説明

層間絶縁膜形成方法、半導体デバイス、及び半導体製造装置

【課題】半導体デバイスにおける層間絶縁膜の経時変化を抑制し、デバイスの信頼性を向上する。
【解決手段】成膜終了時にモノマー分解生成物が膜表面に付着することを防ぐために気体分子のチャンバー内滞在時間を短くする。また不活性ガスのプラズマにより表面を処理することで表面に付着したモノマー分解生成物を除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、層間絶縁膜形成方法、層間絶縁膜、半導体デバイス、および半導体製造装置に関し、特に経時変化の少ない層間絶縁膜の形成方法および当該方法により形成される層間絶縁膜に関する。
【背景技術】
【0002】
従来、半導体装置の銅配線層に使われる層間絶縁膜材料としてはシリカ(SiO2)が広く用いられてきた。しかし、半導体装置の微細化および高速化の進行に伴い、配線における信号伝達遅延と消費電力の抑制のために、層間絶縁膜としてはより誘電率の低い低誘電率膜が用いられるようになってきた。誘電率の低下には空孔(ポア)の導入やハイドロカーボンの導入が一般的であり、製法もプラズマCVD法やスピンコートによる方法が用いられている。これら方法により比誘電率が2.4以下となる層間絶縁膜もいくつか報告されているが、空孔やハイドロカーボン増加による層間絶縁膜の機械的強度の減少により、半導体プロセス内での剥離による信頼性の低下が問題になっている。
【0003】
そこで機械的強度の観点から層間絶縁膜の成膜にはプラズマCVD法が用いられることが多い。多くのプラズマCVD法による層間絶縁膜成長の場合、不活性ガスからなるキャリアガス、有機シラン原料ガスと酸化ガスの混合ガスをリアクターの導入し、原料ガスと酸化ガスとの酸化反応をプラズマ中で促進させて層間絶縁膜を成長させている。
【0004】
空孔やハイドロカーボン増加は機械的強度の低下のみならず、大気中の水分を吸着という問題の原因となる。空孔中に水分が吸着されると誘電率の増加が懸念される。また吸着した水分はハイドロカーボンの分解を誘発しこれも誘電率増加の一因となっている。特にプラズマCVD法で成膜を行う際、プラズマ反応による原料の分解生成物は終端されず、水分吸着のサイトになる可能性がある。特にフッ素を含む層間絶縁膜では水分吸着による誘電率の増加が顕著のため、特許文献1では成膜時に水素を導入し安定な膜を得る試みが紹介されている。一方、特許文献2では成膜前に不活性ガスのパージによる反応生成物を除去する方法が述べられている。
【特許文献1】特開平11−330070号公報
【特許文献2】特開2006−253290号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、特許文献1に記載の技術を用いた場合、水素の反応をつかった成膜は2種類のガス導入よる系の複雑さと、膜自体の還元を誘発するため制御が難しい。また特許文献2にあるように成膜前に不活性ガスによるパージを行っても、その後に行われる層間絶縁膜成膜時の反応生成物を除去することは不可能であり、結果的に膜の誘電率の経時変化を招く結果になってしまう。このような膜の誘電率の経時変化は、プラズマ重合法あるいはプラズマ共重合法において顕著となる。該プラズマ重合法とは、プラズマCVD法に一実施形態の通称であって、酸化ガスを用いず、不活性ガスと不飽和炭化水素を持つモノマーとの混合ガスをプラズマ中で活性化させ、該モノマーを骨格の一部とした層間絶縁膜を成長するプラズマCVD法である。また、プラズマ共重合法とは、酸化ガスの添加なしに複数の原料モノマーと不活性ガスとを用いて層間絶縁膜を成長する方法である。このようなプラズマ反応を用いた層間絶縁膜の成膜において、簡便でかつ誘電率の経時変化の少ない方法が求められている。
【0006】
本発明は上記事情に鑑みなされたものであって、層間絶縁膜の経時変化を抑制し、長期安定性を実現した層間絶縁膜およびそれを用いた半導体装置とその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜の高周波電源OFF直後から不活性ガスでパージを行う。あるいは不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜後不活性ガスのプラズマにより表面処理を行った後不活性ガスでパージを行う。または不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜時の高周波電源をOFFする前に原料の供給を止め、キャリアガスのみでプラズマ処理を行った後高周波電源をOFFし、不活性ガスでパージを行う。
【0008】
これらにより成膜終了時にチャンバー内で成膜に寄与できなかったモノマー分解生成物が層間絶縁膜表面に吸着されるのを防止する。モノマー分解生成物は結合手が切れ終端されていない状態であるため活性が高く大気中の水分等を吸着しやすい。そのためこのモノマー分解生成物が絶縁物表面に吸着すると、ここを基点に水分の吸湿が始まり、ポア内での滞留あるいはハイドロカーボン成分の分解が始まる。その結果層間絶縁膜は時間の経過と共に比誘電率を増加していくこととなる。このような現象は成膜時原料モノマーとキャリアガス、あるいは原料モノマーとキャリアガスと不活性ガスのみをリアクタに導入するプロセスで起こりやすい。なぜなら分解したモノマーには酸素のダングリングボンドが多数存在し大気中の水分等をより吸着しやすくなるためである。
【0009】
本発明はこれら事象に鑑み行われたものであり、特に不飽和炭化水素を持つモノマーからなる層間絶縁膜表面へのモノマー分解生成物の吸着を抑制する方法である。高周波電源OFF時に成膜チャンバーの中には成膜に寄与しなかったモノマー分解生成物が存在する。この分解生成物を不活性ガスで高速にチャンバー外へ排出することで層間絶縁膜表面への吸着を抑制することが出来る。また成膜後不活性ガスによるプラズマで表面処理を行うことにより吸着した分解生成物を取り除くことが出来る。また成膜時に先に原料モノマーの供給を止め、キャリアガスのみのプラズマにより表面処理を行うことにより分解生成物を取り除くことが出来る。
【発明の効果】
【0010】
本発明の層間絶縁膜の製造方法、層間絶縁膜、半導体デバイス、および半導体製造装置
およびを用いることにより、配線の長期信頼性の劣化を抑制できるため、高速、低消費電力なLSIの形成が可能となる。
【図面の簡単な説明】
【0011】
【図1】本発明の実施の形態1の半導体装置成膜装置の概要図。
【図2】本発明の実施の形態1の半導体装置成膜装置のチャンバー概要図。
【図3】本発明における滞在時間と比誘電率の経時変化の関係を示した図。
【図4】本発明における滞在時間と最表面の付着物の存在の関係を示した図。
【図5】本発明における滞在時間とTDS分析結果を示した図。
【図6】本発明における第1の実施の形態の成膜プロセスを示した図。
【図7】本発明における第2の実施の形態の成膜プロセスを示した図。
【図8】本発明における第3の実施の形態の成膜プロセスを示した図。
【発明を実施するための形態】
【0012】
(第1の実施の形態)
次に本発明を実施するための最良の形態について図を用いて説明する。
【0013】
層間絶縁膜の成膜には不飽和炭化水素を持つモノマーを原料に成膜を行う。不飽和炭化水素を持つモノマーにはSiOの3員環構造を持つモノマー(式1)、SiOの4員環構造を持つモノマー(式5)、直鎖構造を持つモノマーが上げられる(式10)。
【0014】
【化1】

【0015】
【化2】

【0016】
【化3】

式1に示す前記3員環構造を持つ不飽和炭化水素を持つモノマーは、R1は不飽和炭素化合物、R2飽和炭素化合物であり、R1はビニル基、またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。
【0017】
式5に示す前記4員環構造を持つ不飽和炭化水素を持つモノマーは、R3が不飽和炭素化合物、R4が飽和炭素化合物であり、R1は、ビニル基またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。
【0018】
式10に示す直鎖状モノマーは、R5が不飽和炭素化合物、R6,R7,R8が飽和炭素化合物であり、R5は、ビニル基またはアリル基、R6、R7、R8はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。
【0019】
成膜に用いたプラズマCVD装置を図1に示す。
【0020】
モノマーリザーバー2は原料供給部である。圧送ガス3は原料モノマーをモノマーリザーバー1から排出するガスである。液体マスフロー4はモノマーリザーバー1から排出された原料モノマー1の流量を制御する装置である。気化器5は原料モノマー1を気化する装置である。キャリアガス6は気化した原料モノマーを輸送するガスである。マスフロー7はキャリガス6の流量を制御する装置である。リアクタ8はプラズマCVDにより成膜を行うチャンバーである。RFユニット9はプラズマを発生するためにRFを印加する装置である。排気ポンプ10はリアクタ8に導入した原料モノマー1の気化ガスおよびキャリアガス6を排出する装置である。不活性ガス11はパージガスである。
【0021】
図2はリアクタ8をさらに詳細に記載した図である。
【0022】
上部電極12と下部電極13はRFユニット9よりバイアスが印加されプラズマを発生する部分である。基板14は成膜が行われるウエハーである。分解生成物15は原料モノマー1がプラズマによって分解されたものである。成膜は以下に示す方法によって行っている。モノマーリザーバー2に満たされた原料モノマー1を圧送ガス3により排出し、液体マスフロー4により原料モノマー1の流量制御を行う。流量制御された原料モノマー1は気化器5内のヒータ(図示せず)から熱をもらい気化する。この気化したガスは、マスフロー7により流量制御されたキャリアガス6と気化器5内で混合しリアクタ8に送られる。リアクタ8に送られた原料モノマー1の気化ガスとキャリアガス6は、RFユニット9より供給された電力により、上部電極12と下部電極13の間でプラズマとなる。このときCVD反応によって基板14上に層間絶縁膜が形成される。高周波電源OFF時には上部電極12と下部電極13の間には原料モノマー1の分解生成物15が存在する。
【0023】
成膜時リアクタ8内には原料モノマーとキャリアガス、あるいは原料モノマーとキャリアガスと不活性ガスのみが導入されているため、これら分解生成物の酸素のダングリングボンドは終端するものがなく、大気に曝した際、水分等の吸着が発生しやすい。そこで分解生成物の滞在時間を短くし吸着前にリアクタ外に排出する必要がある。
【0024】
(実施例1)
次に第1の実施の形態を用いた実施例1を図を用いて説明する。層間絶縁膜の成膜には用いる原料モノマーには以下に示すものを使用することができる。SiO3員環構造のモノマーでは(式2)〜(式4)に示すモノマーを使用することができる。
【0025】
【化4】

【0026】
【化5】

【0027】
【化6】

またSiO4員環構造のモノマーとしては(式6)〜(式9)に示すものを原料として使用することができる。
【0028】
【化7】

【0029】
【化8】

【0030】
【化9】

【0031】
【化10】

また直鎖状モノマーとしては(式11)に示す構造の原料を用いることが出来る。
【0032】
【化11】

モノマーリザーバー2に満たされた上記原料モノマー1を圧送ガス3により排出し、液体マスフロー4により原料モノマー1の流量制御を行う。流量制御された原料モノマー1は気化器5内のヒータ(図示せず)から熱をもらい気化する。この気化したガスは、マスフロー7により流量制御されたキャリアガス6と気化器5内で混合しリアクタ8に送られる。リアクタ8に送られた原料モノマー1の気化ガスとキャリアガス6は、RFユニット9より供給された電力により、上部電極12と下部電極13の間でプラズマとなる。図3に示す成膜装置では原料供給ラインが2系統あり、1原料のみを使ったプラズマ重合法、あるいは2原料によるプラズマ共重合反応により成膜が可能である。これら手法により基板14上に層間絶縁膜が形成される。高周波電源OFF時には上部電極12と下部電極13の間には原料モノマー1の分解生成物15が存在する。図5に第一の実施の形態の成膜プロセスを示す。高周波電源OFFと同時に原料モノマーの供給を停止する。ここで同時とは高周波電源OFFと原料供給バルブ(図示せず)を閉じるタイミングが同時であることを意味しており、リアクタ内の状態は数秒のタイムラグが発生している。この分解生成物15を排出し基板14に吸着させないために不活性ガス11を導入しリアクタ8内をパージする。このときリアクタ8内に気体分子(分解生成物)が滞在する平均滞在時間τは以下の式により求めることが出来る。なお、式12は、電気書院発刊岡本幸雄著「プラズマプロセッシングの基礎」p.16に記載されている。
【0033】
τ=pV/pS・・・・(式12)
ここでτは平均滞在時間(秒)、pはリアクタ圧力(Torr)、Vはリアクタ体積(L)、Sは排気速度(L/sec)である。また排気速度Sは直接藻止めることが出来ないが排気量QはpとSの積で表すことが出来るので(式12)は以下のように変形できる。
【0034】
τ=pV/Q・・・・(式13)
式14からリアクタをパージする際、リアクタ圧力が一定であるならば排気量Qはパージガス導入量と等しくなる。そのたパージガス導入量を多くすれば平均滞在時間τを短くすることが出来、分解生成物15が基板に吸着する前に排出可能である。不活性ガスにはヘリウムと窒素の混合ガスを用いた。図3は層間絶縁膜の比誘電率の経時変化を示した図である。この図から平均滞在時間τがなくなるようにパージを行った水準は比誘電率の増加が激しいことが判明した。
【0035】
そこで滞在時間τが1秒のサンプルと滞在時間0.05秒のサンプル最表面をTOF−SIMSにて分析を行い、表面状態の違いを分析した結果を図4に示す。この図から滞在時間の長くなるようパージした膜表面にはカルボン酸など酸素を含む物質が多いことが判明した。このカルボン酸は基板表面に吸着した分解生成物に起因するものである。
【0036】
次にTDS分析を行い表面から放出される有機物の分析を行った。その結果滞在時間が短いパージを行ったサンプルでは400℃以上過熱しないと有機物が放出されることはなかった。それに対し滞在時間の長いパージを行ったサンプルでは120℃付近で有機物を放出することが判明した。これは表面に吸着した分解生成物により水分等が吸着しハイドロカーボンが分解され、低温で放出されやすくなっていると考えられる。
【0037】
(第2の実施の形態)
次に本発明を実施するための第2の実施の形態を図を用いて説明する。
【0038】
第1の実施の形態と同様に基板14上に層間絶縁膜の成膜を行った後、不活性ガスを導入しプラズマ処理を層間絶縁膜表面に施した。このプロセスを図6に示す。成膜後原料モノマーとキャリアガスの導入を同時に止めた後、不活性ガスを導入し安定した後プラズマを発生させ処理を行った。不活性ガスにはHeをつかい、リアクタ圧力800Pa、RFパワー400Wで10〜60秒処理を行った。この処理条件は、リアクタの大きさ、不活性ガス種、原料モノマー種により変るものであり、一意に決定される物ではない。不活性ガスによるプラズマ処理後、気体分子の滞在時間が0.8秒となる条件でパージを行った。この結果、第一の実施の形態のパージガスの滞在時間が短かった場合と同様に層間絶縁膜の比誘電率経時変化を抑制することが可能となった。
【0039】
(第3の実施の形態)
次に本発明を実施するための第3の実施の形態を図を用いて説明する。
【0040】
第1の実施の形態と同様に基板14上に層間絶縁膜の成膜を行ないRFパワーの印加を止める前に原料モノマーの供給を止める。このプロセスを図7に示す。これによりリアクタ内ではキャリアガスのみでプラズマが生成されることになる。キャリアガスにはHeを使用し層間絶縁膜表面の処理をおこなった。表面処理条件は原料導入を止める以外は成膜と同じ条件で行い、10〜60秒処理を行った。キャリアガスによるプラズマ処理後、気体分子の滞在時間が0.6秒となる条件でパージを行った。この結果、第一の実施の形態のパージガスの滞在時間が短かった場合と同様に層間絶縁膜の比誘電率経時変化を抑制することが可能となった。
【符号の説明】
【0041】
1・・・原料モノマー
2・・・モノマーリザーバー
3・・・圧送ガス
4・・・液体マスフロー
5・・・気化器
6・・・キャリアガス
7・・・マスフロー
8・・・リアクタ
9・・・RFユニット
10・・・排気ポンプ
11・・・不活性ガス
12・・・上部電極
13・・・下部電極
14・・・基板
15・・・分解生成物

【特許請求の範囲】
【請求項1】
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜の高周波電源OFFと同時に不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
【請求項2】
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜後不活性ガスのプラズマにより表面処理を行った後不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
【請求項3】
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時の高周波電源をOFFする前に原料の供給を止め、キャリアガスのみでプラズマ処理を行った後高周波電源をOFFし、不活性ガスでパージを行う特徴とする層間絶縁膜形成方法。
【請求項4】
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時に原料モノマーとキャリアガスのみ、あるいは原料モノマーとキャリアガスと不活性ガスのみがリアクタ内に供給されることを特徴とする請求項1乃至3のいずれか一項に記載の層間絶縁膜形成方法。
【請求項5】
前記不活性ガスがヘリウム、窒素、アルゴンの1種類以上からなることを特徴とする請求項1乃至4のいずれか一項に記載の層間絶縁膜形成方法。
【請求項6】
前記不活性ガスによるパージの際の流量が、成膜チャンバー内における滞在時間が0.8秒以下となるようにすることを特徴とする請求項1乃至5のいずれか一項に記載の層間絶縁膜形成方法。
【請求項7】
前記不飽和炭化水素を持つモノマーがSiOの3員環構造、4員環構造あるいは直鎖構造を持つことを特徴とする請求項1乃至6のいずれか一項に記載の層間絶縁膜形成方法。
【請求項8】
前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式1に示す構造であり、R1は不飽和炭素化合物、R2飽和炭素化合物であり、R1はビニル基、またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化1】

【請求項9】
前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式2、3、4に示す構造のうち少なくともいずれかの1つであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化2】

【化3】

【化4】

【請求項10】
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが、下記式5に示す構造であり、R3は不飽和炭素化合物、R4飽和炭素化合物であり、R1はビニル基またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化5】

【請求項11】
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが下記式6、7、8、9に示す構造のうち少なくともいずれかの1つであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化6】

【化7】

【化8】

【化9】

【請求項12】
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが、下記式10に示す構造であり、R5は不飽和炭素化合物、R6、R7、R8は飽和炭素化合物であり、R5はビニル基またはアリル基、R6、R7、R8はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化10】

【請求項13】
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが下記式11に示す構造であることを特徴とする請求項7に記載の層間絶縁膜形成方法。
【化11】

【請求項14】
前記不活性ガスが原料供給ラインとは異なった経路で供給されることを特徴とする請求項1乃至4のいずれか一項に記載の層間絶縁膜形成方法。
【請求項15】
前記キャリアガスが、ヘリウム、窒素、アルゴンのいずれか1種類以上含むことを特徴とする請求項3記載の層間絶縁膜形成方法。
【請求項16】
請求項1乃至15のいずれか一項に記載の層間絶縁膜形成方法であって、原料となる不飽和炭化水素を持つモノマーが1種であるプラズマ重合反応、もしくは2種であるプラズマ重合反応を用いることを特徴とする層間絶縁膜形成方法。
【請求項17】
前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって形成された層間絶縁膜であって、TDS分析より120℃で放出される有機物がないことを特徴とする層間絶縁膜。
【請求項18】
前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって形成された層間絶縁膜を具備することを特徴とする半導体デバイス。
【請求項19】
前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって層間絶縁膜を成膜する半導体製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−138614(P2012−138614A)
【公開日】平成24年7月19日(2012.7.19)
【国際特許分類】
【出願番号】特願2012−64867(P2012−64867)
【出願日】平成24年3月22日(2012.3.22)
【分割の表示】特願2007−240721(P2007−240721)の分割
【原出願日】平成19年9月18日(2007.9.18)
【出願人】(302062931)ルネサスエレクトロニクス株式会社 (8,021)
【Fターム(参考)】