説明

建材

【課題】防汚性の高い建材を提供することを目的とする。
【解決手段】基材1の最表面に無機質系塗料を塗装して無機塗膜2が形成された建材に関する。金属酸化物粒子3を分散し且つバインダーを含まない分散液を無機塗膜2の表面に印刷することによって、無機塗膜2の表面に金属酸化物粒子3が付着している。金属酸化物粒子3を分散し且つバインダーを含まない分散液を印刷しているため、金属酸化物粒子3はバインダーで覆われることなく無機塗膜2の表面に付着しているものであり、金属酸化物粒子3による表面の親水化の効果を十分に発揮させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、家屋の外壁材や屋根材など外装材等として使用される建材に関するものである。
【背景技術】
【0002】
外壁材や屋根材などの建材は、セメント等の窯業系材料で形成される基材の表面に塗装を施して形成されている。そしてこれらの建材は屋外で使用されるために耐候性が要求され、塗装は無機質系塗料を塗布して無機塗膜を最表面に形成することによって行なわれている。さらにこのように屋外で使用される建材は、塗装面に水垢その他の汚れが付着し易い。このため、酸化チタン(TiO)や酸化ケイ素(SiO)など金属酸化物粒子の層を塗膜の表面に設け、表面を親水性にすることが行なわれている(例えば特許文献1等参照)。
【0003】
このように建材の塗装表面を親水性にすることによって、汚れが付着し難くなると共に、汚れが付着しても雨水などで汚れが洗い流され易くなり、防汚性を付与することができるものである。
【特許文献1】特開2000−72569号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
そして、建材の表面に形成した無機塗膜2の表面に金属酸化物粒子3の層を形成するにあたっては、金属酸化物粒子3を透明なバインダー10と混合し、これを無機塗膜2の表面にスプレーやロールコーターで塗布することによって行なわれるのが一般的である。
【0005】
しかしこのように金属酸化物粒子3を混合したバインダー10を無機塗膜2の表面に塗布する場合、図4に示すように、金属酸化物粒子3はバインダー10で覆われ、バインダー10中に埋もれて金属酸化物粒子3が表面に露出しなくなることが多い。そしてこのように金属酸化物粒子3が表面に露出していないと、金属酸化物粒子3による表面の親水化の効果を十分に発揮させることができず、防汚性を十分に得ることができないという問題があった。
【0006】
本発明は上記の点に鑑みてなされたものであり、防汚性の高い建材を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明に係る建材は、基材1の最表面に無機質系塗料を塗装して無機塗膜2が形成された建材において、金属酸化物粒子3を分散し且つバインダーを含まない分散液を無機塗膜2の表面に印刷することによって、無機塗膜2の表面に金属酸化物粒子3が付着していることを特徴とするものである。
【0008】
このように金属酸化物粒子3を分散し且つバインダーを含まない分散液を印刷しているため、金属酸化物粒子3はバインダーで覆われることなく無機塗膜2の表面に付着しているものであり、金属酸化物粒子3による表面の親水化の作用を十分に発揮させることができ、高い防汚性を得ることができるものである。
【0009】
また本発明は、上記の金属酸化物粒子3が、TiOとSiOの少なくとも一方の粒子であることを特徴とするものである。
【0010】
TiOやSiOは親水性の発現性能に優れるものであり、より高い防汚性を得ることができるものである。
【0011】
また本発明は、上記の分散液の印刷が、インクジェット印刷とグラビアオフセット印刷のいずれかで行なわれることを特徴とするものである。
【0012】
インクジェットで印刷することによって、表面が凹凸に形成される建材1に任意のパターンで印刷して金属酸化物粒子3を付着させることが可能になり、またグラビアオフセットで印刷することによって、金属酸化物粒子3を無機塗膜の表面に付着させ易くなるものである。
【0013】
また本発明において、上記の分散液の印刷は、無機塗膜2の無機質系塗料が未硬化状態のときに行なわれることを特徴とするものである。
【0014】
このように無機質系塗料が未硬化状態のときに印刷をすると、タック性を有する無機塗膜2の表面に金属酸化物粒子3が付着して固着することになり、バインダーを用いる必要なく、金属酸化物粒子3を無機塗膜2の表面に強固に付着させることができるものである。
【0015】
また本発明において、上記の無機質系塗料は親水系の溶剤を含有するものであり、上記の金属酸化物粒子3を分散し且つバインダーを含まない分散液は、金属酸化物粒子3を分散した水であることを特徴とするものである。
【0016】
このように無機質系塗料と金属酸化物粒子3の分散液がともに水系であることによって、無機塗膜2に対する金属酸化物粒子3の分散液の馴染みが良くなり、無機塗膜2の表面に金属酸化物粒子3が付着し易くなるものである。
【0017】
また本発明は、基材1の表面に凹凸柄模様が形成されており、凹凸柄模様の凸部4のみに印刷して金属酸化物粒子3が付着していることを特徴とするものである。
【0018】
このように凹凸柄模様の凸部4のみに金属酸化物粒子3が付着していることによって、凹凸柄模様の凸部4には汚れが付着し難いようにすることができると共に、凹部5には汚れが付着するものであって、建材を接続する際に目地に充填されるコーキング等の汚れを目立ち難くすることができるものである。
【発明の効果】
【0019】
本発明によれば、金属酸化物粒子3を分散し且つバインダーを含まない分散液を印刷するようにしているので、金属酸化物粒子3はバインダーで覆われることなく無機塗膜2の表面に付着しているものであり、金属酸化物粒子3による表面の親水化の作用を十分に発揮させることができ、高い防汚性を有する建材を得ることができるものである。
【発明を実施するための最良の形態】
【0020】
以下、本発明を実施するための最良の形態を説明する。
【0021】
基材1としては、窯業系材料で形成したものを用いることができるものであり、例えば、無機質硬化体の原料となる水硬性膠着材に無機充填剤、繊維質材料等を配合し、成形した後に養生硬化させて作製されるものである。水硬性膠着材としては、特に限定されるものではないが、例えばポルトランドセメント、高炉セメント、高炉スラグ、ケイ酸カルシウム、石膏等から選ばれたものの一種あるいは複数種を用いることができる。また無機充填剤としてはフライアッシュ、ミクロシリカ、珪砂等を、繊維質材料としてはパルプ、合成繊維、アスベスト等の無機繊維や、スチールファイバー等の金属繊維を、それぞれ単独であるいは複数種併せて用いることができる。成形は押出成形や注型成形、抄造成形、プレス成形等の方法により行なうことができ、成形の後、必要に応じてオートクレーブ養生、蒸気養生、常温養生を行なって、外装用の建材として使用される窯業系基材1を作製することができる。
【0022】
そしてこの基材1の表面に有機塗膜12、無機塗膜2、無機酸化物粒子3の層をこの順に形成することによって、図1(a)のような塗装構成の建材を得ることができるものである。有機塗膜12を着色すると共に無機塗膜2を透明に形成することによって、有機塗膜12で基材1の表面の化粧を行なうと共に、無機塗膜2で耐候性を高め、そして最外層の無機酸化物粒子3の層で表面に親水性を付与し、防汚性を得ることができるものである。
【0023】
本発明において、有機塗膜12を形成する有機質系塗料としては、特に限定されるものではないが、アクリルエマルジョンやアクリルシリコーンエマルジョンを主剤とするものを用いるのが好ましい。有機塗膜12をこのようにアクリルエマルジョンやアクリルシリコーンエマルジョンで形成することによって、有機塗膜12とその上に形成される無機塗膜2との間の密着性を高く得ることができるものである。
【0024】
アクリルエマルジョンとしては、例えば、特開2004−195934号公報に開示されているコアシェル型アクリルエマルジョンを用いることができる。すなわち、コアシェル型のアクリルエマルジョンとは、核粒子としてのシードエマルジョンの存在下に、アクリルアミドを主成分とする単量体成分を共重合させて得られる共重合体エマルジョンである。
【0025】
シードエマルジョンとしては、たとえばアクリルエステル系、スチレン/アクリル酸エステル系、アクリロニトリル系、スチレン−ブタジエン系、アクリロニトリル−ブタジエン系、アクリル酸エステル−ブタジエン系、塩化ビニル系、酢酸ビニル系等の一般的な高分子エマルジョンを用いることができ、それら単独であるいは二種類以上併用して使用することもできる。
【0026】
また、上記の単量体成分中には、必要に応じて、アクリルアミドと共重合可能な不飽和単量体が含有される。この不飽和単量体としては、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸2−アミノエチル、アクリル酸2−(N−メチルアミノ)エチル、アクリル酸2−(N,N−ジメチルアミノ)エチル、アクリル酸グリシジル等のアクリル酸エステル類、酢酸ビニル、プロピオン酸ビニル等のビニルエステル類、アクリロニトリル等のニトリル基含有単量体類、アクリル酸、無水マレイン酸、フマール酸、イタコン酸、クロトン酸等の不飽和カルボン酸類、スチレン、α−メチルスチレン、ジビニルベンゼン等の芳香族ビニル単量体類、N−メチロールアクリルアミド等のN−置換不飽和カルボン酸アミド等が選択できる。特にこれらの内でも、カルボキシル基、水酸基、アミノ基、メチロール基、グリシジル基等の官能基を有する不飽和単量体を用いることが好ましい。
【0027】
このコアシェル構造のアクリルエマルジョンは、上述の材料とともに重合開始剤および連鎖移動剤などを用いて公知の重合技術により製造される。このようなコアシェル型のアクリルエマルジョンは、これまでにも知られている各種のものがあり(たとえば特開2000−204285号公報を参照)、市販品を利用することもできる。
【0028】
このようなコアシェル型アクリルエマルジョンのうちのシェル部分の酸量が5〜15重量%の範囲のものを用いることが好ましい。シェル部分の酸量をこの範囲に設定することによって、有機塗膜12と無機塗膜2との層間密着強度を高めることができるものであり、シェル部分の酸量が5重量%未満の場合には、無機塗膜2との層間密着強度の向上は期待できない。シェル部分の酸量が15重量%を超える場合も同様である。
【0029】
また、アクリルシリコーンエマルジョンとしては、例えば、特許第3347097号公報に開示されている、アクリルエマルジョンにシリコーン成分を配合したものを用いることができる。
【0030】
このアクリルエマルジョンは、メチルメタクリレート及びブチルアクリレートを樹脂主成分としていることが好ましい。そして有機塗膜12は次のいずれかの要件を満たしていることが必要である。
(1)有機溶剤に対する有機塗膜12のゲル分率が30%以下であること。
(2)有機塗膜12のTg(ガラス転移温度)が50℃以下であること。
(3)上塗りの無機塗膜2の無機コーティング剤との接触角が40度以下であること。
【0031】
以上のとおりの有機塗膜12を形成し、その表面に無機コーティング剤の塗装を施した塗装体の場合には、耐候性とともに無機コーティング剤による塗膜密着性も極めて優れたものとなる。(1)のように有機溶剤に対する有機塗膜12のゲル分率を低いものとすることは、有機塗膜12が有機溶剤におかされやすいものとすることを意味している。ここでゲル分率は、耐溶剤性の指標であり、たとえば具体的には、有機塗膜12のゲル分率は、塗布後に乾燥(120℃、4分間)した有機塗膜12をアセトンに5時間浸漬した後の残存した重量割合として示されるものである。
【0032】
有機塗膜12と無機塗膜2との構成において有機塗膜12のゲル分率、すなわち耐溶剤性が低いことは、上塗りの無機コーティング剤中の有機溶剤が有機塗膜12との界面で有機塗膜12を膨潤溶解させ、有機塗膜12と無機塗膜2との間が溶着して強固な物理的密着が得られ、経時的変化にも強い状況となることを意味している。有機塗膜12のゲル分率は、30%以下となるようにするのが好ましく、より好ましくは0%、あるいはその近似の値となるようにすることで、無機コーティング剤による無機塗膜2との強い密着性を得ることができる。
【0033】
有機溶剤に対するゲル分率を低くすることは、有機コーティング剤における樹脂成分の選択や、組成とその割合の調整によって可能である。例えば分子量がほぼ同レベルに調製されたアクリルエマルジョンでは、メチルメタクリレート(MMA)とブチルアクリレート(BA)とを樹脂主成分、すなわち樹脂成分のうちの50重量%以上を占めるようにするが、この主成分の割合と、メチルメタクリレート(MMA)とブチルアクリレート(BA)との相互の割合の調整が行なわれるようにする。ゲル分率を低くするためには、一般的には主成分としてのメチルメタクリレート(MMA)とブチルアクリレート(BA)の割合を、重量比としてMMA/BA=1〜2とすることが適当であり、より好ましくはMMA/BA=1.1〜1.6とするのがよい。メチルメタクリレート(MMA)の割合が重量比で2を超える場合にはゲル分率の30%以下への低下は期待できず、実質的な密着性の向上の効果は得られない。一方、重量比が1未満となる場合には、逆に塗装体としての塗膜の強度、耐久性等が充分なものとならない傾向にある。また重量比MMA/BA=1.1〜1.6の範囲においては、ゲル分率が実質的に0になり、優れた密着性が得られることになる。尚、樹脂主成分としてのメチルメタクリレート(MMA)とブチルアクリレート(BA)の樹脂成分全体に占める割合は60重量%以上とするのが適当であり、他成分としてのアクリレート、あるいはメタクリレート等の配合が可能である。
【0034】
また(2)のように、Tgを50℃以下の低いレベルにすることにより、有機塗膜12が軟化して無機塗膜2との界面が融着状態となり易くなり、結果的に物理的に強固な密着性を有する窯業系建材を得ることができるものである。
【0035】
さらに(3)のように、有機塗膜12に対する上塗りの無機質系塗料の接触角を40度以下と小さくすることによっても、有機塗膜12と無機塗膜2との間の密着性を向上させることができる。無機質系塗料に対する接触角が小さいということは、濡れ性が良いこと、すなわち、有機塗膜12に対して無機質系塗料を均一に塗布することができ、しかも有機塗膜12中の水抜け等により生成したポアー(細孔)等にも無機質系塗料が侵入し、アンカリング効果が得られて安定化し、密着性が良好となることを意味している。
【0036】
このように接触角を小さくするために、アクリルエマルジョンにシリコーン成分を配合して、アクリルシリコーンエマルジョンとして使用するものである。シリコーン成分をアクリルエマルジョンに配合するにあたってその割合は、全樹脂成分のうちの割合として、5重量%以上20重量%以下の範囲が適当である。5重量%未満の場合には実質的な効果が得られないし、一方20重量%を超えると耐水性の面でも性能は低下してくる。
【0037】
上記のようにして得られるアクリルエマルジョンやアクリルシリコーンエマルジョンに、必要に応じて各種の成分を配合することによって、有機質系塗料を得ることができるものである。
【0038】
例えば、エマルジョンには乳化剤、分散剤を適宜に配合することができる。低分子乳化剤、そして反応型乳化剤が好ましく使用することができる。ただ塗膜密着性の観点からはフリーソープとして密着不良の要因となる低分子乳化剤の使用を抑えるのが望ましいことから、低分子乳化剤は50%未満、反応型乳化剤50%以上の割合とするのが望ましい。また、エマルジョンには顔料をはじめ、フィラー、鉱物油系の消泡剤、造粘剤、パラフィン系等の撥水剤等を適宜に配合することができる。顔料としては、カーボンブラック、キナクリドン、ナフトールレッド、シアニンブルー、シアニングレー、ハンザイエローなどの有機顔料や、酸化チタン、硫酸バリウム、ベンガラ、炭酸カルシウム、アルミナ、酸化鉄、複合金属酸化物の無機顔料などがあり、フィラーとしては、一般的なシリカ粉や硫酸バリウムや砂、樹脂ビーズなどがある。顔料やフィラーの粒径は特に限定されない。樹脂成分以外のものの配合については、エマルジョン全体について5重量%以下の割合となるようにするのが好ましい。
【0039】
本発明において有機塗膜12は、下塗り塗膜12aと上塗り塗膜12bの2層に形成するようにしてもよく、基材1の表面にシーラー13を施した後、シーラー13の上に有機塗膜12を形成するようにしてもよい。
【0040】
また本発明において、無機塗膜2を形成する無機質系塗料としては、特に限定されるものではないが、シリコーン系コーティング剤を用いるのが好ましい。このシリコーン系コーティング剤としては、例えば、特許第3243442号公報、特許第3193832号公報、特開平9−249822号公報に開示されているものを用いることができる。
【0041】
特許第3243442号公報に開示されるシリコーン系コーティング剤は、
(A):一般式RSiX4−n (1)
(式(1)中、Rは同一または異種の、アルキル基、シクロアルキル基、アルケニル基、ハロゲン置換炭化水素基、γ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基およびγ−メルカプトプロピル基からなる群より選ばれる、炭素数1〜8の1価炭化水素基を示し、nは0〜3の整数、Xはアルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基およびアミド基からなる群より選ばれる加水分解性基を示す。)
で表わされる加水分解性オルガノシランを有機溶媒または水に分散されたコロイダルシリカ中で、X1モルに対し水0.001〜0.5モルを使用する条件下で部分加水分解してなる、オルガノシランのシリカ分散オリゴマー溶液、
(B):平均組成式RSi (OH)(4−a−b)/2 (2)
(式(2)中、Rは同一または異種の、アルキル基、シクロアルキル基、アルケニル基、ハロゲン置換炭化水素基、γ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基およびγ−メルカプトプロピル基からなる群より選ばれる、炭素数1〜8の1価炭化水素基を示し、aおよびbはそれぞれ0.2≦a≦2、0.0001≦b≦3、a+b<4の関係を満たす数である。)
で表わされ、成分中のRにフェニル基を全R基に対して1〜30モル%含有するポリオルガノシロキサン、および、
(C):(A)成分と(B)成分との縮合反応を促進する触媒
を必須成分とし、(A)成分においてシリカを固形分として5〜95重量%含有し、加水分解性オルガノシランの少なくとも50モル%がn=1のオルガノシランで、(A)成分1〜99重量部に対して(B)成分99〜1重量部が配合されているものである。
【0042】
(A)成分のシリカ分散オリゴマーは被膜形成に際して、硬化反応に預かる官能性基としての加水分解性基を有するベースポリマーの主成分である。これは有機溶媒または水に分散されたコロイダルシリカに、一般式(1)で表される加水分解性基含有オルガノシランの1種または2種以上を加え、コロイダルシリカ中の水あるいは別途添加された水で、該加水分解性オルガノシランを部分加水分解することで得られる。
【0043】
一般式(1)で表される加水分解性オルガノシラン中の基Rは、アルキル基、シクロアルキル基、アルケニル基、ハロゲン置換炭化水素基、γ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基およびγ−メルカプトプロピル基からなる群より選ばれる、炭素数1〜8の1価炭化水素基を示し、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;2−フェニルエチル基、3−フェニルプロピル基などのアラルキル基;フェニル基、トリル基のようなアリール基;ビニル基、アリル基のようなアルケニル基;クロロメチル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基のようなハロゲン置換炭化水素基およびγ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基、γ−メルカプトプロピル基などの置換炭化水素基などを例示することができる。これらの中でも合成の容易さ、あるいは入手の容易さから炭素数1〜4のアルキル基およびフェニル基が好ましい。
【0044】
加水分解性基のXは、アルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基、アミド基からなる群より選ばれる加水分解性基である。入手の容易さおよびシリカ分散オリゴマー溶液を調製しやすいことからアルコキシ基が好ましい。
【0045】
特に、n=0のテトラアルコキシシランとしてはテトラメトキシシラン、テトラエトキシシランなどが例示でき、n=1のオルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシランなどが例示できる。また、n=2のジオルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシランなどが例示でき、n=3のトリオルガノアルコキシシランとしてはトリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルイソプロポキシシラン、ジメチルイソブチルメトキシシランなどが例示できる。さらに一般にシランカップリング剤とよばれるオルガノシラン化合物もアルコキシシラン類に含まれる。
【0046】
これらの一般式(1)で表される加水分解性オルガノシランのうち50モル%以上がn=1で表される三官能性のものであることが必要である。それらはより好ましくは60モル%以上であり、最も好ましくは70モル%以上である。これが50モル%未満では十分な塗膜硬度が得られないと共に、乾燥硬化性が劣り易い。
【0047】
(A)成分中のコロイダルシリカはシリコーン系コーティング剤の硬化被膜の硬度を高くするために必須のものである。このようなコロイダルシリカとしては水分散性あるいはアルコールなどの非水系の有機溶媒分散性コロイダルシリカが使用できる。一般にこの様なコロイダルシリカは固形分としてのシリカを20〜50重量%含有しており、この値からシリカ配合量を決定できる。また、水分散性コロイダルシリカを使用する場合、固形分以外の成分として存在する水は(A)成分の有機ケイ素化合物の加水分解に用いることができる。これらは通常水ガラスから作られるが、このようなコロイダルシリカは市販品を容易に入手することができる。また有機溶媒分散コロイダルシリカは前記水分散性コロイダルシリカの水を有機溶媒と置換することで容易に調製することができる。このような有機溶剤分散コロイダルシリカも水分散コロイダルシリカ同様に市販品として容易に入手する事ができる。コロイダルシリカが分散している有機溶媒の種類は、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコールの誘導体及びジアセトンアルコール等を挙げることができ、これらからなる群より選ばれた1種もしくは2種以上のものを使用することができる。これらの親水性有機溶剤と併用してトルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシムなども用いることができる。
【0048】
(A)成分中においてコロイダルシリカはシリカ分として5〜95重量%の範囲で含有される。より好ましくは10〜90重量%、最も好ましくは20〜85重量%の範囲である。含有量が5重量%未満であると所望の被膜硬度が得られず、また95重量%を超えるとシリカの均一分散が困難となり、(A)成分がゲル化などの不都合を招来することがある。
【0049】
(A)成分のシリカ分散オリゴマーは、通常加水分解性基含有オルガノシランを水分散コロイダルシリカまたは有機溶媒分散コロイダルシリカ中で部分加水分解して得ることができる。加水分解性オルガノシランに対する水の使用量は、加水分解性基(X)1モルに対して水0.001〜0.5モルがよい。その割合が0.001モル未満だと十分な部分加水分解物が得られず、0.5モルを越えると部分加水分解物の安定性が悪くなる。部分加水分解する方法は特に限定されず、加水分解性オルガノアルコキシシランとコロイダルシリカとを混合して、必要量の水を添加配合すればよく、このとき部分加水分解反応は常温で進行する。部分加水分解反応を促進させるため60〜100℃に加温してもよい。さらに部分加水分解反応を促進させる目的で、塩酸、酢酸、ハロゲン化シラン、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタル酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸などの有機酸および無機酸を触媒に用いてもよい。
【0050】
(A)成分は長期的に安定して性能を得るためには、液のpHを2.0〜7.0、好ましくは2.5〜6.5、より好ましくは3.0〜6.0にするとよい。pHがこの範囲外であると、特に水の使用量が基(X)1モルに対し0.3モル以上で(A)成分の長期的な性能低下が著しい。(A)成分のpHがこの範囲外にあるときは、この範囲より酸性側であれば、アンモニア、エチレンジアミン等の塩基性試薬を添加して調整すれば良く、塩基性側のときも塩酸、硝酸、酢酸等の酸性試薬を用いて調整すれば良い。しかし、その調整方法は特に限定されるものではない。
【0051】
平均組成式(2)で表される(B)成分のシラノール基含有ポリオルガノシロキサンは重要な成分である。(2)式中Rとしては上記(1)式中のRと同じものが例示されるが、好ましくは、炭素数1〜4のアルキル基、ビニル基、γ−グリシドキシプロピル基、γ−メタクリロキシプロピル基、3,3,3−トリフルオロプロピル基などの置換炭化水素基、より好ましくはメチル基である。また、式中aおよびbはそれぞれ上記の関係を満たす数であり、aが0.2未満またはbが3を超えると硬化被膜にクラックを生じるなどの不都合があり、また、aが2を超え4以下の場合またはbが0.0001未満では硬化がうまく進行しない。
【0052】
また、Rはフェニル基を全R基に対して1〜30モル%、好ましくは5〜20モル%含有させることで、優れた光沢、レベリング性を有する塗膜が得られる。フェニル基が全R基に対して1モル%よりも少ないと、所望の光沢が得られず、30モル%より多くなると光沢の低下が起きると共に、塗膜も柔らかくなってしまう。
【0053】
このようなシラノール基含有ポリオルガノシロキサンは、メチルトリクロロシラン、ジメチルジクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、もしくはこれらに対応するアルコキシシランの1種もしくは2種以上の混合物を公知の方法により大量の水で加水分解することで得ることができる。シラノール基含有ポリオルガノシロキサンを得るのに、アルコキシシランを用いて公知の方法で加水分解した場合、加水分解されないアルコキシ基が微量に残る場合がある。つまりシラノール基と極微量のアルコキシ基が共存するようなポリオルガノシロキサンが得られる事もあるが、この様なポリオルガノシロキサンを用いても差支えない。
【0054】
(C)成分である硬化触媒は、上記の(A)成分と(B)成分との縮合反応を促進し、被膜を硬化させるものである。このような触媒としては、アルキルチタン酸塩、オクチル酸錫およびジブチル錫ジラウレート、ジオクチル錫ジマレート等のカルボン酸の金属塩;ジブチルアミン−2−ヘキソエート、ジメチルアミンアセテート、エタノールアミンアセテート等のアミン塩;酢酸テトラメチルアンモニウム等のカルボン酸第4級アンモニウム塩;テトラエチルペンタミンのようなアミン類;N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン、N−β−アミノエチル−γ−アミノプロピルメチルジメトキシシラン等のアミン系シランカップリング剤;p−トルエンスルホン酸、フタル酸、塩酸等の酸類;アルミニウムアルコキシド、アルミニウムキレート等のアルミニウム化合物、水酸化カリウムなどのアルカリ触媒;テトライソプロピルチタネート、テトラブチルチタネート、チタニウムテトラアセチルアセトネート等のチタニウム化合物、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルモノクロロシラン等のハロゲン化シラン等があるが、これらの他に(A)成分および(B)成分との縮合反応に有効なものであればとくに制限はない。
【0055】
(A)成分および(B)成分の配合割合は、(A)成分1〜99重量部に対して(B)成分99〜1重量部であり、より好ましくは(A)成分5〜95重量部に対して(B)成分95〜5重量部、最も好ましくは(A)成分10〜90重量部に対して(B)成分90〜10重量部である(ただし、(A)成分と(B)成分の合計は100重量部である)。(A)成分が1重量部未満であると常温硬化性に劣り、また十分な被膜硬度が得られないし、一方、99重量部を超えると硬化性が不安定でかつ良好な塗膜が得られないことがある。
【0056】
また、(C)成分の添加量は(A)成分と(B)成分との合計100重量部に対して0.0001〜10重量部であることが好ましい。より好ましくは0.0005〜8重量部であり、最も好ましくは0.0007〜5重量部である。0.0001重量部未満であると常温で硬化しない。また、10重量部を超えると耐熱性、耐候性が悪くなる。
【0057】
このシリコーン系コーティング剤は、取り扱いの容易さから各種有機溶媒で希釈して使用することができる。有機溶媒の種類は、(A)成分あるいは(B)成分の一価炭化水素基の種類もしくは分子量の大きさによって選定することができる。このような有機溶媒としては、コロイダルシリカの分散溶媒として示した、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコールの誘導体及びジアセトンアルコール等を挙げることができ、これらからなる群より選ばれた1種もしくは2種以上のものを使用することができる。これらの親水性有機溶剤と併用できる溶剤としてトルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシムなども例示することができる。
【0058】
このシリコーン系コーティング剤の保存方法としては、(A)、(B)および(C)成分をそれぞれ保存する3包装形をとるのが一般的であるが、(A)成分と(C)成分の混合成分と(B)成分とを分けて2包装形としておき、使用時に両者を混合するか、すべての成分を混合して一容器内に保存する1包装形とすることも可能である。但し、(A)成分と(C)成分を混合して保存する場合は、(A)成分のpHを2〜7に調整した後(C)成分を加える方が好ましく、さらには(A)成分のオルガノアルコキシシランの加水分解性基(X)1モルに対する水の使用量は0.3モル以下の方が好ましい。
【0059】
また、このシリコーン系コーティング剤には、必要に応じてレベリング剤、増粘剤、顔料、染料、アルミペースト、ガラスフリット、金属粉、抗酸化剤、艶消し剤、紫外線吸収剤等をその特性に影響を与えない範囲内で添加することができる。
【0060】
次に、特許第3193832号公報に開示されるシリコーン系コーティング剤は、
一般式 RSiX4−n (3)
(式(3)中、Rは同一又は異種の置換もしくは非置換の炭素数1〜8の1価炭化水素基を示し、nは0〜3の整数、Xは加水分解性基を示す)
で表される加水分解性オルガノシランを、微粒子酸化物を微粒子径0.2〜3μmに分散させた状態で、X1モルに対して水0.001〜0.5モルを使用する条件下で部分加水分解させて得られたものに、
一般式 OH(RSiO)H (4)
(式(4)中、Rは同一又は異種の置換もしくは非置換の炭素数1〜8の1価炭化水素基を示し、mは1以上を示す)
で表される重量平均分子量10000以下のシリコーンジオール成分を5〜30重量%配合した、シリコーンジオール含有微粒子酸化物分散オリゴマー(D成分)と、
平均組成式 RSi(OH)(4−a−b)/2 (5)
(式(5)中、Rは同一又は異種の置換もしくは非置換の炭素数1〜8の1価炭化水素基を示し、aおよびbはそれぞれ0.2≦a<2.0、0.0001≦b≦3、a+b<4の関係を満たす数である)
で表される、分子中にシラノール基を含有するポリオルガノシロキサン(E成分)と、
触媒(F成分)の各成分を含有するものである。
【0061】
D成分のシリコーンジオール含有微粒子酸化物分散オリゴマーは、被膜形成に際して硬化反応に預かる官能性基としての加水分解性基Xを有するベースポリマーの主成分である。これは、一般式が上記(4)で表されるシリコーンジオールを加えた、一般式が上記(3)式で表される加水分解性オルガノシランの1種又は2種以上に、粉体状の微粒子酸化物の分散を行ないながら、あるいは微粒子酸化物の分散を完了した後に、必要量の水を添加することで、この加水分解性オルガノシロキサンを部分加水分解することによって得られる。シリコーンジオールの添加は、加水分解性オルガノシランを加水分解する前におこなっても、加水分解の際に行なっても、あるいは加水分解した後に行なってもいずれでもよい。
【0062】
ここで、上記一般式(3)で表される加水分解性オルガノシラン中の基Rは、炭素数1〜8の置換又は非置換の1価の炭化水素基を示し、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;2−フェニルエチル基、2−フェニルプロピル基、3−フェニルプロピル基などのアラルキル基;フェニル基、トリル基などのアリール基;ビニル基、アリル基などのアルケニル基;クロロメチル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピルなどのハロゲン置換炭化水素基;及びγ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基、γ−メルカプトプロピル基などの置換炭化水素基を例示することができる。これらの中でも合成の容易さ、あるいは入手の容易さから炭素数1〜4のアルキル基及び、フェニル基が好ましい。
【0063】
また上記一般式(3)で表される加水分解性オルガノシラン中の加水分解性基Xとしては、アルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基、アミド基などが挙げられる。入手の容易さ及び微粒子酸化物分散オリゴマー溶液を調製し易いことからアルコキシ基が好ましい。
【0064】
そしてこのような加水分解性オルガノシランとしては、上記一般式(3)中のnが0〜3の整数である、モノ−、ジ−、トリ−、テトラ−の各官能性のアルコキシシラン類、アセトキシシラン類、オキシムシラン類、エノキシシラン類、アミノシラン類、アミノキシシラン類、アミドシラン類などが挙げられる。入手の容易さ及び微粒子酸化物分散オリゴマー溶液を調製し易いことからアルコキシシラン類が好ましい。
【0065】
特に、n=0のテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシランなどを例示することができ、n=1のオルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシランなどを例示することができる。またn=2のジオルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシランなどを例示することができ、n=3のトリオルガノアルコキシシランとしては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルイソプロポキシシラン、ジメチルイソブチルメトキシシランなどを例示することができる。尚、一般にシランカップリング剤と呼ばれるオルガノシラン化合物もアルコキシシラン類として使用することができるものである。
【0066】
上記のような一般式(3)で表される加水分解性オルガノシランのうち、50モル%以上がn=1の3官能性のものであるのが好ましい。より好ましくは60モル%以上であり、最も好ましくは70モル%以上である。n=1の3官能性のものが50モル%未満では、十分な被膜硬度を得ることが難しいと共に、乾燥硬化性が劣り易くなることがある。
【0067】
D成分中の粉体状の微粒子酸化物は、コーティング用組成物の光沢を制御するために必須のものであり、艶消し剤として作用する。微粒子酸化物としては、ケイ素酸化物、アルミニウム酸化物、チタン酸化物等を挙げることができ、分散性を高める目的で、それらの表面にシリカ処理、アルミナ処理、カップリング処理等を施したものを使用することができる。
【0068】
そして、この微粒子酸化物を一般式(3)で表される加水分解性オルガノシランに直接分散させ、必要量の水でこの加水分解性オルガノシランを部分加水分解し、D成分を調製することができるが、粉体状の微粒子酸化物の分散度を高める目的でアルコールなどの有機溶媒とともに分散し、必要量の水で加水分解性オルガノシランを部分加水分解してD成分を調製するようにしてもよい。有機溶媒の種類は、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテル等のエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテル等のジエチレングリコール誘導体;及びジアセトンアルコール等を挙げることができる。これらからなる群より選ばれた1種もしくは2種以上のものを使用することができるが、これらの親水性有機溶剤と併用してトルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシムなども用いることができる。
【0069】
D成分の加水分解性オルガノシランのオリゴマー中に分散された微粒子酸化物の粒子径は0.2〜3μmの範囲である。粒子径が0.2μm未満であると、光沢を制御することが難しく、また粒子径が3μmを超えると、成膜性が損なわれるおそれがある。そしてD成分中において、微粒子酸化物は固形分として好ましくは5〜30重量%の範囲で、より好ましくは8〜25重量%の範囲で含有されるものである。含有量が5重量%未満であると、光沢の制御が難しく、また30重量%を超えると被膜の成膜性が損なわれるなどの不都合を招来するおそれがある。
【0070】
D成分中のシリコーンジオールは、コーティング用組成物の安定な光沢を得るための必須なものである。一般式(4)で表されるシリコーンジオールのD成分中の配合割合は5〜30重量%である。5重量%より少ないと長期にわたる光沢安定性を得ることが難しく、また30重量%を超えると塗膜の硬化が遅くなるおそれがある。またこのシリコーンジオール成分の重量平均分子量は10000以下であり、好ましくは5000以下、より好ましくは1000以下のものを使用するのがよい。シリコーンジオール成分の重量平均分子量が10000を超えるものは樹脂との相溶性が悪く、使用することが難しい。ここで、シリコーンジオールの一般式(4)中のRとしては、置換もしくは非置換の炭素数1〜8の1価炭化水素基であれば特に限定されることなく使用することができるが、上記式(3)中のRと同様の炭化水素基を挙げることができる。
【0071】
D成分のオルガノシランオリゴマーは、一般式(1)の加水分解性オルガノシランを部分加水分解して得ることができる。加水分解性オルガノシランに対する水の使用量は、加水分解性基X1モルに対して水0.001〜0.5モルとする。水の使用量が0.001モル未満であると充分な部分加水分解物を得ることができず、また水の使用量が0.5モルを超えると部分加水分解物の安定性が悪くなる。部分加水分解する方法は特に限定されないものであり、加水分解性オルガノシランと必要量の水を添加配合すればよく、このとき部分加水分解反応は常温で進行するが、部分加水分解反応を促進させるために60〜100℃の温度で加熱するようにしてもよい。さらに部分加水分解反応を促進させる目的で、塩酸、酢酸、ハロゲン化シラン、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタル酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸などの無機酸や有機酸を触媒として用いてもよい。
【0072】
D成分のシリコーンジオール含有微粒子酸化物分散オリゴマーは、長期的に安定した性能を得るために、液のpHを2.0〜7.0の範囲に、より好ましくはpH2.5〜6.5の範囲、さらにより好ましくはpH3.0〜6.0の範囲に調整するのがよい。pHがこの範囲外であると、特に水の使用量がX1モルに対し0.3モル以上のときにD成分の長期的な性能低下が著しくなることがある。D成分のpHがこの範囲外にあれば、この範囲より酸性側のときにはアンモニア、エチレンジアミン等の塩基性試薬を添加してpHを調整すればよく、この範囲より塩基性側のときには塩酸、硝酸、酢酸等の酸性試薬を用いてpHを調整すればよい。この調整の方法は特に限定されるものではない。
【0073】
平均組成式が上記(5)式で示されるE成分のシラノール基含有ポリオルガノシロキサンはシリコーン系コーティング剤の特徴の一つをなす重要な成分である。式(5)中、Rとしては、上記式(3)中のRと同じものを例示することができるが、好ましくは炭素数1〜4のアルキル基、フェニル基、ビニル基、γ−グリシドキシプロピル基、γ−メタクリロキシプロピル基、3,3,3−トリフルオロプロピル基などの置換炭化水素基であり、より好ましくはメチル基およびフェニル基である。また式(5)中、a及びbはそれぞれ0.2≦a<2.0、0.0001≦b≦3、a+b<4の関係を満たす数であり、aが0.2未満又はbが3を超えると、硬化被膜にクラックを生じるなどの不都合があり、またaが2.0を超え4以下の場合又はbが0.0001未満であると、硬化がうまく進行しないという不都合がある。
【0074】
このような(5)式のシラノール基含有ポリオルガノシロキサンは、例えば、メチルトリクロロシラン、ジメチルジクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、もしくはこれらに対応するアルコキシシランの1種もしくは2種以上の混合物を公知の方法による大量の水で加水分解することによって得ることができる。シラノール基含有ポリオルガノシロキサンを得るのにアルコキシシランを用いて公知の方法で加水分解した場合、加水分解されないアルコキシ基が微量に残ることがある。つまりシラノール基と極微量のアルコキシ基が共存するようなポリオルガノシロキサンが得られることがあるが、このようなポリオルガノシロキサンを用いても差支えない。
【0075】
またF成分の触媒は、上記のD成分とE成分との縮合反応を促進し、被膜を硬化させる硬化触媒として働くものである。このような触媒としては、アルキルチタン酸塩、オクチル酸錫およびジブチル錫ジラウレート、ジオクチル錫ジマレート等のカルボン酸の金属塩;ジブチルアミン−2−ヘキソエート、ジメチルアミンアセテート、エタノールアミンアセテート等のアミン塩;酢酸テトラメチルアンモニム等のカルボン酸第4級アンモニウム塩、テトラエチルペンタミン等のアミン類;N(−β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、N(−β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のアミン系シランカップリング剤;p−トルエンスルホン酸、フタル酸、塩酸等の酸類;アルミニウムアルコキシド、アルミニウムキレート等のアルミニウム化合物、水酸化カリウムなどのアルカリ触媒;テトライソプロピルチタネート、テトラブチルチタネート、チタニウムテトラアセチルアセトネート等のチタニウム化合物、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルモノクロロシラン等のハロゲン化シラン等があるが、これらの他にもD成分とE成分との縮合反応に有効なものであれば特に制限されない。
【0076】
D成分とE成分の配合割合は、D成分30〜70重量部に対してE成分70〜30重量部が好ましく、より好ましくはD成分40〜60重量部に対してE成分60〜40重量部である(但し、D成分とE成分の合計量100重量部)。D成分が30重量部未満であると得られる無機塗膜の光沢の制御が難しく、E成分が70重量部を超えると無機塗膜の成膜性が損なわれるおそれがある。D成分とE成分の配合割合を上記の範囲で変化させることによって、無機塗膜の光沢を容易に調整することができるものであり、D成分を増量するように配合割合を調整すると無機塗膜の光沢度を小さくすることができ、D成分を減量するように配合割合を調整すると無機塗膜の光沢度を大きくすることができるものである。
【0077】
また、F成分の触媒の添加量は、D成分とE成分の合計100重量部に対して0.0001〜10重量部であることが好ましい。より好ましくは0.0005〜8重量部であり、最も好ましくは0.0007〜5重量部である。F成分の触媒の添加量が0.0001重量部未満であると常温で硬化しない場合があり、またF成分の触媒の添加量が10重量部を超えると得られる無機塗膜の耐熱性や耐候性が悪くなる場合がある。
【0078】
上記のようにして調製されるシリコーン系コーティング剤は、取り扱いの容易さから各種有機溶媒で希釈して使用することができる。有機溶媒の種類は、D成分あるいはE成分の1価炭化水素基の種類もしくは分子量の大きさによって選定されるものであり、このような有機溶媒としては微粒子酸化物の分散溶媒として示したもの等を挙げることができ、これらからなる群より選ばれた1種もしくは2種以上のものを使用することができる。
【0079】
このシリコーン系コーティング剤の保存方法は、D成分、E成分及びF成分をそれぞれ別々に保存する3包装形をとるのが一般的であるが、D成分とF成分の混合成分と、E成分とを分けて2包装形としておき、使用時に両者を混合するようにしてもよく、またすべての成分を混合して一容器内に保存する1包装形とすることも可能である。但し、D成分とF成分を混合して保存する場合は、D成分のpHを2〜7に調整した後にF成分を加えて混合するようにするのが好ましく、さらにはD成分としてそのオルガノシロキサンの加水分解性基X1モルに対する水の使用量を0.3モル以下にしたものを使用するのが好ましい。
【0080】
また、このシリコーン系コーティング剤には、必要に応じてレベリング剤、増粘剤、顔料、染料、アルミペースト、ガラスフリット、金属粉、抗酸化剤、紫外線吸収剤等をその特性に影響を与えない範囲内で添加することができる。
【0081】
次に、特開平9−249822号公報には、2種類のシリコーン系コーティング剤が開示されている。2種類のうち一方のシリコーン系コーティング剤(以下シリコーン系コーティング剤(1)とする)は、
一般式 (RSi(OR4−m (6)
(式(6)中、Rは各々メチル基、エチル基又はフェニル基を表し、Rは各々炭素数1〜8のアルキル基を表す。mは0,1又は2である。)
で表されるケイ素化合物及び/又はその部分加水分解物を主成分とするケイ素アルコキシド系コーティング剤に、紫外線吸収剤を配合したものである。
【0082】
この一般式(6)で表されるケイ素化合物及び/又はその部分加水分解物を主成分とするケイ素アルコキシドは、次の(i)、(ii)、(iii)の化合物を主成分とする混合物を適当な溶剤で希釈し、硬化剤及び触媒を必要量添加して加水分解及び縮重合させて得ることができ、重量平均分子量Mwがポリスチレン換算で500〜3000で、且つ分子量分布Mw/Mn(Mnは数平均分子量)が1.1〜3.0であるものが望ましい。より好ましくはMw=600〜3000で且つMw/Mn=1.2〜1.8である。重量平均分子量及び分子量分布がこの範囲より小さいときには、縮重合の際の硬化収縮が大きくなり、焼き付け後に塗膜にクラックが発生し易くなる傾向がある。また重量平均分子量及び分子量分布がこの範囲より大きいときには、反応が遅過ぎて硬化し難しいか、硬化しても柔らかい塗膜になったり、塗膜のレベリング性が非常に悪いものになったりする傾向がある。
(i):一般式(6)においてm=0で示されるケイ素化合物及びコロイド状シリカ20〜200重量部
(ii):一般式(6)においてm=1で示されるケイ素化合物100重量部
(iii):一般式(6)においてm=2で示されるケイ素化合物0〜80重量部
これらのケイ素化合物としては後述の(7)式におけるアルコキシシラン類を用いることができる。また成分(i)のコロイド状シリカ(コロイダルシリカ)は微粒子シリカ成分を水、メタノール等の有機溶剤またはこれらの混合溶剤中に分散して使用するが、それらがコロイド状である限り、その粒径や溶剤種等は特に制限されるものではない。尚、成分(i)のコロイド状シリカの配合量は分散媒も含む重量部である。
【0083】
シリコーン系コーティング剤(1)において必要に応じて用いられる前記の硬化剤としては、特に限定されるものではないが、例えば、塩酸、リン酸、硫酸等の無機酸や、蟻酸、酢酸、クロロ酢酸等の有機酸の希薄溶液等の酸性触媒、あるいは後述する塩基性触媒を単独で又は2種以上を併用して使用することができる。また前記成分(i)としてコロイド状シリカを用いる場合は、コロイド状シリカが酸性を示すのでこれが触媒となり、酸性触媒として何も入れなくともよい。
【0084】
シリコーン系コーティング剤(1)において必要に応じて用いられる前記の触媒としては塩基性触媒が使用される。この塩基性触媒としては、特に限定されるものではないが、例えばトリエタノールアミン等のアミン類;γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルメチルジメトキシシラン等のアミノシラン類;無機酸(例えば塩酸、硝酸、リン酸等)又は有機酸(例えば蟻酸、酢酸、プロピオン酸等)のアンモニア、トリメチルアミン、トリエチルアミン、n−ブチルアミン等の塩、あるいは無機酸又は有機酸の塩と第4級アンモニウム塩との複分解塩等を例示することができる。これらの種類や添加量については何等限定されない。
【0085】
シリコーン系コーティング剤(1)には前記の成分の他に、必要に応じて、コロイド状シリカ以外の充填剤(例えばアルミナゾル、ヒュームドシリカ等の無機充填剤)、着色剤、希釈溶剤、増粘剤等の種々の添加剤を1種以上配合することができる。この希釈溶剤としては特に限定されないが、例えばメタノール、エタノール、イソプロパノール(IPA)等のアルコール類;エチレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類などを挙げることができ、これらを1種あるいは2種以上を併せて使用することができる。
【0086】
シリコーン系コーティング剤(1)は、そのpH値を3.8〜6.0に調整することによって前記の分子量の範囲内で安定して使用することができる。pH値がこの範囲外にあると、シリコーン系コーティング剤(1)は安定性が悪くなり、シリコーン系コーティング剤(1)を調製した後の使用できる期間が限られることがある。ここで、pH値調整方法は特に制限されないが、例えばシリコーン系コーティング剤(1)の原料混合時にpH値が3.8未満となった場合は、アンモニア等の塩基性試薬を用いて前記所定範囲内のpH値に調整すればよく、pH値が6.0を超えた場合は、塩酸等の酸性試薬を用いて前記所定範囲内に調整すればよい。またpH値によっては、分子量が小さいまま逆に反応が進まず、前記の分子量範囲に到達させるのに時間がかかる場合は、シリコーン系コーティング剤(1)を加熱して反応を促進させるようにしてもよく、酸性試薬でpH値を下げて反応を進めた後、塩基性試薬で所定のpH値に戻すようにしてもよい。
【0087】
上記のようにpH値を調整した場合、または調整しない場合でも、使用に至るまでの間、または少なくとも使用時に、シリコーン系コーティング剤(1)に塩基性触媒を添加すれば縮合反応を促進し、塗膜中の架橋点を増やすことができるので、安定して耐クラック性の良い塗膜を得ることができるものである。また、架橋反応を促進することによって、硬化時間を短縮し、あるいは硬化温度を下げることができるために、経済的である。
【0088】
また、特開平9−249822号公報に開示された2種類のシリコーン系コーティング剤うち、他方のシリコーン系コーティング剤(以下シリコーン系コーティング剤(2)とする)は、
一般式 (RSiX4−n (7)
(式(7)中、Rは各々置換もしくは非置換の炭素数1〜8の1価の炭化水素基を表し、Xは加水分解性基を表す。nは0〜3の整数である。)
で表される加水分解性オルガノシランを、有機溶媒及び/又は水に分散されたコロイド状シリカ中で部分加水分解してなる、オルガノシランのシリカ分散オリゴマー溶液(G)と、
平均組成式 (RSi(OH)(4−d−e)/2 (8)
(式(8)中、Rは各々置換もしくは非置換の炭素数1〜8の1価の炭化水素基を表し、dおよびeはそれぞれ0.2≦d≦2.0、0.0001≦e≦3、d+e<4の関係を満たす数である。)
で表される、分子中にシラノール基を含有するポリオルガノシロキサン(H)と、
硬化触媒(I)の、
(G),(H),(I)の3成分を必須成分として含有するケイ素アルコキシド系コーティング剤に、紫外線吸収剤を配合したものである。
【0089】
シリコーン系コーティング剤(2)に用いられる(G)成分のシリカ分散オリゴマーは、被膜形成に際して硬化反応に預かる官能性基としての加水分解性基Xを有するベースポリマーの主成分である。これは、有機溶媒あるいは水、もしくはこれらの混合溶媒に分散したコロイド状シリカに、前記一般式(7)式で表される加水分解性オルガノシランの1種又は2種以上を加え、コロイド状シリカ中の水あるいは別途添加された水により加水分解性オルガノシランを部分加水分解することで得られる。
【0090】
前記一般式(7)で表される加水分解性オルガノシラン中のRとしては、炭素数1〜8の置換又は非置換の1価の炭化水素基、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基などのアルキル基;シクロペンチル基、シクロヘキシル基などのシクロアルキル基;2−フェニルエチル基、3−フェニルプロピル基などのアラルキル基;フェニル基、トリル基などのアリール基;ビニル基、アリル基などのアルケニル基;クロロメチル基、γ−クロロプロピル基、3,3,3−トリフルオロプロピル基などのハロゲン置換炭化水素基;γ−メタクリロキシプロピル基、γ−グリシドキシプロピル基、3,4−エポキシシクロヘキシルエチル基、γ−メルカプトプロピル基などの置換炭化水素基等を例示することができる。これらの中でも合成の容易さ、あるいは入手の容易さから炭素数1〜4のアルキル基及び、フェニル基が好ましい。
【0091】
前記一般式(7)中の加水分解性基Xとしては、アルコキシ基、アセトキシ基、オキシム基、エノキシ基、アミノ基、アミノキシ基、アミド基などが挙げられる。これらの中でも入手の容易さ及びシリカ分散オリゴマー溶液(G)を調製し易いことからアルコキシ基が好ましい。このような加水分解性オルガノシランとしては、上記一般式(7)中のnが0〜3の整数である、モノ−、ジ−、トリ−、テトラ−の各官能性のアルコキシシラン類、アセトキシシラン類、オキシムシラン類、エノキシシラン類、アミノシラン類、アミノキシシラン類、アミドシラン類などが挙げられる。これらの中でも入手の容易さ及びシリカ分散オリゴマー溶液(G)を調製し易いことからアルコキシシラン類が好ましい。
【0092】
特に、n=0のテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシランなどを例示することができ、n=1のオルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシランなどを例示することができる。またn=2のジオルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシランなどを例示することができる。さらにn=3のトリオルガノアルコキシシランとしては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリメチルイソプロポキシシラン、ジメチルイソブチルメトキシシランなどを例示することができる。また一般にシランカップリング剤とよばれるオルガノシラン化合物もアルコキシシラン類として用いることができる。
【0093】
これらの一般式(7)の加水分解性オルガノシランのうち、50モル%以上がn=1で表される3官能性のものであることが好ましい。より好ましくは60モル%以上であり、最も好ましくは70モル%以上である。n=1の3官能性のものが50モル%未満では、十分な塗膜硬度を得ることが難しいと共に、乾燥硬化性が劣り易くなるものである。
【0094】
(G)成分で使用するコロイド状シリカとしては、水分散性あるいはアルコールなどの非水系の有機溶媒分散性コロイド状シリカを使用することができ、前述のシリコーン系コーティング剤(1)に用いられるコロイド状シリカと同様のものを使用することができる。一般にこのようなコロイド状シリカは固形分としてのシリカを20〜50重量%含有しており、この値からシリカ配合量を決定できる。
【0095】
水分散性コロイド状シリカを使用する場合、固形分以外の成分として存在する水は(G)成分の加水分解に用いることができる。水分散性コロイド状シリカは通常水ガラスから作られるが、このようなコロイド状シリカは市販品を容易に入手することができる。また有機溶媒分散性のコロイド状シリカは、前記水分散性コロイド状シリカの水を有機溶媒と置換することで容易に調製することができる。このような有機溶媒分散性コロイド状シリカも水分散性コロイド状シリカと同様に市販品を容易に入手することができる。コロイド状シリカを分散する有機溶媒の種類は、例えば、メタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノールなどの低級脂肪族アルコール類;エチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどのエチレングリコール誘導体;ジエチレングリコール、ジエチレングリコールモノブチルエーテルなどのジエチレングリコール誘導体、ジアセトンアルコール等を挙げることができる。これらからなる群より選ばれた1種もしくは2種以上のものを使用することができるが、これらの親水性有機溶剤と併用してトルエン、キシレン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、メチルエチルケトオキシムなども用いることができる。
【0096】
(G)成分中のコロイド状シリカは、シリコーン系コーティング剤(2)の硬化被膜の硬度を高くするために必須のものである。(G)成分中においてコロイド状シリカは、シリカ固形分として5〜95重量%の範囲で含有されるのが好ましい。より好ましくは10〜90重量%、最も好ましくは20〜85重量%の範囲である。含有量が5重量%未満であると所望の被膜硬度が得られず、また95重量%を超えるとシリカの均一分散が困難となり、(G)成分にゲル化等の不都合を招来するおそれがある。
【0097】
(G)成分のオルガノシランのシリカ分散オリゴマーは、通常、一般式(7)の加水分解性オルガノシランを水分散性コロイド状シリカまたは有機溶媒分散性コロイド状シリカの少なくとも一方の中で部分加水分解して得ることができる。加水分解性オルガノシランに対する水の使用量は、加水分解性基X1モルに対して水0.001〜0.5モルが好ましい。水の使用量が0.001モル未満であると充分な部分加水分解物を得ることができず、また水の使用量が0.5モルを超えると部分加水分解物の安定性が悪くなるおそれがある。部分加水分解する方法は特に限定されないものであり、加水分解性オルガノシランとコロイド状シリカとを混合して必要量の水を添加配合すればよく、このとき部分加水分解反応は常温で進行するが、部分加水分解反応を促進させるために60〜100℃に加温するようにしてもよい。さらに部分加水分解反応を促進させる目的で、塩酸、酢酸、ハロゲン化シラン、クロロ酢酸、クエン酸、安息香酸、ジメチルマロン酸、蟻酸、プロピオン酸、グルタル酸、グリコール酸、マレイン酸、マロン酸、トルエンスルホン酸、シュウ酸などの無機酸や有機酸を触媒として用いてもよい。
【0098】
(G)成分のオルガノシランのシリカ分散オリゴマーは、長期的に安定した性能を得るために、液のpH値を2.0〜7.0の範囲に、より好ましくはpH2.5〜6.5の範囲に、さらにより好ましくはpH3.0〜6.0の範囲に調整するのがよい。pH値がこの範囲外であると、特に水の使用量がX1モルに対し0.3モル以上のときに(G)成分の長期的な性能低下が著しくなることがある。(G)成分のpH値がこの範囲外にあれば、この範囲より酸性側のときにはアンモニア、エチレンジアミン等の塩基性試薬を添加してpH値を調整すればよく、この範囲より塩基性側のときには塩酸、硝酸、酢酸等の酸性試薬を用いてpH値を調整すればよい。この調整の方法は特に限定されるものではない。
【0099】
シリコーン系コーティング剤(2)で用いる(H)成分のシラノール基含有ポリオルガノシロキサンは、平均組成式が上記(8)式で表されるものであり、(8)式中のRとしては、上記(7)式中のRと同じものを例示することができるが、R中の5〜50重量%はフェニル基である。フェニル基が5重量%未満では塗膜の伸びが低下しクラックが発生し易くなり、50重量%を超えると硬化が遅くなり過ぎてしまうおそれがある。この他のRは好ましくは炭素数1〜4のアルキル基、ビニル基、γ−グリシドキシプロピル基、γ−メタクリロキシプロピル基、γ−アミノプロピル基、3,3,3−トリフルオロプロピル基などの置換炭化水素基、より好ましくはメチル基およびエチル基のアルキル基である。また(8)式中、d及びeはそれぞれ0.2≦d≦2.0、0.0001≦e≦3、d+e<4の関係を満たす数であり、dが0.2未満又はeが3を超えると、硬化被膜にクラックを生じるなどの不都合があり、またdが2を超え4以下の場合又はeが0.0001未満であると、硬化がうまく進行しないものである。
【0100】
このような(8)式のシラノール基含有ポリオルガノシロキサン(H)は、例えば、メチルトリクロロシラン、ジメチルジクロロシラン、フェニルトリクロロシラン、ジフェニルジクロロシラン、もしくはこれらに対応するアルコキシシランの1種もしくは2種以上の混合物を公知の方法により大量の水で加水分解することによって得ることができる。シラノール基含有ポリオルガノシロキサンを得るために、アルコキシシランを用いて公知の方法で加水分解した場合、加水分解されないアルコキシ基が微量に残ることがある。つまりシラノール基と極微量のアルコキシ基が共存するようなポリオルガノシロキサンが得られることがあるが、このようなポリオルガノシロキサンを用いても差支えない。
【0101】
またこのような(H)成分のシラノール基含有ポリオルガノシロキサンの分子量は700〜20000が好ましい。ここでいう分子量は、GPC(ゲルパーミエーションクロマトグラフィー)測定による標準ポリスチレン換算による重量平均分子量であり、700未満の場合、形成された塗膜の硬化性が遅く、またクラックが発生し易くなり、20000を超える場合、顔料を添加されたシリコーン系コーティング剤(2)から形成された塗膜に光沢がなく、また平滑性も悪くなるおそれがある。
【0102】
シリコーン系コーティング剤(2)で用いる(I)成分の硬化触媒は、上記の(G)成分と(H)成分との縮合反応を促進し、被膜を硬化させるものである。このような触媒としては、アルキルチタン酸塩、オクチル酸錫およびジブチル錫ジラウレート、ジオクチル錫ジマレート等のカルボン酸の金属塩;ジブチルアミン−2−ヘキソエート、ジメチルアミンアセテート、エタノールアミンアセテート等のアミン塩;酢酸テトラメチルアンモニム等のカルボン酸第4級アンモニウム塩;テトラエチルペンタミン等のアミン類;N−β−アミノエチル−γ−アミノプロピルトリメトキシシラン、N−β−アミノエチル−γ−アミノプロピルメチルジメトキシシラン等のアミン系シランカップリング剤;p−トルエンスルホン酸、フタル酸、塩酸等の酸類;アルミニウムアルコキシド、アルミニウムキレート等のアルミニウム化合物、水酸化カリウムなどのアルカリ触媒、テトライソプロピルチタネート、テトラブチルチタネート、チタニウムテトラアセチルアセトネート等のチタニウム化合物、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルモノクロロシラン等のハロゲン化シラン等があるが、これらの他にも(G)成分と(H)成分との縮合反応に有効なものであれば特に制限されない。
【0103】
(G)成分と(H)成分の配合割合は、(G)成分1〜99重量部に対して(H)成分99〜1重量部であり、好ましくは(G)成分5〜95重量部に対して(H)成分95〜5重量部、より好ましくは(G)成分10〜90重量部に対して(H)成分90〜10重量部である(但し、(G)成分と(H)成分の合計量100重量部)。(G)成分が1重量部未満であると常温硬化性に劣ると共に十分な被膜硬度が得られない。逆に(G)成分が99重量部を超えると硬化性が不安定で且つ良好な被膜が得られないおそれがある。
【0104】
また(I)成分の硬化触媒の添加量は、(G)成分と(H)成分の合計100重量部に対して0.0001〜10重量部であることが好ましい。より好ましくは0.0005〜8重量部であり、最も好ましくは0.0007〜5重量部である。硬化触媒(I)の添加量が0.0001重量部未満であると常温で硬化しない場合があり、また硬化触媒(I)の添加量が10重量部を超えると被膜の耐熱性や耐候性が悪くなる場合がある。
【0105】
上記のように調製されるシリコーン系コーティング剤(1)あるいは(2)には顔料や艶消し剤、フィラーなどを添加しても良い。添加する顔料種としては、カーボンブラック、キナクリドン、ナフトールレッド、シアニンブルー、シアニングリーン、ハンザイエロー等の有機顔料や、酸化チタン、硫酸バリウム、弁柄、炭酸カルシウム、アルミナ、酸化鉄赤、複合金属酸化物等の無機顔料がよく、これらの群から選ばれる1種もしくは2種以上を組み合わせて使用することができる。なかでも、耐候性を向上させるには無機顔料が好ましい。またフィラーとしてはシリカ粉や硫酸バリウム等を用いることができるものであり、上記に列挙する群から選ばれる1種もしくは2種以上を組み合わせて使用することができる。顔料やフィラーの粒径は特に限定されないが、平均粒径で0.01〜4μm程度が好ましい。
【0106】
顔料の添加量は顔料の種類により隠蔽性が異なるので特に限定されないが、無機顔料の場合、樹脂固形分100重量部に対して15〜80重量部の範囲が好ましい。15重量部未満の場合は隠蔽性を十分に得ることができず、また80重量部を超えると塗膜の平滑性が悪くなるおそれがある。顔料の分散は通常の方法でおこなうことができ、またその際に分散剤、分散助剤、増粘剤、カップリング剤等を使用することが可能である。
【0107】
そして、シリコーン系コーティング剤(1)あるいは(2)に紫外線吸収剤を添加することによって、紫外線吸収性のコーティング剤を得ることができる。紫外線吸収剤としては、2(2′ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系化合物や、2,4−ジヒドロキシベンゾフェノン等のベンゾフェノン系化合物などの有機系紫外線吸収剤や、微粒子酸化亜鉛や微粒子酸化チタンなどの無機系紫外線吸収剤を用いることができるものであり、有機系紫外線吸収剤と無機系紫外線吸収剤とを併用することもできる。
【0108】
有機系の紫外線吸収剤はシリコーン系コーティング剤(1)あるいは(2)に比較的容易に分散させることができる。この有機系の紫外線吸収剤の添加量は特に制限されるものではないが、シリコーン系コーティング剤(1)あるいは(2)の固形分に対して、固形分として0.1〜30重量%の範囲が好ましい。添加量が0.1重量%未満では紫外線カットによる耐候性の向上の効果が不十分になり、また30重量%を超えて添加すると有機系紫外線吸収剤の色が強くなるために好ましくない。
【0109】
無機系紫外線吸収剤である微粒子酸化亜鉛や微粒子酸化チタンについても添加量は特に制限されるものではないが、シリコーン系コーティング剤(1)あるいは(2)の固形分に対して0.1〜20重量%の範囲が好ましい。添加量が0.1重量%未満では紫外線カットによる耐候性の向上の効果が不十分になり、また20重量%を超えると白く濁ってくる。
【0110】
ここで、紫外線吸収剤は一般に紫外線を吸収して熱に変換する働きがあり、有機系紫外線吸収剤は長期の間にこの働きは小さくなるために寿命がある。これに対して無機系紫外線吸収剤の寿命は半永久的であり、紫外線吸収剤としては微粒子酸化亜鉛や微粒子酸化チタンのような無機系紫外線吸収剤を用いるのが好ましい。しかし、微粒子酸化亜鉛や微粒子酸化チタンはシリコーン系コーティング剤(1)あるいは(2)に対する分散性が悪く、凝集して塗膜が白く濁り、この結果、紫外線カットの効果が極端に低下するおそれがある。また微粒子酸化亜鉛や微粒子酸化チタンの粉体にはいずれも光触媒作用があり、耐候性の低いアクリル樹脂やアルキッド樹脂などを用いる場合、樹脂自身が劣化して長期保存安定性が得られない。このために溶剤に微粒子酸化亜鉛や微粒子酸化チタンを分散して使用することが考えられるが、微粒子酸化亜鉛や微粒子酸化チタンは溶剤中で沈降が早く、この方法で分散性を高めることは難しい。
【0111】
一方、上記の(G)のオルガノシランのシリカ分散オリゴマー溶液に用いる一般式(RSiX4−nで表される加水分解性オルガノシランには微粒子酸化亜鉛や微粒子酸化チタンを容易に分散させることができ、この分散液は透明性に優れ、長期貯蔵安定性にも優れている。そこでこの加水分解性オルガノシランに微粒子酸化亜鉛や微粒子酸化チタンを添加して分散させた状態で使用するのが好ましい。加水分解性オルガノシランに微粒子酸化亜鉛や微粒子酸化チタンを直接添加する他に、(RSiX4−nの加水分解性オルガノシランをコロイド状シリカ中で部分加水分解して調製した(G)のオルガノシランのシリカ分散オリゴマー溶液に微粒子酸化亜鉛や微粒子酸化チタンを添加して分散させるようにしてもよく、微粒子酸化亜鉛や微粒子酸化チタンを分散させたこのシリカ分散オリゴマー溶液をシリコーン系コーティング剤(1)あるいは(2)に添加することによって、微粒子酸化亜鉛や微粒子酸化チタンを配合したコーティング剤を調製することができる。この場合、微粒子酸化亜鉛や微粒子酸化チタンの一次粒子(凝集していない粒子)の粒径は0.01μm〜0.5μmのものであることが好ましく、(G)のオルガノシランのシリカ分散オリゴマー溶液100重量部に対して微粒子酸化亜鉛や微粒子酸化チタンは200重量部程度まで分散させることが可能である(200重量部を超えると増粘が激しくなって攪拌不能になる)。上記の分散はサンドミルやボールミル、ペイントシェーカーなど一般的な混合装置を用いておこなうことができる。またこの際に耐候性が落ちないレベルで添加助剤やフィラーを添加してもよい。
【0112】
上記の有機質系塗料や無機質系塗料の塗布は、刷毛塗り方式、浸漬方式、スプレー塗布方式、ロールコート方式、ベル方式、フローコート方式、カーテンコート方式、ナイフコート方式など各種の方式で行なうことができるが、均一な厚みの塗膜を容易に得るために、スプレー塗布方式、ロールコート方式、そして回転カップを用いたベル方式のいずれかの方式で塗布を行なうのが好ましい。このように塗膜を均一な厚みで形成することによって、ムラのない塗膜の破壊伸び率を得ることができるものである。また各塗膜の膜厚は特に限定されるものではないが、有機塗膜12の膜厚は10〜200μm、無機塗膜2の膜厚は2〜15μmの範囲が好ましい。
【0113】
このように、基材1の表面に有機塗膜12と無機塗膜2を塗装した後、無機塗膜2の表面に金属酸化物粒子3を付着させて金属酸化物粒子3の層を形成する。金属酸化物粒子3としては、無機塗膜2の表面を親水性にする作用を有するものであればよく、特に限定されるものではないが、酸化チタン(TiO)や二酸化ケイ素(SiO)の粒子が好ましい。酸化チタンや二酸化ケイ素は表面を親水性にする作用が高く、防汚性に優れるために好ましいものであり、特に酸化チタンは抗菌作用もあって、表面にカビや藻などが発生することを防ぐ効果も有するものである。
【0114】
金属酸化物粒子3として酸化チタンを用いる場合、一次粒子径が20〜30nmの平均粒子径を有するものがこのましい。尚、平均粒子径はSEMで拡大観察をして粒子径を測定し、この粒子径から算出したものである。従来、光触媒として使用される酸化チタンの平均粒子径は10nm以下が一般的であるが、このような粒子径の小さい酸化チタンの粒子は塗膜に埋もれて表面に十分に露出せず、酸化チタンの作用を塗膜の表面で発揮させることが不十分である。一方、粒子径が20nm以上であると、塗膜の表面への酸化チタンの粒子の頭だしが大きくなり、酸化チタンを塗膜表面に大きく露出させることができ、酸化チタンによる光触媒作用を十分に発揮させることができるものである。このため、塗膜表面での酸化チタンと水や、有機物、NOx成分などとの接触面積が大きくなり、親水化速度を高めて有機物、NOx成分などの分解性を高めることができ、汚れの付着防止の効果を高く得ることができると共に、抗菌作用によってカビ・藻の発生防止の効果を高く得ることができるものである。しかし、酸化チタンの平均粒子径が30nmを超えると、酸化チタン粒子の比表面積が小さくなって、却って塗膜表面での露出面積が小さくなり、酸化チタンによる光触媒作用が逆に低下する傾向を示す。このため、酸化チタンの平均粒子径は20〜30nmの範囲が好ましいものである。
【0115】
また酸化チタンとして、アナタース型の結晶化度が高いものを用いるのが好ましい。光触媒として使用される酸化チタンは、非晶質のたね結晶を450℃程度の温度をかけてアナタース型の結晶に相転移して作製されるが、一般に粒径が20nm未満の微粒子の酸化チタンはアナタース型結晶の成長が不十分であって非晶質な部分が多く残る。これに対して粒径が20nm以上のものはアナタース型の結晶の割合が多くなり、アナタース型の結晶化度が高いものを入手することが容易になるものである。ここで、X線解析によりアナタース型の結晶を示す20(2θdeg)のピーク強度が高いものがアナタース型の結晶化度が高いと判断されるが、アナタース型の結晶化度が高いか低いかは、DTA(示差熱分析)測定で容易に判定することができる。すなわち、アナタース型の結晶は400〜500℃の間の加熱で生成されるので、アナタース型の結晶化度の低い酸化チタンをDTA測定すると、400〜500℃の範囲で発熱ピークが出るが、アナタース型の結晶化度が高い酸化チタンをDTA測定する場合には、400〜500℃の範囲に発熱のピークが表れない。そこで本発明ではDTA測定において400〜500℃の範囲に発熱のピークがない酸化チタンを用いるようにしているものである。またアナタース型の結晶化度が高い酸化チタンは、触媒活性が高く、紫外線の照射量が少ない条件下でも高い光触媒作用を発揮する。従って、家屋の北面など日射量の少ない場所で用いても、酸化チタンによる光触媒作用を高く発揮させることができるものであり、親水化速度を高めて有機物、NOx成分などの分解性を高めることができ、汚れの付着防止の効果を高く得ることができると共に、抗菌作用によってカビ・藻の発生防止の効果を高く得ることができるものである。
【0116】
そして、無機塗膜2の表面に金属酸化物粒子3を付着させるにあたって、本発明では、金属酸化物粒子3を分散し且つバインダーを含まない分散液を調製し、この分散液を無機塗膜2の表面に印刷することによって行なうものである。分散液にはこのように樹脂分などのバインダーを含まないものであり、例えば水などの揮発性分散媒に金属酸化物粒子3を分散させることによって分散液を調製することができるものである。分散液には水などの揮発性分散媒に他の成分の液体を含んでいてもよく、例えば水に対して、グリセリンを20〜30質量%、ジエチレングリコールを10質量%以下、ブチルカルビトールを10質量%以下、の配合量で必要に応じて配合することができる。
【0117】
このように金属酸化物粒子3を分散した分散液を無機塗膜2の表面に印刷すると、分散液にはバインダーが含有されていないので、水などの揮発性分散媒が揮発した後に、無機塗膜2の表面に金属酸化物粒子3のみが残り、図1(a)に示すように、バインダーで被覆されることなく、露出した状態で無機塗膜2の表面に金属酸化物粒子3を付着させることができるものである。従って、金属酸化物粒子3による無機塗膜2の表面を親水化する作用を十分に発揮させることができるものであり、無機塗膜2の表面の防汚性を高めることができるものである。
【0118】
ここで、金属酸化物粒子3を分散した分散液の印刷は、無機塗膜2の無機質系塗料が未硬化状態のときに行なうのが好ましい。すなわち、無機質系塗料を塗布して無機塗膜2を形成するにあたって、無機質系塗料が未硬化状態のときは、無機塗膜2の表面は粘着性があり、この粘着性によって図1(b)に示すように金属酸化物粒子3を無機塗膜2の表面に付着させて固定することができるものであり、バインダーを用いる必要なく、無機塗膜2の表面に金属酸化物粒子3を強固に付着させることができるものである。
【0119】
また、金属酸化物粒子3を分散した分散液において、金属酸化物粒子3を分散する分散媒として水を用いる場合、無機塗膜2を形成する無機質系塗料には溶媒として親水性の有機溶媒を用いるのが好ましい。この親水性の有機溶媒としては、既述のメタノール、エタノール、イソプロパノール、n−ブタノール、イソブタノール等の低級脂肪族アルコール類など、アルコールを使用することができる。
【0120】
このように、水に金属酸化物粒子3を分散した分散液を用いると共に、親水性の有機溶媒を含有する無機質系塗料を用いることによって、無機質系塗料と分散液との馴染みが良好になる。このため、金属酸化物粒子3を分散した分散液を無機塗膜2の表面に均一に塗布することができ、無機塗膜2の表面に金属酸化物粒子3を均一に付着させることができるものであり、金属酸化物粒子3による親水性化の効果をより高く得ることができるものである。
【0121】
金属酸化物粒子3を分散した分散液を無機塗膜2の表面にスプレー塗装やローコート塗装などすることも可能であるが、これらの塗装法では薄い膜厚で塗布することが困難であって、高価な金属酸化物粒子3の消費量が多くなる。このため本発明では、薄い膜厚で塗布することが可能な印刷法を用いるものである。そして金属酸化物粒子3を分散した分散液を無機塗膜2の表面に印刷する方法としては、インクジェット印刷、グラビアオフセット印刷、フレキソ印刷など、任意の方法を採用することができるが、なかでもインクジェット印刷やグラビアオフセット印刷が好ましい。
【0122】
インクジェット印刷は、ノズルヘッドに設けた噴射ノズルからインクを制御しながら噴射して印刷を行なうものであり、基材1の表面の任意の部分に任意のパターンでインクを噴射して印刷することができるものであり、特にノズルヘッドの噴射ノズルからインクを噴射する制御は、基材1ごとに設定することが可能であるので、基材1ごとに異なるパターンで印刷することが可能になるものである。さらにインクジェット印刷では、ノズルヘッドから噴射させたインクを基材1の表面に飛ばして付着させるようにしているので、基材1の表面に非接触で印刷を行なうことができるものであり、基材1に複雑な凹凸模様があっても、凸部や凹部にそれぞれノズルヘッドから噴射させたインクを塗着させて塗装を施すことができるものであり、凹凸模様に同調したパターンで印刷を行なうことが容易になるものである。
【0123】
インクジェット印刷はこのように優れた印刷法であるが、金属酸化物粒子3を分散した分散液にバインダーが含まれていると、このバインダーがノズルヘッド内で固化して噴射ノズルを詰まらせるおそれがあり、バインダーを含有する分散液をインクジェット印刷することは不可能である。一方、本発明では金属酸化物粒子3を分散した分散液にバインダーが含まれていないので、ノズルヘッドの噴射ノズルを詰まらせるようなことがなく、インクジェット印刷することが可能になるものであり、表面が凹凸に形成される建材1に任意のパターンで金属酸化物粒子3を付着させることができるものである。
【0124】
また、グラビアオフセット印刷は、図2(a)に示すように、凹版として形成されるグラビア版ロール15と、ゴムロールで形成される印刷ロール16を用いて行なわれるものであり、インクをグラビア版ロール15に供給し、余分なインクをドクターロール17で掻き落した後、インクをグラビア版ロール15から印刷ロール16に転写し、印刷ロール16の表面に接して送られる基材1の表面に、印刷ロール16の表面のインクを移して印刷するようにしたものである。
【0125】
そして金属酸化物粒子3を分散媒aに分散した分散液Aをインクとして用いることによって、基材1の無機塗膜2の表面にグラビアオフセット印刷することができるものである。ここで、金属酸化物粒子3を分散した分散液Aにおいて、金属酸化物粒子3は分散媒a中を沈降し易いので、グラビア版ロール15の表面に供給された分散液Aにおいては分散媒a中を金属酸化物粒子3が沈んでおり、図2(b)に示すように金属酸化物粒子3はグラビア版ロール15の表面を底として分散液Aの底部側に偏移する傾向がある。次にこの分散液Aがグラビア版ロール15から印刷ロール16に転写されると、分散液Aは反転した状態でグラビア版ロール15から印刷ロール16の表面に移行するので、印刷ロール16の表面の分散液Aにおいて金属酸化物粒子3は表面側に偏移した状態で存在することになる。このため、分散液Aが印刷ロール16から基材1の無機塗膜2の表面に移って印刷されると、分散液Aは再度反転した状態で無機塗膜2の表面に印刷されるので、分散液A中の金属酸化物粒子3は無機塗膜2の表面の側に偏移することになって、図2(b)のように金属酸化物粒子3は無機塗膜2の表面に接触し易くなるものであり、無機塗膜2の表面に金属酸化物粒子3を確実に付着させることができるものである(図2(b)において有機塗膜12の図示は省略している)。
【0126】
図3は、表面に凹凸柄模様を形成した基材1を用いる場合の実施の形態を示すものであり、凹凸柄模様は凸部4と、凸部4間の目地状の凹部5とから形成されている。そしてこのような凹凸柄模様を形成した基材1の無機塗膜2の表面に金属酸化物粒子3を分散した分散液を印刷するにあたって、凸部4の表面に印刷をすると共に凹部5には印刷をしないようにしてある。従って図3に示すように金属酸化物粒子3は凸部4の表面に付着し、凹部5の表面には金属酸化物粒子3は付着していない(図3において無機塗膜2や有機塗膜12の図示は省略し、金属酸化物粒子3は層として図示している)。
【0127】
このように凹凸柄模様の凸部4には金属酸化物粒子3が付着しているので、金属酸化物粒子3による親水化作用で、凸部4には汚れが発生し難いが、凹部5には金属酸化物粒子3が付着していないので、凹部5には汚れが発生し易い。
【0128】
ここで、基材1を塗装して作製される建材Bを外壁材などとして施工する際に、隣り合う建材Bの接続部間には防水のためにシーラーなどの防水材19が充填される。そしてこの防水材19の表面には汚れが付着し易いが、建材Bの表面の全面に金属酸化物粒子3が付着して、建材Bの全面で汚れ難くなっているときには、建材B間の防水材19の汚れが目立ち易くなって、却って外観を損ねるおそれがある。一方、上記のように建材Bの凹凸柄模様の凹部5には金属酸化物粒子3を付着させず、凹部5に汚れが発生し易くなるようにしておけば、防水材19の汚れが凹部5の汚れに紛れ込み、目立ち難くなるものであって、外観低下を防ぐことができるものである。
【図面の簡単な説明】
【0129】
【図1】本発明の実施の形態の一例を示すものであり、(a)は概略図、(b)は一部の拡大概略図である。
【図2】グラビアオフセット印刷を示すものであり、(a)(b)はそれぞれ概略図である。
【図3】本発明の実施の形態の他の一例を示す概略断面図である。
【図4】従来例を示す一部の拡大概略図である。
【符号の説明】
【0130】
1 基材
2 無機塗膜
3 金属酸化物粒子
4 凸部
5 凹部

【特許請求の範囲】
【請求項1】
基材の最表面に無機質系塗料を塗装して無機塗膜が形成された建材において、金属酸化物粒子を分散し且つバインダーを含まない分散液を無機塗膜の表面に印刷することによって、無機塗膜の表面に金属酸化物粒子が付着していることを特徴とする建材。
【請求項2】
金属酸化物粒子が、TiOとSiOの少なくとも一方の粒子であることを特徴とする請求項1に記載の建材。
【請求項3】
分散液の印刷が、インクジェット印刷とグラビアオフセット印刷のいずれかで行なわれることを特徴とする請求項1又は2に記載の建材。
【請求項4】
分散液の印刷は、無機塗膜の無機質系塗料が未硬化状態のときに行なわれることを特徴とする請求項1乃至3のいずれか1項に記載の建材。
【請求項5】
上記の無機質系塗料は親水系の溶剤を含有するものであり、上記の金属酸化物粒子を分散し且つバインダーを含まない分散液は、金属酸化物粒子を分散した水であることを特徴とする請求項1乃至4のいずれか1項に記載の建材。
【請求項6】
基材の表面に凹凸柄模様が形成されており、凹凸柄模様の凸部のみに印刷して金属酸化物粒子が付着していることを特徴とする請求項1乃至5のいずれか1項に記載の建材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−77620(P2010−77620A)
【公開日】平成22年4月8日(2010.4.8)
【国際特許分類】
【出願番号】特願2008−244891(P2008−244891)
【出願日】平成20年9月24日(2008.9.24)
【出願人】(503367376)クボタ松下電工外装株式会社 (467)
【Fターム(参考)】