケトン樹脂を使用して、耐熱性、耐湿性及び耐薬品性に優れた導電膜を提供することを目的としている。
【0013】
また本発明は、ポリエーテルエーテルケトン樹脂を用いた前記導電膜を形成するのに最適な導電性塗料、さらにはこれらの製造方法を提供することを目的としている。
【課題を解決するための手段】
【0014】
第1の本発明は、基板表面にパターン形成された導電膜において、固化したポリエーテルエーテルケトン樹脂と、前記ポリエーテルエーテルケトン樹脂内に含まれた導電性粒子とを有することを特徴とするものである。
【0015】
本発明の導電膜は、有機溶媒に不溶なポリエーテルエーテルケトン樹脂を有しているため、耐熱性、耐湿性及び耐薬品性に優れたものとなる。また摩擦抵抗が低いため、表面に接点が摺動するスイッチや可変抵抗器としての用途にも適している。さらに、吸水率が低いため、高温で多湿の環境下で使用しても、水分を吸収しにくく、よって水分の吸収に起因する膨張によって導電膜の抵抗値が高くなったとしても、その割合は小さなものである。そのため、湿度による膨張収縮の大きなバインダーを用いた湿度センサ用導電膜の参照導電膜として使用したり、温度による導電率の変化の大きい導電性フィラー(導電性粒子)を分散して温度センサなどの用途にも使用できる。また、導電性粒子として、カーボン粉を用いた場合には、耐熱性や耐湿性が良く、抵抗値の安定性に優れた抵抗体(抵抗膜)を得ることができる。
【0016】
本発明は、前記ポリエーテルエーテルケトン樹脂内に、スメクタイトが含まれているものである。
【0017】
本発明の導電膜は、スメクタイトを含むことにより、この導電膜を形成するための導電性塗料として、スクリーン印刷時にパターン形成に適した流動特性をもつゲル状のものとすることができる。この導電性塗料には、有機溶媒には溶解できない分子量が例えば、概略10000以上と大きなポリエーテルエーテルケトン樹脂を、粉末や粒状体の状態で存在させることができ、この導電性塗料をパターン形成した後に、熱処理して、前記ポリエーテルエーテルケトン樹脂を溶融させて固化させることができる。このように、本発明の導電膜は、有機溶媒に不溶な分子量の大きな前記ポリエーテルエーテルケトン樹脂を有するものとできるため、この導電膜を、耐熱性、耐湿性や耐薬品性等に優れ、環境に対して極めて安定したものとすることができる。なお、前記導電性塗料は、前記熱処理により、スメクタイトの質量および体積がほぼ半減する。
【0018】
本発明において、前記導電膜中のスメクタイトの割合としては、例えば、前記ポリエーテルエーテルケトン樹脂と前記導電性粒子および前記スメクタイトの合計体積を100%としたときに、前記スメクタイトが2.8ないし8.9体積%含まれているものが好ましい。スメクタイトが前記体積割合の範囲で含まれたものは、スメクタイトの存在によっても導電性粒子どうしの接触性に影響を与えず、比抵抗の低い導電膜を形成することも可能である。
また、前記導電性粒子は銀とカーボンの少なくとも一方である。
【0019】
前記導電性塗料は、どのような導電性粒子であっても混入することができ、用途に応じた導電膜を形成することができる。
【0020】
第2の本発明は、スメクタイトを含む有機溶媒中に、ポリエーテルエーテルケトン樹脂の粒子および導電性粒子が含まれていることを特徴とする導電性塗料である。
【0021】
この導電性塗料は、スメクタイトを含む有機溶媒が、力を加えない状態ではゲル状の性質を有し、力を加えると容易にゾル状となる特性を利用している。すなわち、スクリーン印刷における静置時には塗料はゲル状であり、版(印刷マスク)の孔から流れ出ることはなく、印刷機稼動時(スキージの移動時)にはスキージの押圧により容易にゾル状となり、所定の孔から押し出され、孔から吐出後はすぐにゲル状になることで版の所定のパターン形状を維持するというスクリーン印刷などによる塗膜性に適した流動特性を得られる。ポリエーテルエーテルケトン樹脂の粉末や粒状体および導電性粒子は、このゲル状のスメクタイト分散溶液中に動きにくい状態で分散、集合した状態となるため沈降しにくい。また、前記有機溶媒の100重量部に対して、前記スメクタイトが、5.3から17.6重量部含まれていることが好ましい。
【0022】
スメクタイトが前記範囲内で含まれていると、印刷特性に優れた静止時にゲル状、稼動時にゾル状の導電性塗料を形成でき、ポリエーテルエーテルケトン樹脂の粒子と導電性粒子とを均一に分散させるることができる。スメクタイトの量が前記範囲未満であると、溶媒の一部だけがゲル状になり導電性塗料が十分な降伏値を得ることができず、樹脂や導電性粒子がゲル状内に均一に分散された状態で保持さず、導電性塗料内で、樹脂や導電性粒子が沈降しやすくなる。また、スメクタイトの量が前記範囲を超えると、スメクタイトが溶媒内に分散しきれず、導電性塗料内にスメクタイトの塊が存在することとなり、ポリエーテルエーテルケトン樹脂や導電性粒子が均一に分散できなくなり、さらにスクリーン印刷などによる塗膜特性も悪くなる。
【0023】
この導電性塗料も、前記導電性粒子を、銀とカーボンの少なくとも一方とすることが可能である。
【0024】
第3の本発明は、以下の工程を有することを特徴とする導電性塗料の製造方法である。
(a)有機溶媒内に、スメクタイトが分散したスメクタイト分散液を形成する工程と、
(b)前記スメクタイト分散液中に、ポリエーテルエーテルケトン樹脂の粒子および導電性粒子を分散させて導電性塗料を形成する工程。
【0025】
上記製造方法においても、前記有機溶媒の100重量部に対し、前記スメクタイトを5.3から17.6重量部含ませることが好ましい。また、前記導電性粒子は、銀とカーボンの少なくとも一方である。
【0026】
さらに第4の本発明は、前記いずれかに記載の製造方法で得られた導電性塗料を、基板上にパターン化して塗布して塗膜を形成する工程と、
加熱処理により、前記塗膜に含まれたポリエーテルエーテルケトン樹脂を溶融させて固化させる工程と、を有することを特徴とする導電膜の製造方法である。
【0027】
前記方法において、前記ポリエーテルエーテルケトン樹脂が固化した後の、ポリエーテルエーテルケトン樹脂と前記導電性粒子および前記スメクタイトとの合計体積を100体積%としたときに、前記スメクタイトを2.8から8.9体積%含むことが好ましい。
【発明の効果】
【0028】
本発明の導電膜は、ポリエーテルエーテルケトン樹脂を有しているため、耐熱性、耐湿性と耐薬品性に優れた導電パターンや各種センサなどを構成することができる。また、前記樹脂は摩擦係数が小さいため、接点が摺動するセンサを構成することもできる。さらに、耐熱性が有機材料中最高レベルにあり、かつ吸水率が低いため、高温雰囲気下や湿度変化の大きい環境下で使用しても、抵抗値の変化が小さい。よって、本発明の導電膜は、高温で湿度変化の大きい環境下で使用される電子装置における基板上の導電パターンとして適しており、また温度センサや湿度センサ用の導電パターン(例えば、参照抵抗用パターン)や、スイッチ接点部電極、あるいは可変抵抗器の抵抗膜(抵抗体)として使用できる。
【0029】
本発明の導電性塗料、および本発明の導電性塗料と導電膜の製造方法では、有機溶媒にスメクタイトを分散したスメクタイト分散液に、ポリエーテルエーテルケトン樹脂の粉末や粒状体、および導電性粒子が分散した導電性塗料が形成される。好ましくは、前記有機溶媒100重量部に対して、スメクタイトを5.3〜17.6重量部含むことにより、前記スメクタイト分散液がゲル状態における適度な降伏値、ゾル状態における適度な見掛けの粘性係数を持つようになり、スクリーン印刷に適した流動特性を呈するようになる。さらにゲル状スメクタイト分散液内に、ポリエーテルエーテルケトン樹脂の粒子および導電性粒子が均一に分散し、または分散・集合して保持された状態となる。スクリーン印刷などの塗膜工程では、導電性塗料の流動特性が、ゲル状−ゾル状の可逆変化をするスメクタイト分散液に依存するため、内部に含まれる樹脂および導電性粒子の総量を適切な範囲に保てば、樹脂/導電性粒子比にかかわらず、常に適切な塗膜特性を得ることができる。
【発明を実施するための最良の形態】
【0030】
図1は本発明の実施の形態の導電膜が形成された回路基板を示す部分斜視図、図2は、本発明の導電膜の製造方法の工程の一部であり、基板表面に導電塗料が塗布された状態を模式的に示す断面図(図1のII−II線断面部に相当する断面図)、図3は加熱工程後の導電膜の構造を模式的に示す図2と同様の断面部を示す断面図、図4は、導電性塗料および導電膜の製造工程を示す工程説明図、図5はスメクタイト分散液の流動特性を示す線図、図6はスメクタイトの質量(重量)の変化状態を示す線図である。図7は、導電性粒子としてカーボンブラックを含んだ導電膜の耐湿特性を示す線図である。
【0031】
図1に示す回路基板1は、基板2の表面2aに、回路パターン3が形成されている。前記回路パターン3は、複数の導電膜3aにより構成されている。図1に示す実施の形態では、前記導電膜3aが長手方向(図示Y1−Y2方向)に向って一定の幅寸法で帯状に延びている。そして、2つの前記導電膜3aは、幅方向(図示X1−X2方向)に所定間隔を空けて互いに平行に形成されている。本発明の導電膜は、前記のように平行に延びる回路パターンに限定されるものではなく、曲線形状の回路パターンや、部品を半田付けするランド部であってもよい。さらには、スイッチの接点や、可変抵抗器などのようにその表面を摺動子(可動接点)が摺動する抵抗体などであってもよい。
【0032】
前記基板2は、例えば、ポリイミドフィルム、ガラス−ポリイミド樹脂積層板、ガラス−シリコーンレジン積層板、アルミナ基板などで形成されている。
【0033】
図3に示すように、前記回路パターン3を構成する前記導電膜3aは、固化している合成樹脂10と、前記合成樹脂10内に分散し、あるいは分散し且つ部分的に集合した導電性粒子20で形成されている。
【0034】
合成樹脂10は、ポリエーテルエーテルケトン樹脂で形成されている。ポリエーテルエーテルケトン樹脂は、融点が334℃程度であり、耐熱性に優れている。これは二軸延伸PET(ポリエチレンテレフタレート)の融点(260℃程度)と比較すると十分に高いことを理解できる。ポリエーテルエーテルケトン樹脂は、例えば、260℃の溶融半田内に30秒浸漬しても溶融することはない。
【0035】
ポリエーテルエーテルケトン樹脂の相対湿度75%での吸水率は0.13%程度であり、二軸延伸PETの0.27%、ポリイミドの1.1%およびポリテーテルイミドの0.27%に比べて十分に低い。また、ポリエーテルエーテルケトン樹脂の引っ張り弾性率は300(kg/mm)であり、二軸延伸PETの370(kg/mm)と同程度で、ポリイミドの250(kg/mm)、およびポリエーテルイミドの210(kg/mm)に比べて高い。さらに、引き裂き抵抗は1500(g/mm)程度であり、二軸延伸PETの510(g/mm)程度や、ポリイミドの350(g/mm)に比べてきわめて高く、優れた機械的特性を有している。
【0036】
さらに、ポリエーテルエーテルケトン樹脂は、熱水、塩酸、カセイソーダ、放射線等を与えたときに変色や変質しにくい。
【0037】
また、合成樹脂10内にはスメクタイト30が含まれている(図3では図示を省略)。ここで、スメクタイトとは、粘土の中に含まれる粘土鉱物であり、モンモリロナイトとも呼ばれるものであり、通常は細かい粒状である。その特性は、水分を吸収したときに大きな膨潤性を示す。
【0038】
この導電膜3aは、有機溶媒にスメクタイトを分散させたスメクタイト分散液中に、バインダー(結合材)となるポリエーテルエーテルケトン樹脂の粉末または粒状物と、導電性粒子とを混在させた導電性塗料を、基板2の表面にスクリーン印刷し、その後の熱処理することで形成される。この導電性塗料には、どのような種類の導電性粒子であっても含ませることが可能であり、またポリエーテルエーテルケトン樹脂量および導電性粒子の総量を適切に保てば、樹脂/導電性粒子比も任意に選択できる。
【0039】
例えば、導電性粒子20は、球状、鱗片状(フレーク状)、樹枝状、繊維状や不定形の金属微粒子であり、例えば銀、銅、ニッケル、パラジウム、錫などの金属やこれらの金属の合金を使用できる。あるいは、前記いずれかの金属やガラス、プラスチックの表面に、さらに前記いずれかの金属を被覆したものであってもよい。また、導電性粒子20は、カーボンブラック、グラファイト(黒鉛)、カーボンファイバー、カーボンビーズなどの炭素系導電材料(カーボン材料)であってもよい。
【0040】
導電膜3aを形成する製造方法の工程は、図4に示される通りである。
導電膜3aは、基板2の表面2aに導電性塗料60をスクリーン印刷し、加熱処理を行うことで形成される。図2には、基板2の表面2aに、導電性塗料60がパターン形成された状態を模式的な断面図で示している。
【0041】
図4に示すように、導電性塗料60は、スメクタイト分散液50に、ポリエーテルエーテルケトン樹脂材料(ポリエーテルエーテルケトン樹脂の粒子)10aおよび導電性粒子20を混入することで形成される。
【0042】
スメクタイト分散液50は、有機溶媒(有機溶剤)40とスメクタイト30とで構成される。有機溶媒40は、ジプロピレングリコール、N−メチル−2−ピロリドンなどの極性溶媒であることが好ましい。これら極性溶媒は、沸点が高く、スメクタイト30と混合したときに、スメクタイト30が凝集することなく均一コロイド状に分散しやすくなる。有機溶媒40として極性の低いものを使用すると、スメクタイトの分散粒子が大きくなり、分散液は白濁しやすくなる。また、スメクタイト30は、例えば、四級アンモニウムカチオンで変性したスメクタイトのように、疎水性(親油性)のものが使用される。
【0043】
図4に示すように、スメクタイト30を有機溶媒40中に混ぜて、加熱、膨潤させると、薄い層状の結晶構造を持つスメクタイト30の結晶間に有機溶媒40が取り込まれ、スメクタイト30が膨潤する。さらに、スメクタイト30と前記有機溶媒40を擂潰機、ボールミル、ロールミル、ジェットミルなどを用いて破砕・分散し、スメクタイト分散液50を形成する。
【0044】
スメクタイト30を高濃度に含むスメクタイト分散液50では、スメクタイト30が凝集して三次元の格子状に内部構造を形成し、有機溶媒40の流動が抑制されてゲル状となる。
【0045】
有機溶媒40として、ジプロピレングリコールや、N−メチル−2−ピロリドンなどの高沸点の極性溶媒を使用することにより、有機溶剤40とスメクタイト30とを混合するときの加熱温度を高くでき、スメクタイト30が十分に膨潤したゲル構造を得ることができる。なお、前記有機溶媒40をジプロピレングリコールや、N−メチル−2−ピロリドンを使用した場合、前記加熱温度は例えば100℃である。
【0046】
図5は、スメクタイト分散液50の流動特性を示すグラフであり、流動曲線(フローカーブ)と呼ばれる。このスメクタイト分散液50は、有機溶媒であるジプロピレングリコールの100重量部に対して、スメクタイト30を11.1重量部含んだものである。図5では、比較のために、有機溶媒40すなわちジプロピレングリコールの流動特性を併記している。
【0047】
図5の横軸は、「ずり速度」を示し、縦軸が「ずり応力」を示している。図5のスメクタイト分散液50において、ずり速度0(流動していない状態)におけるずり応力が降伏値である。言い換えると、この降伏値は、ゲル状のスメクタイト分散液50に徐々に力を加えていったときの、分散液が流動を開始する最小の力である。また、溶媒40のように、流動曲線が原点を通る直線関係にあるとき、ずり速度とずり応力の係数(図の直線の傾き)が粘性係数(粘度)である。スメクタイト分散液50のように、流動曲線が直線関係であっても降伏値を持つ場合は、係数(直線の傾き)は「見掛けの粘性係数(粘度)」と呼ばれる。
【0048】
図5に示すように、有機溶媒40とスメクタイト30とで形成されたスメクタイト分散液50は、重力より大きい降伏値を持つゲル状であり重力しか作用しない場合(静置時)には流動を示さず、スクリーン印刷の版上にとどまり、孔から液がポタポタと垂れるということがない。しかしながら、降伏値より大きい力を、スキージにより加えられたときにはスメクタイト分散液50はゾル化し、流動性を示し版の孔を通過する。さらに孔から出た直後に、スキージによる力がかからなくなるので再度ゲル化し、基板2の表面2aで流れたり拡散せずに、版のパターン形状を維持する。
【0049】
スクリーン印刷に適した粘度のスメクタイト分散液50を得るためには、有機溶媒40の100重量部に対し、スメクタイト30が5.3重量部から17.6重量部を含むことが好ましい。
【0050】
スメクタイト30が前記範囲内で含まれていると、十分大きな降伏値をもつゲル状のスメクタイト分散液50を形成でき、ポリエーテルエーテルケトン樹脂と導電性粒子とを均一に含ませることができる。スメクタイト30の量が前記範囲未満であると、ゲル状のスメクタイト分散液の降伏値が重力に対して十分な大きさにならず、ポリエーテルエーテルケトン樹脂および導電性粒子がゲル状スメクタイト分散液内に均一に分散された状態で保持されにくく、導電性塗料内で、ポリエーテルエーテルケトン樹脂および導電性粒子が沈降しやすくなる。また、スメクタイトの量が前記範囲を超えると、スメクタイトが溶媒内に分散しきれず、導電性塗料内にスメクタイトの塊が存在しやすくなり、ポリエーテルエーテルケトン樹脂および導電性粒子が均一に分散できなくなり、さらにスクリーン印刷などによる塗膜特性も悪くなる。
【0051】
また、スメクタイト30を前記範囲で含ませたスメクタイト分散液50では、スメクタイト30が肉眼で観察されず、スメクタイト分散液50は透明である。
【0052】
図4に示すように、スメクタイト分散液50に、ポリエーテルエーテルケトン樹脂材料10aと導電性粒子20を配合して混練し、スメクタイト分散液50内にポリエーテルエーテルケトン樹脂材料10aと導電性粒子20を均一に分散させることで導電性塗料60が得られる。例えば、ゲル状のスメクタイト分散液50に、導電性粒子20を混合してロールミルで混練し、その後、粉末状あるいは粒状体のポリエーテルエーテルケトン樹脂材料10aを混合し、ロールミルで混練する。ポリエーテルエーテルケトン樹脂材料10aは有機溶媒40に不溶であるため、図2に示すように、ポリエーテルエーテルケトン樹脂材料10aは、スメクタイト分散液50内に粉末または粒状体として溶解することなく分散して存在した状態、あるいは分散し且つ集合した状態となる。
【0053】
図2に模式的に示されるように、導電性塗料60では、前記有機溶媒40中に分散させた前記疎水性スメクタイトが高濃度であるため凝集し、三次元網目構造(内部構造)を形成し、前記有機溶媒40の流動を抑えゲル状になっている。さらに、その中に分散させた前記導電性粒子20と前記ポリエーテルエーテルケトン樹脂材料10aは、ゲルに囲まれた状態で保持されている。よって、導電性粒子20とポリエーテルエーテルケトン樹脂材料10aが導電性塗料60内で沈降することはなく、均一に分散でき、またはその一部が集合した状態で且つ分散したものを得ることができる。
【0054】
前記導電性塗料60を、基板2の表面2aにスクリーン印刷により所定のパターン形状に塗布する。導電性塗料60は、ゲル状構造の内部に導電性粒子20およびポリエーテルエーテルケトン樹脂材料10aが均一に分散したものであり、重力より大きな降伏値を有しているため、スクリーン印刷の版上で、ポタポタと垂れることがなく、スキージの押圧力によって初めて流動性を示し、版(印刷マスク)の細孔内を通過して基板2の表面2aに付着する。また、基板2の表面2aにおいては再び内部構造を形成し、流動性を失うので、周囲に広がることもない。そのため、基板2の表面2aに微細なパターンで且つ間隔の狭いパターンを形成することも可能である。
【0055】
図2に示すように、基板2の表面2aに導電性塗料60の膜を形成した後に、例えば150℃で10分程度の加熱処理を行って、有機溶媒40を揮発させる。さらに、340℃で10分間程度の加熱処理を行って、ポリエーテルエーテルケトン樹脂材料10aを溶融させた後冷却し固化させることで、導電膜3aを得ることができる。
【0056】
図6は、温度曲線とスメクタイトの重量(質量)曲線を示している。図6において、左側に示す縦軸は温度曲線における温度を示し、右側の縦軸は重量曲線における重量(質量)を示している。なお、横軸は時間軸である。図6では、スメクタイトの温度を、450℃程度まで、温度曲線に沿って上昇させたときの、スメクタイトの質量変化を重量曲線として示している。測定に使用したスメクタイトは、商品名「ルーセンタイトSPN」(コープケミカル株式会社製)であり、温度は10℃/minの速度で上昇させた。測定前のスメクタイトの質量は14.85mgであり、測定後の質量は6.41mgであった。図6に示すように、スメクタイトは300℃以上となると、その質量が43%程度となる。
【0057】
導電性塗料60にスメクタイト30が5.3〜17.6重量部含まれ、加熱処理で合成樹脂(ポリエーテルエーテルケトン樹脂)が固化して図3の導電膜3aとなったときのスメクタイト30は、質量が43%に減少するため、このときのスメクタイト30を体積割合に換算すると、前記合成樹脂(ポリエーテルエーテルケトン樹脂)10と前記導電性粒子20と前記スメクタイト30との合計体積を100%としたときに、前記スメクタイトが2.8から8.9体積%含まれた状態となる。
【0058】
スメクタイトが前記範囲で含まれることにより、導電性塗料60は降伏値を持つスクリーン印刷に適したゲル状となり、しかも加熱されてポリエーテルエーテルケトン樹脂が溶融固化した後の導電膜3aでは、スメクタイトが43%の質量に減少する。スメクタイトの体積割合が10体積%以下であるため、このスメクタイト30の存在によって、導電膜3a内の導電性粒子の接触点を低下させる確率が低くなり、比抵抗を小さくすることが可能である。
【0059】
また導電膜3a内の前記導電性粒子20を銀粒子とし、その体積割合を、前記合成樹脂(ポリエーテルエーテルケトン樹脂)10と前記導電性粒子20と前記スメクタイト30との合計体積を100%としたときに、55から78体積%とすると、この導電膜3aに半田付けしたときの半田の濡れ性を良好にすることができる。また、導電性粒子20として銀粒子を前記範囲で含ませると、導電膜3aの比抵抗を0.78から2.0μΩ・mの範囲内とすることも可能である。
【0060】
また、導電性塗料60にポリエーテルエーテルケトン樹脂材料10aを含ませて導電膜3aを形成すると、前記導電膜3aの耐熱性を向上させることができる。よって、導電性粒子20として鱗片状の銀粒子や粒径1μm以下の微小銀粉を用いて、電子部品などを半田付けしたときに、半田の熱で導電膜3aを破壊するいわゆる半田喰われが起きにくい。さらに、前記導電膜3aの耐対薬品性を向上させることができ、低摩擦係数、低吸水率とすることができる。
【0061】
前記導電性粒子20として銀粒子を使用し、さらに、鱗片状の銀粒子や粒径1μm以下の微小銀粉を用いると、導電性粒子20間の接触点を増やすことができ、比抵抗を低下させることが可能である。また、導電性塗料60では、加熱後にほぼ蒸発してしまうゲル状構造の内部に導電性粒子20とポリエーテルエーテルケトン樹脂材料10aを混錬するため、導電性粒子20とポリエーテルエーテルケトン樹脂材料10aの総量を適切に保つ限り、導電性粒子/ポリエーテルエーテルケトン樹脂比を大きくしても、スクリーン印刷による塗膜特性が大幅に劣化することがない。よって、導電性粒子を90体積%以上含ませることも可能である。
【実施例】
【0062】
以下の表1は、本発明の実施例1ないし実施例18を示している。なお、実施例1ないし実施例15は、導電膜3a中に導電性粒子20として銀粒子を37.1体積%以上含ませることにより、導電膜3aの比抵抗を2.0μΩ・m以下とした本発明の好ましい範囲のものである。
【0063】
各実施例では、スメクタイトは、商品名「ルーセンタイトSPN」(コープケミカル株式会社製)を使用し、有機溶媒としてジプロピレングリコールを使用している。また合成樹脂は、ポリエーテルエーテルケトン樹脂:商品名「PEEK 150UF」(英国ビクトレックス社製で、PEEKは同社の登録商標)を使用している。
【0064】
表1内の各実施例は、上段が導電性塗料60の組成比であり、ジプロピレングリコールの100重量部に対する各素材の量を重量部で示している。下段は、完成後の導電膜3aを示しており、導電膜3a内の各素材の割合を体積%で示している。よって、下段では、加熱処理によりジプロピレングリコールが揮発して体積が0となっている。
【0065】
導電性塗料60および導電膜3aの製造工程は、図4に示す通りであり、有機溶媒40とスメクタイト30とを混合したときの加熱温度を、100℃とし、導電性塗料60を基板2の表面2aにスクリーン印刷した後の、加熱乾燥工程は150℃で10分、ポリエーテルエーテルケトン樹脂を溶融固化させる際の熱処理を340℃で10分とした。
【0066】
以下の表1から、解るように、導電膜3a内に銀粒子を80体積%程度まで(実施例10では、77.7体積%)含ませることができる。また、比抵抗を0.78μΩ・m程度まで低下させることが可能である。
【0067】
しかも、各実施例に示すように、合成樹脂であるポリエーテルエーテルケトン樹脂の量および導電性粒子の量を広い範囲で選択でき、いずれであっても、スクリーン印刷で塗膜することが可能になる。
【0068】
【表1】

【0069】
表2は、導電性塗料60の実施例Aと実施例Bおよび比較例Aと比較例Bを示している。この実施例及び比較例では、導電性粒子20としてカーボンブラック(ケッチェンブラック):商品名「ケッチェンブラックEC」(ライオン株式会社製)を使用している。また、有機溶媒40は、N−メチル−2−ピロリドン(NMP)を使用している。実施例Aと実施例Bでは、合成樹脂材料として表1の実施例と同じポリエーテルエーテルケトン樹脂を使用したが、比較例Aと比較例Bでは、フェノール樹脂を使用した。導電性塗料60の基本的な製造方法と導電膜3aの基本的な製造方法は、表1の実施例と同じであるが、比較例A,Bにおけるフェノール樹脂を溶融硬化させる際の加熱処理は200℃で20分とした。
【0070】
【表2】

【0071】
図7は、表2に示した実施例A,Bと比較例A,Bの耐湿性を測定した結果である。横軸は相対湿度であり、縦軸は相対湿度50%のときの抵抗値を「1」とし、各相対湿度のときの抵抗値を前記「1」に対する比として表したものである。実施例A,Bは相対湿度が高くても、吸水量が少なく抵抗値がほとんど変化しないことが解る。すなわち、ポリエーテルエーテルケトン樹脂をバインダーとして用いたものは、フェノール樹脂を用いたものに比べて、極めて耐湿性に優れ、抵抗値の安定した導電膜(抵抗膜)が得られることが理解できる。
【図面の簡単な説明】
【0072】
【図1】本発明の実施の形態の導電膜が形成された回路基板を示す部分斜視図、
【図2】基板表面に導電性塗料が塗膜された状態を模式的に示すものであり、図1に示すII−II線での断面に相当する断面図、
【図3】導電性塗料の塗膜を加熱して、合成樹脂(ポリエーテルエーテルケトン樹脂)を固化させた導電膜を模式的に示すものであり、図2と同じ部分の断面図、
【図4】導電性塗料および導電膜の製造方法を説明する工程図、
【図5】スメクタイト分散液の流動特性を示す線図(グラフ)、
【図6】スメクタイトの質量変化の温度特性を示す線図(グラフ)、
【図7】実施例と比較例の導電膜の耐湿性能をあらわす線図(グラフ)、
【符号の説明】
【0073】
1 回路基板
2 基板
2a 表面
3 回路パターン
3a 導電膜
10 合成樹脂(ポリエーテルエーテルケトン樹脂)
10a ポリエーテルエーテルケトン樹脂材料(ポリエーテルエーテルケトン樹脂の粒子)
20 導電性粒子
30 スメクタイト
40 有機溶媒
50 スメクタイト分散液
60 導電性塗料

【特許請求の範囲】
【請求項1】
基板表面にパターン形成された導電膜において、固化したポリエーテルエーテルケトン樹脂と、前記ポリエーテルエーテルケトン樹脂内に含まれた導電性粒子とを有することを特徴とする導電膜。
【請求項2】
前記ポリエーテルエーテルケトン樹脂内に、スメクタイトが含まれている請求項1記載の導電膜。
【請求項3】
前記ポリエーテルエーテルケトン樹脂と前記導電性粒子および前記スメクタイトの合計体積を100%としたときに、前記スメクタイトが2.8ないし8.9体積%含まれている請求項2記載の導電膜。
【請求項4】
前記導電性粒子は銀とカーボンの少なくとも一方である請求項1ないし3のいずれかに記載の導電膜。
【請求項5】
スメクタイトを含む有機溶媒中に、ポリエーテルエーテルケトン樹脂の粒子および導電性粒子が含まれていることを特徴とする導電性塗料。
【請求項6】
前記有機溶媒の100重量部に対して、前記スメクタイトが、5.3から17.6重量部含まれている請求項5記載の導電性塗料。
【請求項7】
前記導電性粒子が銀とカーボンの少なくとも一方である請求項5または6記載の導電性塗料。
【請求項8】
前記有機溶媒が、極性溶媒である請求項5ないし7のいずれかに記載の導電性塗料。
【請求項9】
以下の工程を有することを特徴とする導電性塗料の製造方法。
(a)有機溶媒内に、スメクタイトが分散したスメクタイト分散液を形成する工程と、
(b)前記スメクタイト分散液中に、ポリエーテルエーテルケトン樹脂の粒子および導電性粒子を分散させて導電性塗料を形成する工程。
【請求項10】
前記有機溶媒の100重量部に対し、前記スメクタイトを5.3から17.6重量部含ませる請求項9記載の導電性塗料の製造方法。
【請求項11】
前記導電性粒子が銀とカーボンの少なくとも一方である請求項9または10記載の導電性塗料の製造方法。
【請求項12】
請求項9ないし請求項11のいずれかに記載の製造方法で得られた導電性塗料を、基板上にパターン化して塗布して塗膜を形成する工程と、
加熱処理により、前記塗膜に含まれた前記ポリエーテルエーテルケトン樹脂を溶融させて固化させる工程と、を有することを特徴とする導電膜の製造方法。
【請求項13】
前記ポリエーテルエーテルケトン樹脂が固化した後の、ポリエーテルエーテルケトン樹脂と前記導電性粒子および前記スメクタイトとの合計体積を100体積%としたときに、前記スメクタイトを2.8から8.9体積%含む請求項12記載の導電膜の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−134196(P2007−134196A)
【公開日】平成19年5月31日(2007.5.31)
【国際特許分類】
【出願番号】特願2005−326894(P2005−326894)
【出願日】平成17年11月11日(2005.11.11)
【出願人】(000010098)アルプス電気株式会社 (4,263)
【Fターム(参考)】