説明

小さなRNA分子の改善された検出のための方法、組成物およびキット

本発明は、迅速かつ強力な増幅および検出を可能にする、小さなRNA配列の検出に用いるための組成物、方法およびキットを提供する。本方法は、逆転写および/または増幅の間に一つ以上の塩基修飾二重鎖安定化dNTPを組み込むことにより、小さなRNA配列の増幅ベースの検出における感度および効率の改善を提供する。本発明の一態様によれば、(a)RNA標的配列を含む試料を、(i)RNA標的配列にハイブリダイズするために十分に相補的であるプライマーと、(ii)逆転写酵素活性を有するRNA依存性DNAポリメラーゼとに接触させるステップと;(b)RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾、二重鎖安定化dNTPを含むdNTPの混合物の存在下で、RNA標的配列に相補的なcDNAを合成するステップを含む、小さなRNA標的配列等の少なくとも一つのRNA標的配列の逆転写のための方法が提供される。

【発明の詳細な説明】
【背景技術】
【0001】
本発明は、RNA分子の検出のための改善された方法、組成物およびキットに関する。特に、本発明は、後続のmiRNA等の短いRNA配列の増幅ベースの検出の間の二重鎖安定性を改善するための、逆転写反応における塩基修飾、二重鎖安定化ヌクレオシド三リン酸の使用に関する。
【0002】
マイクロRNA(miRNA)は、DNAから転写されるがタンパク質に翻訳されない、高度に保存された小さなRNA分子のクラスである。miRNAは、RNA誘導サイレンシング複合体(RISC)に組み込まれる一本鎖の約17〜24ヌクレオチド(nt)の分子にプロセシングされ、発生、細胞増殖、アポトーシスおよび分化の重要な制御因子として同定されている。RISCは、翻訳阻害、転写産物切断、または両者により、遺伝子発現のダウンレギュレーションを媒介する。RISCは、様々な真核生物の核における、転写サイレンシングにも関係する。
【0003】
miRNAおよび他の小さなRNA分子は、癌、心血管疾患、ウィルス感染および代謝異常等の、多数のヒト疾患に関係している。したがって、小さなRNAがいつ、どこで、いかなるレベルで発現されるか(アップまたはダウンレギュレートされるか)を検出するために、特異的かつ高感度の分析法が利用可能であることが、この重要な新しい標的クラスの全ての診断および治療上の可能性を認識するために重要である。残念ながら、増幅ベースの技術等、従来の核酸検出方法論の、小さなRNAの検出への応用は、その小さなサイズのために困難となっている。その小さなサイズにより、ハイブリダイゼーションプローブおよびプライマーを設計するために提供される配列がほとんどなく、実際、ほとんどの従来のPCRプライマーは、miRNA自体と同様の長さである。
【0004】
ノーザンブロット、プライマー伸長、シグナル増幅リボザイムおよびいくつかの増幅ベースの技術を含めて、miRNAを検出するために様々なアプローチが用いられている。しかし、小さなRNAを検出するためのこれらおよび他の従来の戦略は、特異性、感度、実施の費用および/または容易性に関する問題を伴っている。
【発明の概要】
【発明が解決しようとする課題】
【0005】
したがって、迅速かつ強力な増幅および検出を可能にする、小さなRNA配列の検出において用いるための、用途が広く、単純で、安価な組成物、方法およびキットへのニーズが当該技術分野に存在する。本発明はこれらのニーズに対処し、他の関連する利益を提供する。
【課題を解決するための手段】
【0006】
上記の如く、本発明は、一般に、後のmiRNA等の短いRNA配列の増幅ベースの検出の間の二重鎖安定性を改善するための、逆転写反応における塩基修飾、二重鎖安定化ヌクレオシド三リン酸の使用に関する。
【0007】
したがって、本発明の一態様によれば、(a)RNA標的配列を含む試料を、(i)RNA標的配列にハイブリダイズするために十分に相補的であるプライマーと、(ii)逆転写酵素活性を有するRNA依存性DNAポリメラーゼとに接触させるステップと;(b)RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾、二重鎖安定化dNTPを含むdNTPの混合物の存在下で、RNA標的配列に相補的なcDNAを合成するステップを含む、小さなRNA標的配列等の少なくとも一つのRNA標的配列の逆転写のための方法が提供される。
【0008】
塩基修飾二重鎖安定化dNTPがRNA依存性DNAポリメラーゼの基質であり、さらに、cDNAに組み込まれたときに本明細書に記載されるようにハイブリダイゼーション特性の増強を生じるという条件で、基本的に任意の塩基修飾二重鎖安定化dNTPが、本発明にしたがって使用できる。
【0009】
本発明のいくつかの実施形態においては、例えば、塩基修飾、二重鎖安定化dNTPは、5−位で置換されたピリミジンであり、それは逆転写酵素酵素の基質である。
【0010】
いくつかの実施形態においては、塩基修飾、二重鎖安定化dNTPは、以下:
【0011】
【化1】

の構造を有する化合物を含み、式中、Bは以下;
【0012】
【化2】

より選択され、
Xは、−F、−Cl、−Br、−I、−CHまたは
【0013】
【化3】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【0014】
【化4】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである。
【0015】
いくつかの実施形態では、塩基修飾、二重鎖安定化dNTPは、d(2−amA)TP、d(5−PrU)TP、d(5−PrC)TP、またはその組み合わせより選択される。
【0016】
本発明は、基本的に任意のRNA標的の検出に用いられうるが、本明細書に記載されるように、本発明は、従来の技術による増幅ベースのアプローチによる検出が困難となっている小さなRNA標的配列の検出に特に適用可能性がある。ある実施形態においては、RNA標的は、長さ約10〜30ヌクレオチドのRNA配列などの小さなRNA標的である。ある他の実施形態においては、小さなRNA標的配列は、miRNAである。
【0017】
逆転写(reverse transcirption)の間に塩基修飾、二重鎖安定化dNTPをcDNAに組み込むことに加え、当然のことながら、塩基修飾、二重鎖安定化dNTPが、逆転写の間および/または後続の増幅の間に使用されるプライマーまたは他のオリゴヌクレオチドに、そのハイブリダイゼーション特性を更に増強するために組み込まれてもよく、さらに、必要または所望される場合には増幅の間に合成される増幅産物に組み込まれてもよい。
【0018】
本発明のいくつかの実施形態においては、cDNA合成において使用されるプライマーが、後の増幅反応においてリバースプライマーとしても用いられるが、別の実施形態においては、異なるリバースプライマーが用いられる。
【0019】
本発明のいくつかの実施形態においては、上述の方法には、(a)一本鎖cDNAを提供するために、ステップ(b)で形成されるcDNAを処理するステップと;(b)二本鎖cDNA分子を産出するために、一本鎖cDNAを、第二プライマー(この第二プライマーは、cDNAにハイブリダイズし、DNAポリメラーゼの存在下で伸長産物の合成を開始するのに十分にこのcDNAに対して相補的である)と接触させるステップが、さらに含まれる。
【0020】
いくつかの実施形態においては、本発明は、小さなRNA標的配列およびその相補鎖(complement)に十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で増幅産物を産出する、増幅プライマーを用いて、核酸増幅反応を行うステップをさらに含む。いくつかの実施形態においては、核酸増幅反応は、ポリメラーゼ連鎖反応法である。上記の如く、増幅反応は、修飾dNTPが増幅産物に組み込まれるように、少なくとも一つの塩基修飾二重鎖安定化dNTPを含むdNTPの混合物の存在下で、任意で行われうる。
【0021】
本発明の別の態様では、本発明の方法を行う際に使用される反応混合物が、提供される。例えば、いくつかの実施形態においては、本発明の反応混合物は、(a)少なくとも一つの小さなRNA標的配列等、RNA標的配列を含む試料と;(b)RNA標的配列とハイブリダイズするためにRNA標的配列に十分に相補的であるプライマーと、(c)逆転写酵素活性を有するRNA依存性DNAポリメラーゼと;(d)本明細書に記載される、RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾二重鎖安定化dNTPを含むdNTPの混合物を含む。
【0022】
別の態様によれば、本発明は、本発明の実行に必要または重要な構成要素を含むキットを提供する。例えば、いくつかの実施形態では、本発明は、(a)逆転写酵素活性を有するRNA依存性DNAポリメラーゼと;(b)本明細書に記載される、RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾、二重鎖安定化dNTPを含むキットを提供する。キットは、例えば一つ以上のRNA標的配列に特異的にハイブリダイズする一つ以上のプライマーを含む、RNA標的配列の逆転写および/または増幅の間に使用するための多数の追加的な構成要素のいずれかをさらに含みうる。
【0023】
本発明のこれらおよび他の特徴および利点は、以下の詳細な記載、添付の図面および請求項を参照すれば明らかとなる。本明細書に開示される全ての参考文献は、各々が組み込まれたのと同様に、参照により全体として本明細書に組み込まれる。
【図面の簡単な説明】
【0024】
【図1】逆転写−ポリメラーゼ連鎖反応法(RT−PCR)による、miR−155の検出のために設計された、例示的なフォワードおよびリバースプライマーを示す。
【図2】PCR増幅の前にcDNA鎖に塩基修飾二重鎖安定化dNTPを組み込むことにより達成される、改善された検出効率および感度を示す。
【発明を実施するための形態】
【0025】
上記の如く、本発明は一般に、RNA標的、特にmiRNAおよびsiRNA等の小さなRNA標的の、増幅および検出の改善に関する。特に、本発明は、塩基修飾二重鎖安定化dNTPがRNA依存性DNAポリメラーゼにより合成されるcDNAに組み込まれる条件下における塩基修飾二重鎖安定化dNTPの存在下での、RNA標的配列の逆転写によるRNA標的配列の検出方法の改善に関する。逆転写の間のcDNAへの塩基修飾二重鎖安定化dNTPの組み込みにより修飾cDNAを産出することにより、後の操作の間(例えば後の増幅の間)にポリヌクレオチド成分が修飾cDNAにハイブリダイズしたときに、安定性が改善されたハイブリダイゼーション複合体を形成する。その結果、本明細書の方法を実施することにより、例えば、後の増幅反応の間に収率および感度の改善が達成されうる。任意で一つ以上の塩基修飾二重鎖安定化dNTPを逆転写の後の増幅反応および/または逆転写および/または増幅の間に用いられるプライマーまたは他の補助的なオリゴヌクレオチドに組み込むことにより、本発明によるさらなる改善が実現されうる。
【0026】
一般に、少なくとも一つのオリゴヌクレオチド成分(例えばオリゴヌクレオチドプライマー(単数または複数)および/またはプローブ(単数または複数))が、本明細書に記載されるように、DNAがそのように修飾されない場合に生じたであろうよりも高い安定性で修飾DNAにハイブリダイズするという条件で、本明細書に開示される本発明の態様は、合成、増幅および/または検出RNA分子に基づく事実上任意のアッセイの利益のために使用されうる。当業者にはさらに当然のことながら、本発明は、例えば増幅および/または検出のためのオリゴヌクレオチド成分の設計を拡張および単純化することにより、従来のアプローチを用いては困難となっているRNA配列(例えば小さなRNA配列)の増幅および検出を許容することにより、増幅および/または検出ステージを加速すること(例えばアッセイ時間の短縮)等により、様々な方法でRNA検出アッセイの利益となりうる。
【0027】
本発明の実行、ならびに生化学、核酸化学、分子生物学および分子遺伝学の用語および記号は、特に明記しない限り、文献中により十分に説明されている、従来技術の範囲内で理解されるものにしたがう。例えば、Molecular Cloning A Laboratory Manual,第2版,Sambrook等編,Cold Spring Harbor Laboratory Press:(1989);DNA Cloning,第IおよびII巻(D.N.Glover編,1985);Oligonucleotide Synthesis(M.J.Gait編,1984);Mullis等,米国特許第4,683,195号;Nucleic Acid Hybridization(B.D.Hames & S.J.Higgins編.1984);B.Perbal,A Practical Guide To Molecular Cloning(1984);the treatise,Methods In Enzymology(Academic Press,Inc.,N.Y.);Ausubel等,Current Protocols in Molecular Biology,John Wiley and Sons, Baltimore,Maryland(1989);Kornberg and Baker,DNA Replication,Second Edition(W.H.Freeman,New York,1992); Gaits編,Oligonucleotide Synthesis:A Practical Approach(IRL Press,Oxford,1984);Lehninger,Biochemistry,Second Edition(Worth Publishers,New York,1975);Eckstein編,Oligonucleotides and Analogs:A Practical Approach(Oxford University Press,New York,1991);等を参照。
【0028】
定義
以下の用語は、特に反対の明示がなければ、本明細書に記載される意義を有する。「a(一つの)」または「an(一つの)」実体という語は、その実体の一つ以上をさす点に留意されたい。例えば、「核酸(a nucleic acid)」は、一つ以上の核酸を表すと理解されるものとする。そのようなものとして、「a」(または「an」)、「一つ以上」、および「少なくとも一つ」という用語は、本明細書において互換可能に用いられうる。
【0029】
本明細書で用いられるところの「試料」という用語は、目的の核酸を含む、または含むと推定される任意の物質をさし、したがって、核酸、細胞、生物、組織、流体(例えば脊髄液またはリンパ液)の試料、および、血漿、血清、尿、涙、大便、気道および尿生殖路、唾液、様々な臓器の断片、組織、血液細胞を含むこれに限定されない試料、in vitro細胞培養の試料、自然のソースからの単離物、核酸分子を含むと思われる目的物または標本を含む。試料は、正常組織、患部組織および/または疾患を有すると疑われる対象の組織から得られる。
【0030】
「ポリヌクレオチド」および「オリゴヌクレオチド」という用語は、本明細書において互換可能に使用され、それぞれ、ヌクレオチドモノマーの線状ポリマーを意味する。ポリヌクレオチドは、典型的に、サイズが通常「オリゴヌクレオチド」と呼ばれる場合の数モノマー単位、例えば5〜40から、数千モノマー単位の範囲である。厳密なサイズは、多くのファクターに依存し、そのファクターは、オリゴヌクレオチドの最終的機能または使用に依存する。オリゴヌクレオチドは、化学合成、DNA複製、逆転写、またはその組み合わせを含む任意の方法で生成されうる。ポリヌクレオチドまたはオリゴヌクレオチドが文字の配列、例えば「CCGTATG」により表されるときは常に、本明細書においては、文中に特段の断りがない限り、ヌクレオチドは、左から右に5’→3’の順序であり、そうでないことが特に明記され、または文脈から明らかでない限り、「A」がデオキシアデノシン、「C」がデオキシシチジン、「G」がデオキシグアノシン、「T」がデオキシチミジンを表すものと理解されるものとする。通常は、DNAポリヌクレオチドは、ホスホジエステル結合により連結されたこれらの四つのデオキシリボヌクレオシドを含み、RNAは、「T」の代わりにウリジン(「U」)を伴うそれらの四つのリボース対応物を含む。
【0031】
本明細書において使用されるところの「オリゴヌクレオチドプライマー」または「プライマー」という用語は、標的配列に十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で核酸鎖の酵素的合成をプライミングする、一本鎖DNAまたはRNA分子をさす。標的核酸は、オリゴヌクレオチドプライマーのテンプレートとして役立つ。プライマーは、本明細書に記載されるように、逆転写および増幅反応の両方において用いられる。オリゴヌクレオチドプライマーは、精製された制限消化物のように自然に生じ、または合成的に生産されうる。特定の態様においては、プライマーは、その3’末端にテンプレートの特定の配列の鎖に実質的に相補的である領域を有するように選択される。プライマー伸長が生じるためには、プライマーがテンプレート鎖にハイブリダイズするために十分に相補的でなければならない。オリゴヌクレオチドプライマー配列は、テンプレートにハイブリダイズするためにその正確な配列を反映する必要はない。例えば、非相補的ヌクレオチドフラグメントがプライマーの5’末端に結合し、プライマー配列の残部が鎖に実質的に相補的でありうる。例えば、5’テール配列は、逆転写および/または増幅反応の効率、収率、検出性等の改善のような所望の目的に役立つ(servie)、または利用される増幅または検出技術の選択により所望されまたは必要な、特殊フラグメントまたは特殊フラグメントの組み合わせを組み込みうる。例えば、本明細書に記載の方法にしたがって使用されるプライマーのハイブリダイゼーション特性を改善するために、5’テール配列が加えられうる。特殊配列の他の例には、公知技術のプローブ結合部位を含むフラグメント、分離配列、標的伸長配列、抗−プライマー−ダイマー配列等が含まれるがこれに限定されない。さらに、プライマー配列がテンプレートの配列とハイブリダイズし、これによりオリゴヌクレオチドプライマーの伸長産物の合成のためのテンプレート−プライマー複合体を形成するために十分な相補性を保持するという条件で、非相補的塩基またはより長い配列がプライマー内に散在しうる。代替的または追加的に、塩基修飾二重鎖安定化dNTPの存在が、標的配列へのハイブリダイゼーションまたはそこから伸長産物を合成する能力を妨げないという条件で、塩基修飾二重鎖安定化dNTPが、本発明に従って使用される一つ以上のプライマーに、その結合特性を改善するために組み込まれうる。ある実施形態では、比較的短いプライマー(例えば8、9または10ヌクレオチドくらい小さい)が、本発明の修飾dNTPが組み込まれたときのそのようなプライマーのハイブリゼーション(hybrization)特性の改善の結果、逆転写および/または増幅の間に都合よく用いられうる。
【0032】
「標的核酸」または「標的配列」または「目的の核酸」という用語は、本発明の一つ以上の方法を用いて逆転写、増幅および/または検出される核酸または核のフラグメントをさす。いくつかの実施形態においては、標的配列は、miRNAまたはsiRNA等の小さなRNA配列である。標的核酸は、任意の生物または原核生物、真核生物、植物、動物およびウィルスを含むがこれに限定されない他のソースから得られ、合成核酸であってもよい。標的核酸は、DNA、RNA、および/またはその変異体または誘導体を含みうる。標的核酸は、一本鎖または二本鎖であり得、目的の核酸が二本鎖であるか、二本鎖と推定されるときには、「標的核酸」という用語は、二本鎖核酸のいずれかの鎖の特定の配列をさす。したがって、任意の目的の一本鎖核酸に対する完全補体は、本明細書の特定の実施形態では、同じ標的核酸として扱われる。
【0033】
いくつかの実施形態においては、本発明の方法を適用する前に、目的の核酸が試料源から単離および精製されうる。標的核酸が、タンパク質および/または逆転写、増幅および/または検出反応を妨げる任意の他の物質を十分に含まないことが好ましい。市販キットおよび専門機器を含めて、標的核酸の単離および精製のために、当分野で認められた多くの方法が利用可能である。例えば、フェノール/クロロホルム有機試薬による有機抽出の後、エタノール沈殿を用いて、核酸が単離されうる(Ausubel等,編,Current Protocols in Molecular Biology Vol.1,Chapter 2,Section I,John Wiley & Sons,New York(1993)。固相吸着法(Walsh等.(1991)Biotechniques,10:506−513,Boom等,米国特許第5,234,809号)および塩−誘導沈殿(Miller等(1988)Nucleic Acids Res.,16:1215)は、核酸を精製するための、さらに別の公知のアプローチである。
【0034】
「小さなRNA配列」は、一般に、約15〜100、15〜75、15〜50、15〜30、または15〜25ヌクレオチドの長さを有するRNA配列をさす。より特定の実施形態においては、本発明に従って検出される小さなRNA配列は、約15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69 70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99または100、またはそれ以上のヌクレオチド、または前述の任意の長さを境界とする任意の範囲である。ある実施形態においては、小さなRNAは、マイクロRNA(mi)、短鎖干渉(si)RNA、低分子一過性(st)RNA、異質染色性siRNA、小さな非コードRNA等を含む、短い非コードRNA配列をさす。小さなRNAは、例えばmRNA安定性または翻訳の制御において機能でき、および/またはゲノムの特異的な領域を後成的修飾の標的とすることができる。上述のように、本発明は、ある態様においては、それらの短さに起因する従来の増幅ベースのアプローチによるこれらの配列の検出に伴う困難に対処する。
【0035】
本明細書で用いられるところの「miRNA」は、動植物のゲノムにコードされる小さなRNA分子を含むマイクロRNA配列をさす。miRNAは、遺伝子の発現を調節する、典型的に約17〜24ヌクレオチドの長さ(例えば24ヌクレオチドの17、18、19、20、21、22、23)の天然のRNAであり、その多くがヒトの病態または他の状態との関連を有する。現在までに同定されるmiRNA配列の数は大きく、増加しており、その代表例は、例えば、“miRBase:microRNA sequences,targets and gene nomenclature”Griffiths−Jones S,Grocock RJ,van Dongen S,Bateman A,Enright AJ.NAR,2006,34,Database Issue,D140−D144;”The microRNA Registry”Griffiths−Jones S.NAR,2004,32,Database Issue,D109−D111に;および、http://microrna.sanger.ac.uk/sequences/でも見つけられる。
【0036】
本明細書で用いられるところの「ハイブリダイズ」、「ハイブリダイゼーション」または「アニーリング」は、Marmur J.,Lane D.(1960)Proc.Natl.Acad.Sci.USA,46:453−461およびDoty P.等(1960)Proc.Natl.Acad.Sci.USA,46:461−476に最初に記載されるように、最も一般的には二重鎖または二本鎖複合体である塩基対合により相補複合体を形成する二つ以上のポリヌクレオチドの間の相互作用のプロセスをさす。核酸二重鎖の安定性は、融解温度すなわち「T」により測定されうる。指定の条件下での特定の核酸二重鎖のTは、平均して塩基対の半分が解離している温度である。
【0037】
ポリヌクレオチドの「ハイブリダイゼーション特性」とは、別の相補ポリヌクレオチドまたはそのフラグメントと配列特異的複合体を形成する、このポリヌクレオチドまたはそのフラグメントの能力をいう。「ハイブリダイゼーション特性」は、本明細書においては一般に相補複合体の安定性もさす。この点に関して、「ハイブリダイゼーション特性」が、「融解温度」または「Tm」と同様に使用される。
【0038】
本明細書で使用されるところの「修飾DNA」は、本明細書に記載のように、少なくとも一つの塩基修飾二重鎖安定化ヌクレオチドを組み込んだDNAをさす。ある好ましい実施例においては、修飾DNAは、本明細書に記載のように、少なくとも一つの塩基修飾二重鎖安定化dNTPを含むデオキシヌクレオシド5’−三リン酸(dNTP)混合物の存在下においてRNA標的配列の逆転写により産出される修飾cDNAである。
【0039】
本明細書で用いられるところの「塩基修飾二重鎖安定化dNTP」という用語は、非天然塩基(塩基修飾)を含み、DNAポリメラーゼの存在下で、他のdNTPを伴うポリマーに組み込まれたときに、それが天然であっても塩基修飾であっても、ハイブリダイゼーション特性が増強された修飾DNAを提供する(二重鎖安定化)、デオキシヌクレオシド5’−トリホシェート(triphoshate)をさす。塩基修飾二重鎖安定化dNTPは、それぞれの天然dNTPのアナログでありうる。例えば、d(5−MeC)TP(5−メチルシトシン)は、dCTP(シトシン)のアナログであり、d(2−amA)TP(2−アミノアデノシン、2,6−ジアミノプリンとも呼ばれる)は、dATP(アデノシン)のアナログである。塩基修飾二重鎖安定化dNTPの代表例は、本明細書にさらに記載される。塩基修飾二重鎖安定化dNTPは、それぞれの天然dNTPを完全に置換しうる。これは、例えば、d(5−MeC)TPが増幅反応において用いられる場合には、反応がdCTPを含まないことを意味する。あるいは、塩基修飾二重鎖安定化dNTPは、それぞれの天然dNTPの画分でありうる。これは、天然dNTPおよびそのアナログの両方が反応混合物中に存在し、典型的には、塩基修飾二重鎖安定化dNTPがそれぞれの天然dNTPのモル量の少なくともある割合(例えば5%、25%、50%または75%)を表すことを意味する。したがって、本発明に従って使用または合成されるプライマーまたはcDNAまたはアンプリコンは、任意の適切または所望の数の塩基修飾二重鎖安定化dNTPを組み込みうる(例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、25、50、75、100等、およびその間の全ての整数)。
【0040】
本明細書で使用されるところの、「逆転写」という句は、天然または修飾デオキシヌクレオシド5’−三リン酸(dNTP)の存在下で、逆転写酵素活性を有するRNA依存性DNAポリメラーゼが、RNAテンプレートにハイブリダイズしたオリゴヌクレオチドプライマーを伸長し、相補DNA(cDNA)の合成が生じるプロセスをさす。
【0041】
「RNA依存性DNAポリメラーゼ」または「逆転写酵素」(「RT」)は、逆転写と呼ばれるプロセスにおいて、RNAテンプレートから相補DNAコピーを合成する酵素である。プライマーは、RNAおよびDNAテンプレートの両者による合成を開始するために必要とされる。
【0042】
「増幅」または「核酸増幅」とは、目的の特定の標的核酸配列の少なくとも一部を含む標的核酸の複数のコピーの産出を意味する。複数のコピーは、アンプリコンまたは増幅産物と呼ばれうる。典型的に、増幅された部分は、様々な周知の方法のいずれかを用いて検出されうる検出可能な標的配列を含む。最も一般的な核酸増幅技術の一つ、ポリメラーゼ連鎖反応法(PCR)は、二本鎖核酸を交互に変性させ、プライマーをハイブリダイズするために、サーモサイクリングを必要とする。しかし、他の周知の核酸増幅の方法は、等温である。PCRと一般に呼ばれるポリメラーゼ連鎖反応法(Mullis等,米国特許第4,683,195号;Mullis, 米国特許第4,683,202号;およびMullis等, 米国特許第4,800,159号)は、変性、対向する鎖に対するプライマー対のアニーリング、およびプライマー伸長の複数のサイクルを用いて、標的配列のコピー数を指数的に増加させる。本明細書においてさらに詳述される多くの他の核酸増幅技術も記載されており、本発明の文脈で適用できる。
【0043】
本明細書で用いられるところの「逆転写−ポリメラーゼ連鎖反応法」または「RT−PCR」とは、逆転写酵素(RT)活性を有するRNA依存性DNAポリメラーゼを用いてRNA標的配列から相補DNA(cDNA)が作成され、そしてcDNAがPCRにより増幅されて、DNAの複数のコピーが作成される、標的RNA配列の増幅および検出のための公知の技術をさす(例えば、Gelfand等,”Reverse Transcription with Thermostable DNA Polymerases−High Temperature Reverse Transcription,”米国特許第5,322,770号および第5,310,652号)。
【0044】
「検出可能な増幅」とは、増幅反応混合物中の増幅産物に伴う検出可能シグナルが、所定のバックグラウンドまたは閾値レベルを上回り(エンドポイント増幅)、またはある時間内にバックグラウンドまたは閾値を上回ること(実時間増幅)を意味する。例えば、Light等、“Method for Determining the Amount of an Analyte in a Sample,”米国特許出願公開第2006−0276972号,506−549段落を参照。増幅産物は、標的核酸配列またはその補体と配列同一性を有する配列を含み、例えば、標的核酸配列またはその補体の領域に対する特異性を有するインターカレーティング色素または検出プローブにより検出されうる。
【0045】
「増幅条件」とは、核酸増幅を可能にする条件を意味する。本発明の逆転写および/または増幅反応において使用されるオリゴヌクレオチドは、増幅条件下で意図した標的にハイブリダイズするが、ストリンジェントなハイブリダイゼーション条件下でハイブリダイズしてもしなくてもよい。下の実施例のセクションは、本発明による標的核酸配列の逆転写および増幅のための例示的な増幅条件を提供するが、当然のことながら、他の許容可能な条件が使用されてもよく、そのような条件は、検出される特定の配列および/または用いられる増幅の方法に応じて、通常の技術を有する当業者により容易に確認されうる。
【0046】
「オリゴヌクレオチド成分」という用語は、本発明の逆転写、増幅および/または検出反応を行うのに必要または有用な任意のオリゴヌクレオチドまたはポリヌクレオチドをさす。オリゴヌクレオチド成分は、オリゴヌクレオチドプライマー、プローブ、ハイブリダイゼーションおよび切断促進剤、エフェクター等を含むがこれに限定されない。オリゴヌクレオチド成分は、標識され、またはオリゴヌクレオチドプライマーおよびプローブ設計において用いられるものを含む構造修飾を有しうる。
【0047】
本明細書で使用されるところの「オリゴヌクレオチドプローブ」という用語は、プローブ中の少なくとも一つの配列の標的核酸中の配列との相補性に基づいて、二重鎖構造を形成する標的核酸または標的核酸との他の複合体を検出する際に使用される、オリゴマーまたはポリマーをさす。本発明のオリゴヌクレオチドプライマーおよびプローブは、「修飾」され、または「構造修飾」を有しうる。
【0048】
「二重鎖安定化修飾」は、核酸中に存在するときに、通常Tmとして測定される熱安定性に関して、構造修飾を有しない、例えば天然ヌクレオチドからなるそれぞれの核酸複合体と比較して、二重鎖安定化効果を提供する構造修飾をさす。
【0049】
本明細書で使用されるところの「天然ヌクレオシド」という用語は、天然のソースから単離されたDNAに一般に見られる四つのデオキシヌクレオシドをさす。天然ヌクレオシドは、デオキシアデノシン、デオキシシチジン、デオキシグアノシン、およびデオキシチミジンである。この用語は、チミジンの代わりにウリジンを伴う、そのリボース対応物も含む。
【0050】
本明細書で使用されるところの「非天然ヌクレオシド」という用語は、DNAおよびRNAポリマーにつき天然のヌクレオシドと構造が異なるヌクレオシドアナログを指す。目的の天然核酸のいくつかは、上に定義される天然ヌクレオシドと構造的に異なるヌクレオシドを含みうる。例えば、真核生物のDNAは、5−メチル−シトシンを組み込むことができ、tRNAは一定のヌクレオシドアナログをもつ。しかし、本明細書で特定の態様において使用されるところの「非天然ヌクレオシド」という用語は、これらのヌクレオシド修飾物を、天然のソースに見られるとしても、なお含む。例えば、リボチミジンは、本明細書において、非天然ヌクレオシドとして扱われる。
【0051】
本明細書で用いられるところの、ポリヌクレオチドの「改善された」または「増強されたハイブリダイゼーション特性」は、本発明の実施から生じる増強されたハイブリダイゼーション特性をさす。例えば、本発明のアッセイにおける塩基修飾二重鎖安定化dNTPの使用は、修飾cDNAの合成をもたらし、この修飾cDNAが増強されたハイブリダイゼーション特性を有すると言われる。これは、例えばオリゴヌクレオチドプローブまたはプライマーとの、この修飾DNAの相補複合体の熱安定性またはTmが、それぞれの天然塩基を含むDNAのものより大きいことを意味する。
【0052】
「融解温度」または「Tm」は、通常は二本鎖である核酸の相補複合体が、一本鎖に半分に解離される温度をさす。これらの用語は、同じポリヌクレオチドの二つ以上のフラグメントが相補的様式で互いに相互作用して、複合体、例えばヘアピン様構造等を形成する、ポリヌクレオチド二次構造の安定性を表す際にも使用される。Tm値の単純な推定値は、核酸が1MのNaClの水溶液中にあるとき、式Tm=81.5+0.41(%G+C)を用いて計算されうる。「隣接」アプローチの塩基対熱力学を用いて、より正確な計算は行われうる(Breslauer K.J.等(1986)Proc.Natl.Acad.Sci.USA,83:3746−3750;SantaLucia J.Jr.(1998)Proc.Natl.Acad.Sci.USA,95:1460−1465)。
【0053】
「標識」という用語は、検出可能なシグナルを提供するために使用でき、核酸またはオリゴヌクレオチドに結合できる、任意の原子または分子をいう。標識には、同位体、32P等の放射標識;ビオチン等の結合部分;ジオキシゲニン等のハプテン;発光性、質量タグ;リン光または蛍光部分、単独またはFRET効果によって発光スペクトルを抑制またはシフトできる他の色素または部分と組み合わせた蛍光色素が含まれるがこれに限られない。標識は、蛍光、放射能、比色法、重量測定、X線回折または吸収、磁気、酵素活性、質量分析、結合能などにより検出可能なシグナルを提供しうる。標識は、帯電部分であり、あるいは中性の電荷でありうる。標識は、標識を含む配列が検出可能な限り、核酸またはタンパク質配列を含みまたはそれから成りうる。
【0054】
「反応混合物」は、一般に、逆転写反応、増幅反応および/または検出反応を実行するために必要な反応物を含む溶液をさし、これには、標的核酸、DNAポリメラーゼ、オリゴヌクレオチドプライマー、プローブまたは他のオリゴヌクレオチド成分等の主成分に加えて、検出薬剤、特殊酵素、修飾されたものを含むヌクレオシド5’−三リン酸、反応の間にpHを選択されたレベルに維持するための緩衝剤、塩類、補因子および添加剤、例えば1−メチル−2−ピロリドン、グリセロール、ポリ(エチレングリコール)、ジメチルスルホキシドまたはホルムアミド等も任意で含みうる。
【0055】
本明細書において使用される「キット」という用語は、材料を送達するための任意のシステムを指す。反応アッセイの文脈においては、このような送達システムは、一般にアッセイを実行するための書面の指示を伴って提供される、一つの場所から他の場所への、適切な容器内におけるオリゴヌクレオチド、緩衝成分、添加剤、反応促進剤、酵素等の反応成分の貯蔵、輸送および/または送達を可能にする要素を含む。キットは、関連の反応試薬および支持材料を含む、一つ以上の封入物またはボックスを含みうる。キットは、容器の各々が全てのキットの構成要素の一部を含む、二つ以上の別々の容器を含みうる。容器は、意図されたレシピエントに一緒または別々に送達されうる。
【0056】
逆転写を介した修飾cDNAの合成
上記の如く、本発明の重要な態様は、RNA標的配列の逆転写による、修飾cDNAの合成に関する。逆転写は、逆転写酵素活性を有するRNA依存性DNAポリメラーゼ酵素が相補DNA(cDNA)のテンプレートに依存した合成を触媒する、周知のプロセスである。例えば中で説明されるものとして、例えばSimpson D.等(1988)Biochem.Biophys.Res.Commun.,151:487−492;Belyavsky A.等(1989)Nucleic Acids Res.,17:2919−2932、および多くの他の参考文献に記載のように、目的のRNA標的配列が、逆転写反応において、cDNA/RNAヘテロ二重鎖または二重鎖cDNAに転換されうる。これらの方法は、デオキシヌクレオシド5’−三リン酸(dNTP)の存在下で、RNAテンプレートにハイブリダイズしたオリゴヌクレオチドプライマーを伸長する逆転写酵素に依存する。
【0057】
本発明によれば、逆転写酵素酵素が、塩基修飾二重鎖安定化dNTPを基質として採用および使用できること、さらに、そのような塩基修飾二重鎖安定化dNTPの逆転写の間のcDNAへの組み込みが、ハイブリダイゼーション特性の改善、その結果、後続の標的配列の増幅ベースの検出における効率および感度の改善を提供することが分かっている。したがって、本発明によれば、塩基修飾二重鎖安定化dNTPを含む修飾cDNAを合成することによる、RNA配列、特に小さなRNA配列(例えばmiRNAまたはsiRNA)の増幅ベースの検出のための、改善された方法が提供される。
【0058】
増強されたハイブリダイゼーション特性を有する本発明の修飾cDNAは、逆転写酵素活性を有するDNAポリメラーゼ(例えば逆転写酵素)および少なくとも一つ、多くの場合には二つ以上の塩基修飾二重鎖安定化dNTPを含むdNTPの混合物の存在下で、逆転写反応を行うことにより生成される。天然のdNTPの一つ以上がそれぞれの塩基修飾二重鎖安定化dNTPで部分的または完全に置換されるという条件で、本発明の逆転写反応は、四つの天然dNTP(dTTP、dCTP、dATPおよびdGTP)の全てを含みうる。
【0059】
本明細書に方法において有用な塩基修飾二重鎖安定化dNTPは、逆転写酵素活性を有するDNAポリメラーゼ酵素の基質として働き、dNTPアナログが組み込まれた結果増強された二重鎖安定性を有するcDNA配列の合成を触媒する、dNTPアナログを含むがこれに限定されない。
【0060】
本発明のある例示的な塩基修飾二重鎖安定化dNTPは、ヌクレオチド塩基が修飾された2−デオキシ−D−リボースを含む。そのようなヌクレオシドアナログは、例えばTownsend L.B.編(1988)Chemistry of Nucleosides and Nucleotides,Plenum Press,NYに例示される有機化学の周知の技術を適用して合成されうる。それぞれの5’−三リン酸は、例えばVaghefi M.編(2005)Nucleoside Triphosphates and their Analogs:Chemistry, Biochemistry,and Biological Applications,Taylor & Francisに記載されるプロトコルを用いて得られる。本発明の塩基修飾二重鎖安定化dNTPは、市販のソースから得られる一定のdNTP、例えばTrilink(California,USA)を含む。
【0061】
本発明で使用される他の例示的な塩基修飾二重鎖安定化dNTPは、例えば、5−位で置換され、逆転写酵素酵素の基質であるピリミジンを含む。
【0062】
他の実施態様においては、本発明で使用される塩基修飾二重鎖安定化dNTPは、以下
【0063】
【化5】

の化学式を有し、式中、Bは、
【0064】
【化6】

より選択され;
Xは、−F、−Cl、−Br、−I、−CHまたは
【0065】
【化7】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【0066】
【化8】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである。
【0067】
より特定の実施形態においては、本明細書の方法で使用される塩基修飾、二重鎖安定化dNTPは、d(2−amA)TP、d(5−PrU)TP、d(5−PrC)TP、またはその組み合わせより選択される。
【0068】
当業者には当然のことながら、特定の増幅反応の性質に応じて、特にDNAポリメラーゼ以外の酵素(制限エンドヌクレアーゼ、RNAポリメラーゼ等)を含むものでは、方法の一定の調整および変更が、塩基修飾二重鎖安定化dNTPの使用において行われうる。塩基修飾二重鎖安定化dNTPは、反応またはDNA合成の重要な成分である他の酵素活性を妨げないのが好ましい。これは特定の増幅スキームにおいて使用される塩基修飾二重鎖安定化dNTPの選択を左右し得、これらの酵素の特性に基づいて選択が行われうるが、これは公知技術である。
【0069】
修飾cDNAの核酸増幅
上述のように合成される修飾cDNAは、後の操作(例えば増幅反応)の間に少なくとも一つおよび好ましくは二つ以上のオリゴヌクレオチドプライマーまたはプローブと相互作用して、増強されたハイブリダイゼーション特性を有する本発明の修飾cDNAのおかげで、二重鎖安定化塩基アナログにより修飾されていないcDNAと比較して増強された安定性を有するハイブリダイゼーション複合体を形成しうる。その結果、後の増幅反応の間に修飾cDNAにハイブリダイズするプライマーまたはプローブは、例えば、その増強されたハイブリダイゼーション特性の結果として、改善された感度、効率、収率等を提供する。
【0070】
したがって、本発明の別の態様によれば(accoerding to)、修飾cDNAを生成するための標的配列の逆転写の後、上述のように、標的配列のコピー数を増加させるために核酸増幅反応が行われる。一つの好ましい実施形態では、標的核酸の増幅は、「ポリメラーゼ連鎖反応法」(「PCR」)(Mullis K.B.等、米国特許第4,683,195号; Mullis K.B.,米国特許第4,683,202号)を用いて達成される。最も一般的に使用されるPCRプロフィールは、一つのプライマーの伸長が次のPCRサイクルにおいて他方のプライマーのテンプレートを提供するように設計される、各鎖につき一つの、二つのオリゴヌクレオチドプライマーを用いる。一般に、PCRは、(i)標的配列を含む二本鎖核酸の鎖を分離する変性ステップと、これに続く(ii)プライマーを標的配列に隣接する位置にアニーリングさせるアニーリングステップと;(iii)5’から3’の方向にプライマーを伸長し、これにより標的配列に相補的な配列を有する『アンプリコン』核酸を形成する、伸長ステップの、反復(またはサイクル)からなる。上の三つのステップの各々は、自動サーモサイクラを用いて、異なる温度で行われうる。PCRサイクルは、必要な回数反復されてよく、少なくとも理論的には、使用されるプライマーの5’末端により末端が規定される標的DNAフラグメントの指数的蓄積が生じる。具体的温度、各ステップのインキュベーション時間、およびステップ間の変化率は、関連技術の当業者に周知の多くの要素に依存し、関連の例は、多数の公開されたプロトコル、例えばMcPherson M.J.等(1991および1995)等に見つけることができる。PCRの条件は多様でありうるが、従来のPCRでは、二本鎖標的核酸は一般に>90℃の温度で変性され、プライマーは50〜75℃の範囲の温度でアニールされ、伸長は一般に72〜78℃の範囲で行われる。アニーリングおよび伸長が単一のステップに組み合わされたPCR反応が行われうることも周知である。
【0071】
PCRを実行するためのその他の手引きは、例えば、Clementi M.等(1993)PCR Methods Appl.,2:191−196;Clegg R.M.(1992)Methods Enzymol.,211:353−388;Clementi M.等(1993)PCR Methods Appl.,2:191−196;Lie Y.S.およびPetropoulos C.J.(1998)Curr.Opin.Biotech.,9:43−48;Livak K.J.等(1995)PCR Methods and Applications,4:357−362;McPherson M.J.等編(1991)PCR:A Practical Approach.IRL Press,Oxford;McPherson M.J.等編(1995)PCR2:A Practical Approach.IRL Press,Oxford、および本明細書において参照される多くの他の原稿に見つけることができる。
【0072】
PCRに加え、多数の核酸増幅技術があり、それは当該技術分野で公知かつ利用可能であり、その多くは本発明の用途に容易に適用されうる。
【0073】
一つの増幅方法は、SDAと一般に呼ばれる鎖置換型増幅(Walker,G.等(1992),Proc.Natl.Acad.Sci.USA 89,392−396;Walker等,“Nucleic Acid Target Generation,”米国特許第5,270,184号;Walker,“Strand Displacement Amplification,”米国特許第5,455,166号;およびWalker等(1992)Nucleic Acids Research 20,1691−1696)であり、標的配列の対向する鎖に対するプライマー配列対のアニーリングと、二重鎖ヘミホスホロチオエート化プライマー伸長産物を生成するための、dNTPの存在下でのプライマー伸長と、ヘミ修飾制限エンドヌクレアーゼ認識部位のエンドヌクレアーゼを介したニッキングと、既存の鎖を置換し、プライマーアニーリング、ニッキングおよび鎖置換の次のラウンドのための鎖を生成するための、ニックの3’末端からのポリメラーゼを介したプライマー伸長のサイクルを用い、産物の幾何学的増幅が生じる。好熱性SDA(tSDA)は、基本的に同じ方法において、好熱性エンドヌクレアーゼおよびポリメラーゼをより高温で使用する(欧州特許第0684315号)。
【0074】
他の例示的な増幅方法には、一般にNASBAと呼ばれる、核酸配列ベースの増幅(Malek等、米国特許第5,130,238号);一般にQβレプリカーゼと呼ばれる、プローブ分子自体を増幅するためにRNAレプリカーゼを使用するもの(Lizardi,P.等(1988)BioTechnol.6,1197−1202);転写ベースの増幅法(Kwoh,D.等(1989)Proc.Natl.Acad.Sci.USA 86,1173−1177);自家持続配列複製法(Guatelli,J.等(1990)Proc.Natl.Acad.Sci.USA 87,1874−1878;Landegren(1993)Trends in Genetics 9,199−202;およびLee,H.等,NUCLEIC ACID AMPLIFICATION TECHNOLOGIES(1997));および、一般にTMAと呼ばれる、転写媒介増幅法(Kacian等,“Nucleic Acid Sequence Amplification Methods,”米国特許第5,480,784号;およびKacian等,米国特許第5,399,491号)が含まれる。公知の増幅方法に関するさらなる議論については、Diagnostic Medical Microbiology:Principles and Applications(Persing等編),pp.51−87(American Society for Microbiology,Washington,DC)中の、Persing,David H.,1993,“In Vitro Nucleic Acid Amplification Techniques”を参照。さらに他の例示的増幅方法には、ローリングサークル増幅(RCA)(Lizardi,“Rolling Circle Replication Reporter Systems,”米国特許第5,854,033号);ヘリカーゼ依存性増幅(HDA)(Kong等,“Helicase Dependent Amplification Nucleic Acids,”米国特許出願公開第2004−0058378 A1号);およびループ媒介等温増幅(LAMP)(Notomi等,“Process for Synthesizing Nucleic Acid,”米国特許第6,410,278号)が含まれる。
【0075】
DNAポリメラーゼは、本発明の核酸増幅を行う上で明らかに重要な成分である。本発明で有用なDNAポリメラーゼは、天然ポリメラーゼならびに5’〜3’および/または3’〜5’エキソヌクレアーゼ活性を欠くポリメラーゼ変異体の両方を含む。核酸ポリメラーゼは、様々な程度の耐熱性を有しうる。DNAポリメラーゼの選択は、本発明において適用される増幅および検出反応の選択に通常関係する多くのファクターにより決定される。ある実施形態では、DNAポリメラーゼが、オリゴヌクレオチドプライマーを伸長できる温度で、鎖置換型活性を呈するのが好ましい。DNA増幅がDNA鎖の一つの置換に基づく多くの等温増幅、例えばSDAおよびローリングサークル増幅のケースにおいては、DNAポリメラーゼが、5’〜3’のエキソヌクレアーゼ活性を欠くのが好ましい。DNAポリメラーゼは、バクテリオファージ、古細菌、真正細菌、および真核生物酵素を含む様々な天然のソースから単離されうる。
【0076】
5’〜3’および3’ 〜5’のエキソヌクレアーゼ活性の両方を欠く市販の酵素には、Sequenase(exo−T7;USB)、Pfu exo−(Stratagene)、exo−Vent(New England BioLabs)、exo−DeepVent(New England BioLabs)、exo−Klenow fragment(Stratagene)、Bst(Bio−Rad)、Isotherm(Epicentre)、Stoffel fragment(Perkin−Elmer)、ThermoSequenase(USB)、およびTaqFS(Hoffinan−LaRoche)が含まれる。検出PCRアッセイに有用な熱安定性DNAポリメラーゼの例には、Pfu、Taq、Vent、Deep VentおよびUlTma DNAポリメラーゼ、ならびにThermus属またはThermatoga maritimaからの他のポリメラーゼが含まれるがこれに限定されない。検出PCRのための熱安定性ポリメラーゼは、好ましくは>90℃、より好ましくは>100℃の温度で活性を山。ある検出反応、例えばTaqManアッセイは、5’〜3’エキソヌクレアーゼ活性を発現するDNAポリメラーゼの使用を要する。本明細書に提供される実施例では、SigmaからのJumpStart DNAポリメラーゼが使用された。
【0077】
本発明の反応成分は、DNA増幅反応の選択により変動しうる。主成分に加えて、本発明の反応物および反応混合物は、検出剤、特殊酵素(例えばヌクレアーゼ、FENエンドヌクレアーゼ、制限エンドヌクレアーゼ、RNアーゼHを含むRNアーゼ、RNAポリメラーゼ、ヘリカーゼ等)、反応中にpHを選択されたレベルで維持するための緩衝剤、塩類、補因子および添加剤、例えば1−メチル−2−ピロリジノン、グリセロール、ポリ(エチレングリコール)、ジメチルスルホキシド(DMSO)またはホルムアルデヒド等を含むがこれに限定されない。
【0078】
オリゴヌクレオチドプライマーは、本発明の増幅反応において、修飾cDNAの合成および増幅を開始させる。オリゴヌクレオチドプライマーは、精製された制限消化物の場合のように自然に生じても、または合成生産されてもよい。DNAポリメラーゼの存在下でプライマー伸長が生じるためには、本発明のオリゴヌクレオチドプライマーが、テンプレート鎖とハイブリダイズするために十分に相補的でなければならない。オリゴヌクレオチドプライマーの配列は、ハイブリダイズしてプライマー伸長に関与するために十分に相補的であれば、それらがハイブリダイズするように設計される標的核酸の正確な配列を反映する必要はない。例えば、プライマーの5’末端に非相補的ヌクレオチドフラグメントが結合され、プライマー配列の残部が鎖に対して実質的に相補的でありうる。プライマー配列がテンプレートの配列とハイブリダイズするために十分な相補性を有し、これによりオリゴヌクレオチドプライマーの伸長産物の合成のためのテンプレート−プライマー複合体を形成することを条件として、非相補的塩基またはより長い配列がプライマー内に散在しうる。プライマー設計は、用いられる具体的な増幅反応により誘導されうる。例えば、SDA増幅のために設計されるプライマーは、増幅反応を支持する制限エンドヌクレアーゼの配列を組み込む。例えば、Walker G.T.等,米国特許第5,270,184号;Dattagupta N.等,米国特許第6,214,587号;Walker G.T.等,(1996)Nucleic Acids Res.,24:384−353;Walker G.T.等,(1992)Proc.Natl.Acad.Sci.USA,89:392−396;Spargo C.A.等,(1996)Molecular and Cellular Probes,10:247−256。
【0079】
オリゴヌクレオチドプライマーは、通常は合成の性質であり、天然核酸には一般に存在しない、原子、部分、残基、ポリマー、リンカー等の構造修飾物を含みうる。オリゴヌクレオチドプライマーは、検出可能標識、例えば同位体、32P等の放射性標識、ビオチン等の結合部分、ジオキシゲニン等のハプテン、発光性、質量タグ、リン光または蛍光部分、蛍光色素等を組み込みうる。プライマーは通常、DNA増幅の間に組み込まれるため、標識を用いて本発明の修飾DNAを検出しうる。オリゴヌクレオチドプライマーは、イノシン(ヒポキサンチン)、5−ブロモウラシル、5−メチルシトシン、5−ヨードウラシル、2−アミノアデノシン、6−メチルアデノシン、シュードウリジン等を含むがこれに限定されない、天然核酸にはめったに存在しないヌクレオシドまたはヌクレオチドアナログも組み込みうる。
【0080】
ある実施形態においては、オリゴヌクレオチドプライマーは、二重鎖安定化効果をもたらす構造修飾物を組み込む。しかし、本発明のすべての態様において、プライマーの3’末端が、DNA合成の開始を妨げる様式でブロックされてはならない。オリゴヌクレオチドプライマーの設計に使用されうる構造修飾物の例には、通常は5’末端に連結される副溝バインダー(MGB)(Afonina I.等(1997)Nucleic Acids Res.,25:2657−2660)および一定のヌクレオチドアナログが含まれるがこれに限定されない。ヌクレオチドアナログの例には、「ユニバーサル」塩基(Burgner D.等(2004)Nucleosides Nucleotides Nucleic Acids,23:755−765)および「ロックド核酸」(「LNA」)(Latorra D.等(2003)Mol.Cell.Probes,17:253−259;Latorra D.等(2003)Hum.Mutat.,22:79−85;Di Giusto D.A.およびKing G.C.(2004)Nucleic Acids Res.,32:e32)が含まれる。多数の塩基修飾ヌクレオチドアナログが、DNAポリメラーゼにより十分に耐容され、これらのアナログがプライマー設計において使用されうる。そのような塩基修飾ヌクレオチドアナログの例には、5−メチルシトシンおよび2,6−ジアミノプリンが含まれるがこれに限定されない(Lebedev Y.等(1996)Genet.Anal.,13:15−21)。
【0081】
オリゴヌクレオチドプライマーは、標識され、標識された修飾DNAを増幅するために使用されうる。標識は、核酸検出段階で使用される。好ましい標識は、蛍光標識である。一態様においては、オリゴヌクレオチドプライマーが、オリゴヌクレオチドプローブ、例えば、Scorpionプライマーと連結されうる(Whitcombe D.等(1999)Nature Biotech.,17:804−807;Thelwell N.等(2000)Nucleic Acids Res.,28:3752−2761)。
【0082】
オリゴヌクレオチドプローブは、プローブ中の少なくとも一つの配列の修飾DNA中のそれぞれの配列との相補性により、逆転写および/または増幅の産物と二重鎖構造または他の複合体を形成できる、オリゴマーまたはポリマーである。本発明のオリゴヌクレオチドプローブは、修飾され、または構造修飾物を含みうる。一定の修飾物がオリゴヌクレオチドプローブ中に一般に存在し、これらは通常、DNAの検出において使用される標識に関係する。蛍光標識オリゴヌクレオチド、および、特にFRETプローブが、有用な検出成分である。オリゴヌクレオチドプローブおよびプライマーは、本発明の修飾DNAにハイブリダイズすると、修飾DNAの増強されたハイブリダイゼーション特性により、安定化した相補複合体を形成する。オリゴヌクレオチドプライマーとは異なり、オリゴヌクレオチドプローブには、構造修飾に関する制限がほとんどない。これは、ハイブリダイゼーション誘発FRETプローブ技術に特にあてはまる。例えば、オリゴヌクレオチドプローブは、完全に非天然PNAモノマーで作られうる。例えば、Ortiz E.等(1998)Mol.Cell.Probes,12:219−226。LNAなどのプローブ設計における他の塩基修飾または糖修飾ヌクレオチドアナログの使用も、幅広く適用できる(Johnson M.P.等(2004)Nucleic Acids Res.,32:e55;Simeonov A.およびNikiforov T.T.(2002)Nucleic Acids Res.,30:e91)。オリゴヌクレオチドプローブは、いずれかの末端に接合されたMGB部分を担持しうる。例えば、5’−MGB−接合FRETプローブは、検出PCRにおいて切断されず、これらのプローブは、Vermeulen N.等(2002)J.Clin.Ligand Assay,25:268−275に記載されるように、ハイブリダイゼーションにより誘発される作用機序によりシグナルを提供する。3’−MGB−接合FRETプローブは、5’−ヌクレアーゼ分解からブロックされず、これらのプローブは、Kutyavin I.V.等(2000)Nucleic Acids Res.,28:655−661に例示されるように、Taqポリメラーゼによる切断により蛍光シグナルを生成する。
【0083】
オリゴヌクレオチドプライマーおよびプローブは、当該技術分野において周知の技術を用いて合成されうる。プライマーは、例えば適切な配列のクローニングおよび制限消化分析により調製されうるが、直接的な化学合成が好ましいアプローチである。オリゴヌクレオチドは、例えば、Brown E.L.等(1979)Methods Enzymol.,68:109−151に開示されるホスホジエステル法、Narang S.A.等(1979)Methods Enzymol.,68:90−98に記載されるホスホトリエステル法を含む、適切な化学合成法により調製されうる。別のアプローチは、Caruthers M.H.,Matteucci M.D.(1984)米国特許第4,458,066号に開示される固体担体法と組み合わせて使用され、市販の自動オリゴヌクレオチド合成装置の一つを用いて行われうる、Beaucage S.L.,Caruthers M.H.(1981)Tetrahedron Lett.,22:1859−1862に開示されるジエチルホスホラミデート法である。
【0084】
一般に、オリゴヌクレオチドプライマーおよびプローブは、上に開示され、引用される技術を含む、当該技術分野において公知の特定の増幅または検出技術のルールおよび規格にしたがって設計される。オリゴヌクレオチド成分には一定の一般的必要条件があり、例えば、オリゴヌクレオチドのハイブリダイゼーション特性は、融解温度(Tm)と通常呼ばれる特定の反応の温度に対応する必要がある。Tmは、オリゴヌクレオチド成分の標的核酸との相補複合体が、一本鎖に半分に解離した状態になる温度を表す。Tm値の簡単な推定値は、核酸が1M NaClの水溶液中にあるときに、式Tm=81.5+0.41(%G+C)を用いて計算されうる。「隣接」アプローチの塩基対熱力学を用いて、より正確な計算がなされうる(Breslauer K.J.等(1986)Proc.Natl.Acad.Sci.USA,83:3746−3750;SantaLucia J.Jr.(1998)Proc.Natl.Acad.Sci.USA,95:1460−1465)。Oligo(商標)を含む市販のプログラム、Primer3およびOligo Calculatorを含むインターネット上で利用できるPrimer Designおよびプログラムも、本発明により有用な核酸配列のTmを計算するために用いられうる。市販のプログラム、例えばVisual OMP(DNA software)、Beacon designer 7.00(Premier Biosoft International)が、PCRベースおよびNASBA増幅反応のためのSYBR Green、TaqManおよびMolecular Beacon検出システムでの実時間アッセイの設計において使用されうる。一般に、オリゴヌクレオチドプローブのTm値は、対応する増幅プライマーのTmより5〜7℃高い。
【0085】
さらに、一定の増幅スキームにより必要とされる場合には、本発明の反応混合物は、塩基修飾二重鎖安定化dNTP以外のdNTPアナログも組み込みうる。例えば、Walker G.T.等(1993)米国特許第5,270,184号に記載されるSDA増幅は、二本鎖DNAの一方の鎖のニッキングを促進するために、α−チオdNTPアナログの使用を要する。デオキシウリジン5’−三リン酸(dUTP)は、さらに別の例である。この塩基修飾物は、DNA二重鎖を不安定化することが知られているが、そのような修飾DNAの選択的使用も、本発明の範囲内である。ここでのdUTPの主な目的は、Gelfand D.H.等(1995)米国特許第5,418,149号に記載されるように、試料から試料への汚染のキャリーオーバーの防止である。
【0086】
増幅産物の検出
本発明の増幅されたDNAは、電気的力(例えば電気泳動)、重力(例えば沈降)、分光法(例えば放射線分光法、UV、質量分析、蛍光、化学発光、化学蛍光等)、吸収、磁気、クロマトグラフィ(HPLC、逆相、イオン交換、体積排除等)、タンパク質との反応(制限酵素、エンドヌクレアーゼ、ポリメラーゼ、キナーゼおよび他の酵素活性)、結合親和性等を含むがこれに限定されない、任意の物理的、化学的または生物学的手段により検出されうる。ある実施形態においては、増幅産物が、増幅段階の間または直後に標識され、標識が増幅産物の検出に使用される。例示的な標識には、同位体、32P等の放射性標識、ビオチン等の結合部分、発光性および質量タグ、リン光または蛍光部分、単独またはFRET効果により発光スペクトルを抑制またはシフトできる他の色素もしくは部分と組み合わせた蛍光色素が含まれるがこれに限定されない。
【0087】
他の実施形態においては、増幅反応の間(実時間)または後に、検出剤を用いて増幅産物が検出されうる。ある好ましい検出剤は、インターカレーティング色素および蛍光剤、例えば臭化エチジウムである。例えば、Wittwer C.T.等により米国特許第6,174,670号および第6,569,627号に、ならびにHiguchi R.等(1992)Biotechnology,10:413−417;Higuchi R.等(1993)Biotechnology,11:1026−1030に記載されるように、インターカレーティング色素を用いて、PCRにおける増幅産物を検出できる。ある例示的な蛍光剤は、核酸と相互作用するとその蛍光特性を変化させ、これにより検出可能シグナルを提供する分子を含む。Schneeberger C.等(1995)PCR Methods Appl.,4:234−238およびMackay J.,Landt O.(2007)Methods Mol.Biol.,353:237−262に記載のように、InvitrogenからのSYBR Green IおよびIIは、そのような蛍光剤の例である。
【0088】
ある態様においては、増幅産物の検出は、「実時間」で行われる。標的増幅中にすべての検出成分が利用可能であり、反応条件(例えば温度、緩衝剤、塩類、補因子、スカベンジャー等)が反応の両段階−増幅および検出−を支持し、これにより増幅反応の進行とともに標的核酸を測定でき、増幅物質の検出に必要な後続の処理ステップの数が減少するとき、実時間検出が可能である。従って、本明細書において使用されるところの、「実時間PCR」という用語は、反応生成物、例えば増幅された標的核酸の量が、反応の進行と同時にモニタリングされるPCRをさす。実時間PCRは主に、反応において標的核酸の増幅をモニタリングするための検出化学において異なる。例えば、Gelfand等、米国特許第5,210,015号は、5’−ヌクレアーゼ切断可能FRETプローブ(「TaqMan」)の使用を記載し;Tyagi等、米国特許第5,925,517号は、ハイブリダイゼーション誘発FRETプローブ(「Beacons」)の使用を記載する。実時間PCRの検出化学の概論は、Didenko V.V.(2001)BioTechniques,31:1106−1121;Mackay I.M.等(2002)Nucleic Acids Res.,30 1292−1305,およびMackay J.,Landt O.(2007)Methods Mol.Biol.,353 237−262にも見られる。
【0089】
増幅産物は、オリゴヌクレオチドプローブを使用して検出することもできる。オリゴヌクレオチドプローブは、DNAと配列特異的様式で相互作用して複合体(例えば、相補二重鎖)を形成し、この複合体は、本明細書の方法により必要に応じてより安定化されうる。一般に、複合体の安定性が検出の感度を決定する。したがって、オリゴヌクレオチドプローブと修飾DNAの間の複合体の安定化は、検出アッセイに様々な方法で恩恵をもたらし得る。
【0090】
別の実施形態では、オリゴヌクレオチドプローブは標識を組み込み、この標識が、本発明の修飾DNAの検出に使用される。一実施形態においては、この標識は蛍光標識であり、蛍光偏光技術による修飾DNAの検出に使用される。別の実施形態においては、オリゴヌクレオチドプローブは、FRETプローブである。修飾DNAの検出におけるFRETプローブの適用は、例えば、検出アッセイを実時間で行い、試料中の標的核酸の量を測定する上で、利点を提供しうる。増幅反応がPCRであるとき、このタイプのアッセイは、「定量的PCR」と呼ばれる。FRETプローブは、一般に二つの発色団を含む。「アクセプター」発色団は、「レポーティング」発色団の蛍光を消光するために選択される非蛍光色素でありうる(Eftink M.R.(1991)In Lakowicz J.R.(編),Topics in Fluorescence Spectroscopy.Plenum Press,New York,V.2:53−126)。標的核酸とプローブの間の配列特異的ハイブリッドの形成は、プローブの蛍光特性の変化をもたらし、核酸標的の検出を提供する。実時間FRET−ベースのアッセイは、特に臨床診断に適する。インターカレーティング色素および蛍光剤(例えば臭化エチジウム、SYBR Green)とは異なり、この検出は配列特異的であり、偽陽性結果を事実上除去する。
【0091】
FRET効果を利用する多くの検出戦略が、報告されている。一つのFRET戦略は、ハイブリダイゼーション誘発FRETプローブアプローチであり、これは、標的核酸と蛍光オリゴヌクレオチドプローブの間の配列特異的複合体形成の結果としての、ドナー色素とアクセプター色素の間の距離変化に基づく。例えば、Adjacent Hybridization Probe法は、例えばEftink M.R.(1991)In Lakowicz J.R.(編),Topics in Fluorescence Spectroscopy.Plenum Press,New York,V.2:53−126;Heller M.J.およびMorrison L.E.(1985)In Kingsbury,D.T.およびFalkow,S.(編),Rapid Detectionand Identification of Infectious Agents.Academic Press,New York,245−256;Cardullo R.A.等(1988)Proc.Natl.Acad.Sci.USA,85:8790−8794に記載されるように、隣接する標的DNA配列にハイブリダイズする二つのオリゴヌクレオチドプローブを利用する。両方のプローブが標的DNAにハイブリダイズしたときに、ドナーおよびアクセプターフルオロフォアが十分に空間的に近づけられて検出可能FRETを可能にするように、プローブの各々が適切なプローブ末端でFRET−対色素で標識される。
【0092】
代替的アプローチは、PCRの間除去される消光性蛍光プローブを利用する(例えば米国特許第5,804,375号)。これらのプローブは、同じプローブに接合された蛍光レポーターおよび消光部分を含む。ランダムオリゴヌクレオチドコイリングにより、消光部分が、レポーター色素の蛍光を消光するために十分に近くにある。プローブが相補ポリヌクレオチド標的にハイブリダイズされると、消光部分とレポーター部分が分離され、したがってレポーター色素の蛍光発光が可能になる。このアプローチに伴うことが多いバックグラウンドの問題は、柔軟なPNA骨格を伴うオリゴヌクレオチドを合成することにより解決できる。例えば、Ortiz E.等(1998)Mol.Cell.Probes,12:219−226。
【0093】
あるいは、分子間のステム形成によりFRET色素が近づけられるヘアピン形のオリゴヌクレオチドプローブ、Molecular Beaconsを使用して、効率的なFRET検出が達成されうる。例えば、Tyagi S.およびKramer F.R.(1996)Nat.Biotechnol.,14:303−308;Bonnet G.等(1999)Proc.Natl.Acad.Sci.USA,96:6171−6176;Tyagi S.等(2000)Nat.Biotechnol.,18:1191−1196;Marras S.A.E.等(2002)Nucleic Acids Res.,30:e122。分子ビーコン法は、著しく低い蛍光バックグラウンドを有する。これらのプローブは、例えばPiatek A.S.等(1998)Nat.Biotechnol.,16:359−363;Lewin S.R.等(1999)J.Virol.,73:6099−6103に記載のように、実時間PCRにおける使用に良く適している。
【0094】
PCRプライマーに対する分子ビーコンプローブの共有結合は、Scorpionプライマーのユニークな特性である。例えばWhitcombe D.等(1999)Nature Biotech.,17:804−807;Thelwell N.等(2000)Nucleic Acids Res.,28:3752−3761。「Scorpion」においては、PCRプライマーの5’末端が、長い柔軟なリンカーにより分子ビーコンの3’末端に接合される。このリンカーは、DNAポリメラーゼのテンプレートではなく、従ってビーコン配列を超える伸長を排除する。分子ビーコンのゲノム部分は、プローブが共有結合されるプライマーの標的伸長産物に結合するように設計される。Molecular Beaconとは異なり、ScorpionにおけるDNA検出段階は、分子間反応となる。これは、ハイブリダイゼーションの遅いキネティクスに関連したBeacon技術のさらに別の問題を克服するのに役立つ。
【0095】
Eclipseプローブは、低い蛍光バックグラウンドを有する、ハイブリダイゼーションベースのFRETプローブのさらに別の例である(Afonina I.A.等(2002)BioTechniques,32:940−949)。Eclipseプローブ設計は、一方が非蛍光またはダーククエンチャーである二つのFRET色素に加えて、5’末端に副溝結合(MGB)部分を含む。Kutyavin I.V.等(1997)Nucleic Acids Res.,25:3718−3723に記載のように、MGB−部分の強い、DNA−二重鎖−安定化効果のため、プローブは、実時間PCR検出に必要なハイブリダイゼーション特性をなお維持しながら、わずか12〜20マーの短さで設計されうる。プローブの5’末端のMGB−テールの配置は、5’−ヌクレアーゼ切断を完全に遮断し、ハイブリダイゼーションにより誘発される色素分離のみにより蛍光シグナルが生成される。
【0096】
FRET色素を遠ざけることによるFRET分裂のメカニズムには一定の制限がある。例えば、FRET効果を完全になくすことは困難であり、プローブは、少なくとも20〜24マーでなければならない。短い8〜12bpプローブ−標的二重鎖においては、「残余の」クエンチングが20〜50%にも達しうる(Cardullo R.A.等(1988)Proc.Natl.Acad.Sci.USA,85:8790−8794)。さらに、レポーター色素が、隣接塩基、特にグアニンにより、スペクトルのオーバーラップがほとんどないに関わらず、部分的に消光されうる。この効果は周知であり、自己消光蛍光プライマー、またはLUXプライマー(Light Upon eXtensionの略)の名でも知られるDNA検出技術において用いられている。例えば、Nazarenko I.等(2002)Nucleic Acids Res.,30:e37;Nazarenko I.等(2002)Nucleic Acids Res.,30:2089−2195。この技術は、フルオレセイン(FAM)のような「緑色」色素で最もパフォーマンスが良い。しかし、LUXプライマーは配列特異的ではない。プライマー−二量体を含む、LUXプライマー伸長の任意の産物が蛍光シグナルを生成する。
【0097】
切断可能FRETプローブ。FRETを無効にするための効果的な戦略は、標的核酸へのその結合時のオリゴヌクレオチドプローブの切断に基づく。TaqMan(商標)技術は、実時間核酸検出法として開発され、Thermus aquaticus(Taq)ポリメラーゼの5’−3’エキソヌクレアーゼ活性を利用する。例えば、Lie Y.S.およびPetropoulos C.J.(1998)Curr.Opin.Biotech.,9:43−48。二つのPCRプライマー結合部位の間に位置する標的配列にアニールするように、二重標識FRETプローブが設計される。鎖の伸長の間に、Taqポリメラーゼが、プライマー部位から下流にハイブリダイズされたプローブを切断し、クエンチャーからレポーター色素を放出させ、こうしてFRETを永久かつ不可逆的に分裂する。例えば、Livak K.J.等(1995)PCR Methods and Applications,4:357−362。TaqMan(商標)プローブ切断は不可逆的であり、所与のPCRサイクルで生成されるシグナルは、その特定のサイクルで生成されるシグナルと全ての以前のものの合計である。しかし、「古典的」TaqMan(商標)プローブの高い蛍光バックグラウンドは、この利点に影を落とす。3’−末端でのMGB部分との接合は、このパラメータの有意な改善をもたらす(Kutyavin I.V.等(2000)Nucleic Acids Res.,28:655−661)。比較的短い12〜18マーのMGB−TaqMan(商標)プローブは、改善されたSNP識別特性を有する。しかし、TaqMan(商標)技術は、なおPCR性能に密接に結びついている一方で、サイクリングプローブ技術(Cycling Probe Technology:CPT)は比較的独立している。
【0098】
サイクリングプローブ技術(CPT)。サイクリングプローブ技術(CPT)は、使用されうる追加的な検出システムである。これらの反応は、配列特異的な様式で標的核酸に結合するオリゴヌクレオチドプローブの連続的切断に基づく。適切なエンドヌクレアーゼが複合体を認識し、プローブを切断するが、標的鎖は無傷で残され、次の切断ラウンドにリサイクルされる。ハイブリダイズされたプローブが内部的に切断されると、切断産物は、もとのプローブより弱いハイブリッドを形成し、これらのプローブフラグメントが標的鎖から解離し、それを追加的な切断反応ラウンドに利用できる。標的のリサイクルは、標的分子につき二つ以上のプローブが切断されうることを意味する。CPT反応においては、シグナルは二つの主変数、標的濃度と時間の関数である。標的濃度が固定されるとき、シグナルは線形に増大する。反応の進行を反映して、切断は減速し、基本的に全てのCPTプローブが切断されると最終的に停止する。いくつかのシステム設計が報告されている。一つのアプローチは、Fong W.等(2000)J.Clin.Microbiol.,38:2525−2529;Modruzan Z.等(2000)Diagn.Microbiol.Infect.Dis.,37:45−50に記載されるように、標的DNAに結合時にRNアーゼHにより切断されるキメラDNA−RNAプローブの使用に基づく。これらのDNAプローブは、オリゴヌクレオチド鎖の途中に少なくとも4〜5のリボヌクレオチドを有するように設計される。RNアーゼHは、ハイブリダイズされたプローブのRNA部分のみを切断し、標的ポリヌクレオチドはリサイクルされて、別の未切断のプローブ分子にハイブリダイズする。これにより、適切な条件下で、プローブ切断反応のサイクリングが生じる。例えばHarvey J.J.等(2004)Anal.Biochem.,333:246−255に記載のように、最近のRNアーゼHの熱安定性アナログの発見および単離により、このDNA検出技術をPCRと組み合わせることが可能になっている。それぞれのFRETプローブは、Takara Bioから入手できる。
【0099】
別のCPTアプローチは、DNAにおける脱塩基部位および他の関連の損傷の修復を開始させるAPエンドヌクレアーゼ、E.coliからのエンドヌクレアーゼIVの、基質特異性に基づく。FRETプローブおよびエンハンサーは、部分的に分解された脱塩基部位を擬態するAPエンドヌクレアーゼの基質を共同で形成しうる。酵素はこの人工基質を認識し、プローブの3’−テールを「クリップ」し、これによりレポーター色素を放出させ、FRETを分裂させる。Kutyavin I.V.等(2004)米国特許出願第2004/0101893号に記載のように、この反応は、ナノモルまたはナノモル以下の標的DNA濃度でも切断プローブの高い収率が達成されるサイクリングモードで行われうる。
【0100】
別の実施形態では、INVADER(商標)検出アッセイが用いられうる。これは、一定のポリメラーゼのフラップまたは5’−エンドヌクレアーゼ活性を利用して、二つの部分的にオーバーラップするオリゴヌクレオチドを、標的DNAへのそれらの結合時に切断する。INVADER(商標)アッセイは典型的に、二つの連続したサイクリング切断反応からなる。切断反応を提供するために使用される酵素は、合成能力が実質的に低減または完全に除去されたDNAポリメラーゼ、CLEAVASEである。例えば、Dahlberg J.E.等(1997)米国特許第5,691,142号;第5,837,450号;第5,846,717号;第5,985,557号;第5,994,069号;第6,001,567号;第6,090,543号;第6,348,314号;第6,875,572号;第6,913,881号;ならびにSchweitzer B.およびKingsmore S.(2001)Curr.Opin.Biotech.,12:21−27。検出システムは、事前の標的DNA増幅を要しない場合もある、非常に効率的なシグナル増幅アッセイである。しかし、核酸の事前増幅は、INVADERアッセイを適用するのに好ましいアプローチである。カセットプローブの非特異的切断の結果、バックグラウンド蛍光が時間とともに線形に増加する。さらに、アッセイは、増幅を行わないときには、相当の標的DNA負荷量を要する。例えば、Schweitzer B.およびKingsmore S.(2001)Curr.Opin.Biotech.,12:21−27。CPTと核酸増幅技術の組み合わせは、例えば二次構造を有するオリゴヌクレオチドプローブにつきSorge J.A.(2001)米国特許第6,589,743号に記載されるように、利点を提供する。
【0101】
当業者には当然のことながら、本明細書に記載される方法、組成物、反応混合物およびキットに対する他の適切な変形および改変物が、通常の技術を有する技術者に知られる情報を考慮して、本明細書に含まれる本発明の記載から直ちに明らかであり、本発明の範囲またはその任意の実施形態を逸脱することなく、作成されうる。本発明を詳述してきたが、本発明の制限ではなく説明の目的で本明細書に共に含まれる以下の実施例を参照することにより、同がより明確に理解される。
【実施例】
【0102】
以下に、本発明のある態様および実施形態を図示する実施例が提供される。熟練の技術者には当然のことながら、これらの実施例は、本発明を、本明細書に記載される特定の実施形態に制限することを意図しない。さらに、当業者は、本明細書に記載される技術、材料および方法を用いて、本発明の精神および範囲内にとどまりながら、これらおよび関連の方法を実行するための代替的な逆転写および/または増幅システムを容易に考案および最適化しうる。
【0103】
本実施例では、逆転写酵素酵素が、塩基修飾dNTPを採用および使用しうること、および、修飾cDNAへのこれらの塩基修飾dNTPの組み込みが、後続の核酸増幅の間の感度、効率、および収率の改善をもたらすことが示される。したがって、本発明によれば、逆転写の間に修飾cDNAが合成され、修飾cDNAに塩基修飾dNTPが組み込まれることによる、改善されたRNA配列の増幅ベースの検出のための方法が提供される。
【0104】
1.逆転写
逆転写を実行するために使用される実験プロトコルが以下に記載される。実験は、天然または塩基修飾dNTPのいずれかを用いて、並行して行われた。塩基修飾dNTPを用いた実験においては、2,6−ジアミノプリンデオキシヌクレオシド5’−O−三リン酸(d(2−amA)TPとも呼ばれる)、5−プロピニルデオキシウリジン5’−O−三リン酸(d(5−PrU)TPとも呼ばれる)、5−プロピニルデオキシシトシン5’−O−三リン酸(d(5−PrC)TPとも呼ばれる)およびdGTPを含む混合物が使用された。以下に示される量の適切なストック溶液を混合することにより、反応混合物が調製された。フォワードおよびリバースプライマー、ならびに標的miRNA配列が、図1に示される。
【0105】
【化9】

反応混合物は、5分間65℃に加熱され、氷上で冷やされた。それから、以下が加えられた:
5× First−Strand Buffer(Invitrogen) 4μl
0.1 M DTT 2μl
水 1μl
(5× First Strand Bufferは、375mM KCl、15mM MgCl2、0.1M DTT、250mM Tris−HCl(pH8.3)を含む) 。
【0106】
反応混合物が2分間45℃に加熱されてから、1μlのSuperScriptTM II RT(Invitrogen)が加えられた。
【0107】
RT反応において使用された温度プロフィールは、60分間42℃で加熱;2分間950℃で加熱、および1分間4℃に冷却である。
【0108】
2.増幅
以下に記載される実験プロトコルを用い、ポリメラーゼ連鎖反応法を用いて、逆転写反応から生じたcDNA産物が増幅された。天然dNTPが、増幅反応において使用された。
【0109】
【化10】

(10×Bufferは、500mM KCl、20mM MgC12、200mM Tris−HCl(pH8.0)を含んだ)
PCR反応で使用された温度プロフィールは:95℃2’→(95℃10’’→56℃45’’)55
図1に示すように、プライマーは、miR−155と称されるmiRNA標的配列に特異的であるように設計された。miR−155に相補的なcDNAテンプレートを生成するための逆転写(RT)反応において使用するためにリバースプライマーが設計された。リバースプライマーは、8つの塩基に沿ってmiR−155配列と重複し、>45℃の予測Tmを有する二重鎖を形成した。
【0110】
しかし、図1にみられるように、フォワードPCRプライマーは、12の塩基に沿ってcDNAと重複する。標的miR−155の小さなサイズを前提とすれば、このプライマーが標的配列とより大きな重複を有するように設計すれば、リバースプライマーとの重複が生じ、したがって後続のPCRの間にプライマー−ダイマーの形成が促進される。本実施例におけるプライマー配列は、標的miR−155配列とのオーバーラップ領域に四つの修飾d(2−amA)TP塩基を含んだが、プライマーは、Tm=約40℃でcDNAと重複二重鎖を形成すると予測される。PCR反応において使用される典型的なアニーリング温度は、約60〜65℃の範囲である。記載の実験においては、56℃のアニーリング温度が使用された。したがって、PCRアニーリング温度の間のこの16℃のギャップとcDNAにハイブリダイズされるフォワードプライマーの二重鎖安定性から、逆転写により生成されたcDNAがその後PCR反応に関与したときのPCR収率の減少がもたらされるであろう。
【0111】
しかし、逆転写反応の間の塩基修飾二重鎖安定化dNTPの使用は、cDNA合成ならびに後続のPCR増幅の収率を改善することが分かった。逆転写の間に使用される二重鎖安定化dNTP混合物は、d(2−amA)TP、d(5−PrU)TP、d(5−PrC)TPおよびdGTPを含んだ。後続のPCR増幅は、天然dNTPの存在下で行われた。これらの実験の結果が図2に示され、miR−155の逆転写の間の塩基修飾二重鎖安定化dNTPの組み込みが、この短いRNA標的配列の増幅ベースの検出における後の効率および感度を実質的に改善したことが示される。
【0112】
本発明が一定の好ましい実施形態に関してかなり詳細に記載され、示されているが、当業者は、本発明の他の実施形態を容易に理解するだろう。したがって、本発明は、以下の添付の請求の範囲の精神および範囲内に含まれる全ての修正および変更を含むとみなされる。

【特許請求の範囲】
【請求項1】
長さ約100ヌクレオチド未満の小さなRNA標的配列の逆転写のための方法であり、
(a)前記小さなRNA標的配列を含む試料を、
(i)前記小さなRNA標的配列とハイブリダイズするのに十分に前記小さなRNA標的配列に対して相補的である、プライマー、および
(ii)逆転写酵素活性を有するRNA依存性DNAポリメラーゼ
と接触させるステップと;
(b)前記RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾、二重鎖安定化dNTPを含むdNTPの混合物の存在下で、前記小さなRNA標的配列に相補的なcDNAを合成するステップと
を含む、方法。
【請求項2】
前記dNTPの混合物が、前記5−位で置換されたピリミジンである、塩基修飾、二重鎖安定化dNTPを含む、請求項1に記載の方法。
【請求項3】
前記dNTPの混合物が、式:
【化11】

を有する塩基修飾、二重鎖安定化dNTPを含み、
式中、Bは、
【化12】

より選択され;
Xは、−F、−Cl、−Br、−I、−CHまたは
【化13】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【化14】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである、
請求項1に記載の方法。
【請求項4】
前記dNTPの混合物が、d(2−amA)TP、d(5−PrU)TPおよび/またはd(5−PrC)TPより選択される、塩基修飾、二重鎖安定化dNTPを含む、請求項1に記載の方法。
【請求項5】
前記dNTPの混合物が、(2−amA)TP、d(5−PrU)TPおよびd(5−PrC)TPおよび/またはdGTPの少なくとも二つを含む、請求項1に記載の方法。
【請求項6】
前記小さなRNA標的配列が、約10〜30ヌクレオチドの長さである、請求項1に記載の方法。
【請求項7】
前記小さなRNA標的配列が、miRNA配列である、請求項1に記載の方法。
【請求項8】
前記プライマーに、一つ以上の塩基修飾二重鎖安定化dNTPが組み込まれている、請求項1に記載の方法。
【請求項9】
(a)一本鎖cDNAを提供するために、前記ステップ(b)で形成されるcDNAを処理するステップと;
(b)二重鎖cDNA分子を産出するために、前記一本鎖cDNAを、前記cDNAに十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で伸長産物の合成を開始する、第二プライマーと接触させる、ステップと
をさらに含む、請求項1に記載の方法。
【請求項10】
前記小さなRNA標的配列およびその相補鎖に十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で増幅産物を産出する、増幅プライマーを用いて、核酸増幅反応を行うステップをさらに含む、請求項1に記載の方法。
【請求項11】
前記核酸増幅反応が、ポリメラーゼ連鎖反応である、請求項10に記載の方法。
【請求項12】
前記増幅プライマーの一つ以上に、塩基修飾二重鎖安定化dNTPが組み込まれている、請求項10に記載の方法。
【請求項13】
前記増幅反応が、少なくとも一つの塩基修飾二重鎖安定化dNTPを含むデオキシヌクレオシド5’−三リン酸の混合物の存在下で行われる、請求項10に記載の方法。
【請求項14】
長さ約100ヌクレオチド未満の小さなRNA標的配列を増幅するための方法であり、
(a)前記小さなRNA標的配列を含む試料を、
(i)前記小さなRNA標的配列とハイブリダイズするのに十分に前記小さなRNA標的配列に対して相補的である、プライマー、および
(ii)逆転写酵素活性を有するRNA依存性DNAポリメラーゼ
と接触させるステップと;
(b)前記RNA依存性DNAポリメラーゼのための基質である少なくとも一つの塩基修飾、二重鎖安定化dNTPを含むdNTPの混合物の存在下で、前記小さなRNA標的配列に相補的なcDNAを合成するステップと、
(c)前記小さなRNA標的配列およびその相補鎖に十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で増幅産物を産出する、増幅プライマーを用いて、核酸増幅反応を行うステップ
を含む、方法。
【請求項15】
前記dNTPの混合物が、前記5−位で置換されたピリミジンである、塩基修飾、二重鎖安定化dNTPを含む、請求項14に記載の方法。
【請求項16】
前記dNTPの混合物が、式:
【化15】

を有する塩基修飾、二重鎖安定化dNTPを含み、
式中、Bは、
【化16】

より選択され;
Xは、−F、−Cl、−Br、−I、−CHまたは
【化17】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【化18】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである、
請求項14に記載の方法。
【請求項17】
前記dNTPの混合物が、d(2−amA)TP、d(5−PrU)TPおよび/またはd(5−PrC)TPより選択される、塩基修飾、二重鎖安定化dNTPを含む、請求項14に記載の方法。
【請求項18】
前記dNTPの混合物が、(2−amA)TP、d(5−PrU)TPおよびd(5−PrC)TPおよび/またはdGTPの少なくとも二つを含む、請求項14に記載の方法。
【請求項19】
前記小さなRNA標的配列が、約10〜30ヌクレオチドの長さである、請求項14に記載の方法。
【請求項20】
前記小さなRNA標的配列が、miRNA配列である、請求項14に記載の方法。
【請求項21】
前記プライマーに、一つ以上の塩基修飾二重鎖安定化dNTPが組み込まれている、請求項14に記載の方法。
【請求項22】
(a)一本鎖cDNAを提供するために、前記ステップ(b)で形成されるcDNAを処理するステップと;
(b)二重鎖cDNA分子を産出するために、前記一本鎖cDNAを、前記cDNAに十分に相補的であるためにこれにハイブリダイズし、DNAポリメラーゼの存在下で伸長産物の合成を開始する、第二プライマーと接触させる、ステップと
をさらに含む、請求項14に記載の方法。
【請求項23】
前記核酸増幅反応が、ポリメラーゼ連鎖反応である、請求項14に記載の方法。
【請求項24】
前記増幅プライマーの一つ以上に、塩基修飾二重鎖安定化dNTPが組み込まれている、請求項14に記載の方法。
【請求項25】
前記増幅反応が、少なくとも一つの塩基修飾二重鎖安定化dNTPを含むデオキシヌクレオシド5’−三リン酸の混合物の存在下で行われる、請求項14に記載の方法。
【請求項26】
(a)小さなRNA標的配列を含む試料と;
(b)前記小さなRNA標的配列とハイブリダイズするのに十分に前記小さなRNA標的配列に対して相補的である、プライマーと;
(c)逆転写酵素活性を有するRNA依存性DNAポリメラーゼと;
(d)前記RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾二重鎖安定化dNTPを含むデオキシヌクレオシド5’−三リン酸の混合物と
を含む、反応混合物。
【請求項27】
前記dNTPの混合物が、前記5−位で置換されたピリミジンである塩基修飾、二重鎖安定化dNTPを含む、請求項26に記載の反応混合物。
【請求項28】
前記dNTPの混合物が、式
【化19】

を有する塩基修飾、二重鎖安定化dNTPを含み、
式中、Bは、
【化20】

より選択され;
Xは、−F、−Cl、−Br、−I、−CHまたは
【化21】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【化22】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである、
請求項26に記載の反応混合物。
【請求項29】
前記dNTPの混合物が、d(2−amA)TP、d(5−PrU)TPおよび/またはd(5−PrC)TPより選択される、塩基修飾、二重鎖安定化dNTPを含む、請求項26に記載の反応混合物。
【請求項30】
(a)逆転写酵素活性を有するRNA依存性DNAポリメラーゼと;
(b)前記RNA依存性DNAポリメラーゼの基質である少なくとも一つの塩基修飾、二重鎖安定化デオキシリボヌクレオチド三リン酸
を含む、キット。
【請求項31】
前記dNTPの混合物が、前記5−位で置換されたピリミジンである塩基修飾、二重鎖安定化dNTPを含む、請求項30に記載のキット。
【請求項32】
前記dNTPの混合物が、式
【化23】

を有する塩基修飾、二重鎖安定化dNTPを含み、
式中、Bは、
【化24】

より選択され;
Xは、−F、−Cl、−Br、−I、−CHまたは
【化25】

より選択され;
Yは、−F、−Cl、−Br、−Iまたは
【化26】

より選択され;
Rは、−H、−OH、−OCHまたは−NHである、
請求項30に記載のキット。
【請求項33】
前記dNTPの混合物が、d(2−amA)TP、d(5−PrU)TPおよび/またはd(5−PrC)TPより選択される、塩基修飾、二重鎖安定化dNTPを含む、請求項30に記載のキット。
【請求項34】
第二プライマーであって、前記小さなRNA標的配列とハイブリダイズするのに十分に前記小さなRNA標的配列に対して相補的である第二プライマーをさらに含む、請求項30に記載のキット。
【請求項35】
小さなRNA標的配列を増幅するために有効な増幅プライマー対をさらに含む、請求項30に記載のキット。

【図1】
image rotate

【図2】
image rotate


【公表番号】特表2011−501663(P2011−501663A)
【公表日】平成23年1月13日(2011.1.13)
【国際特許分類】
【出願番号】特願2010−528992(P2010−528992)
【出願日】平成20年10月8日(2008.10.8)
【国際出願番号】PCT/US2008/079169
【国際公開番号】WO2009/048928
【国際公開日】平成21年4月16日(2009.4.16)
【出願人】(510097954)
【Fターム(参考)】