説明

形状測定装置

【課題】被測定物に対する面方向の分解能や測定位置の変更を容易に行うことができる形状測定装置を提供する。
【解決手段】光源10と、光源10からの光を2つの光束に分割して、一方の光束を被測定物Tに照射し、他方の光束を参照ミラー40に照射させると共に、これらから反射された光を合波させるスプリッタ20と、スプリッタ20によって合波された光により得られる画像を撮像するCCD50と、2つの傾き状態に制御される複数の微小ミラーを有するDMDと、複数の微小ミラーを制御して被測定物Tや参照ミラー40への照射光等を絞り込み、その状態で撮像された画像に基づき、測定点の高さを測定する制御手段と、を備えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、二光束干渉計の原理を用いた形状測定装置に関するものである。
【背景技術】
【0002】
従来、二光束干渉計の原理を用いた形状測定装置が知られている(特許文献1参照)。かかる装置では、撮像素子の受光面に結像した干渉縞を撮像し、得られた画像を解析して、被測定物の立体形状を算出する。
【0003】
このような装置においては、被測定物への照射光を絞る(スポット径を小さくする)ほど、高さの測定精度が高くなる。すなわち、被測定物への照射光を絞って、被測定物に対する面方向の分解能を高めるほど、高さの測定精度が高くなる。特に、被測定物において面方向に対する高さ方向の変化が大きな部位では、照射光を十分に絞らないと測定誤差が大きくなってしまう。
【0004】
一方、照射光を絞れば絞るほど、測定個所が増えてしまい、被測定物全体の3次元形状を測定するのに要する時間が長くなってしまう。従って、測定精度を高めつつ、測定効率を高くするためには、被測定物の形状に応じて、測定点毎に照射光の絞り(面方向の分解能)を変える必要がある。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平11−108625号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の形状測定装置においては、被測定物に対する面方向の分解能を変えるのに、手作業や機械的な動作などが必要となり、測定作業が面倒であったり、測定時間が長時間になったりしていた。
【0007】
本発明の目的は、被測定物に対する面方向の分解能の変更を容易に行うことができる形状測定装置を提供することにある。
【課題を解決するための手段】
【0008】
本発明は、上記課題を解決するために以下の手段を採用した。
【0009】
すなわち、本発明の形状測定装置は、
発光手段と、
該発光手段からの光を2つの光束に分割して、一方の光束を被測定物に照射し、他方の光束を参照ミラーに照射させる分割手段と、
照射された前記被測定物から反射された光と、照射された前記参照ミラーから反射された光とを合波させる合波手段と、
該合波手段によって合波された光により得られる画像を撮像する撮像手段と、
2つの傾き状態に制御されることにより、入射された光の反射光の向きを2方向に切り替え可能な複数の微小ミラーを有し、かつ各微小ミラーは、一方の傾き状態の場合には前記発光手段から前記撮像手段に至る光路を形成し、他方の傾き状態の場合には反射光を当該光路から外すように構成されている光路切り替え手段と、
前記複数の微小ミラーの一部を前記一方の傾き状態となるように制御することで、前記
撮像手段に至る光束を絞り込み、その状態で撮像された画像に基づき、測定点の高さを測定する制御手段を備えることを特徴とする。
【0010】
本発明によれば、制御手段によって、複数の微小ミラーの一部を前記一方の傾き状態となるように制御することで、被測定物や参照ミラーや撮像手段に至る光束の絞りや位置を変更することができる。これにより、被測定物に対する面方向の分解能や測定位置の変更を容易に行うことができる。
【0011】
ここで、前記発光手段から前記分割手段への入射光を平行光とする第1光学手段と、
前記被測定物への入射光を集光させ、かつその反射光を平行光とする第2光学手段と、
前記撮像手段への入射光を集光させる第3光学手段と、が設けられており、
前記光路切り替え手段は平行光が通る光路上に設けられているとよい。
【0012】
この構成を採用すれば、光路切り替え手段によって、集光されていない平行光中の光を複数の微小ミラーの一部で光路を切り替えて、光束の絞りを行うことができるため、光束全体に対する絞りを非常に小さくすることができ、上記分解能を極めて高くすることができる。
【0013】
前記制御手段は、前記被測定物における面方向に対する高さ方向の変化が大きな部位ほど前記撮像手段に至る光束を絞る絞り制御モードを有するとよい。
【0014】
これにより、測定精度を高めつつ、測定効率を高めることができる。
【0015】
前記制御手段は、前記被測定物における所定領域全体の干渉縞を測定する予備測定を行った後に、該測定結果に基づいて、前記所定領域内の各部位を、隣り合う干渉縞の間隔が狭いほど前記撮像手段に至る光束を絞りながら測定する予備測定後絞り制御モードを有するとよい。
【0016】
これにより、被測定物が未知の形状であっても、予備測定によって、高低差の大きな部位と小さな部位を大雑把に測定できる。そして、その後、当該測定結果に基づいて、測定位置に応じて、光束の絞りが変更されるので、測定精度を高めつつ、測定効率を高めることができる。
【0017】
更に、前記制御手段は、前記撮像手段に至る光束を複数に分けて絞ることで複数個所を同時に測定する複数個所測定制御モードを有するとよい。
【0018】
これにより、測定効率をより一層高めることができる。
【0019】
また、本発明の形状測定方法は、
発光手段と、
該発光手段からの光を2つの光束に分割して、一方の光束を被測定物に照射し、他方の光束を参照ミラーに照射させる分割手段と、
照射された前記被測定物から反射された光と、照射された前記参照ミラーから反射された光とを合波させる合波手段と、
該合波手段によって合波された光により得られる画像を撮像する撮像手段と、
2つの傾き状態に制御されることにより、入射された光の反射光の向きを2方向に切り替え可能な複数の微小ミラーを有し、かつ各微小ミラーは、一方の傾き状態の場合には前記発光手段から前記撮像手段に至る光路を形成し、他方の傾き状態の場合には反射光を当該光路から外すように構成されている光路切り替え手段と、
を備える形状測定装置を用いて、
前記複数の微小ミラーの一部を前記一方の傾き状態となるように制御することで、前記撮像手段に至る光束を絞り込み、その状態で撮像された画像に基づき、測定点の高さを測定することを特徴とする。
【0020】
なお、上記各構成は、可能な限り組み合わせて採用し得る。
【発明の効果】
【0021】
以上説明したように、被測定物に対する面方向の分解能や測定位置の変更を容易に行うことができる。
【図面の簡単な説明】
【0022】
【図1】本発明の実施形態に係る形状測定装置の概略構成図である。
【図2】CCDにおけるある画素の信号強度の変化を示したグラフである。
【図3】本発明の実施形態に係る形状測定装置の構成の一部を示す図である。
【図4】本発明の実施形態に係る形状測定装置における光束の絞り方を説明する図である。
【図5】本発明の実施形態に係る形状測定装置における絞り制御モードの説明図である。
【図6】本発明の実施形態に係る形状測定装置における予備測定後絞り制御モードの説明図である。
【図7】本発明の実施形態に係る形状測定装置において大きな測定対象を測定する場合の説明図である。
【発明を実施するための形態】
【0023】
以下に図面を参照して、この発明を実施するための形態を例示的に詳しく説明する。ただし、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0024】
(実施形態)
図1〜図7を参照して、本発明の実施形態に係る形状測定装置について説明する。なお、以下の説明において、適宜、被測定物Tへの照射光の光軸に直交する面内の所定方向(図1中上下方向)をX方向とし、同一面内のX方向に直交する方向(図1中、紙面に垂直な方向)をY方向とし、被測定物Tへの照射光の光軸方向(図1中左右方向)をZ方向とする。
【0025】
<形状測定装置の基本的な構成>
図1を参照して、本発明の実施形態に係る形状測定装置100の基本的な構成を説明する。本実施形態に係る形状測定装置100は、二光束干渉計の原理を用いた3次元形状測定装置である。この形状測定装置100は、発光手段としての光源10と、分割手段かつ合波手段としてのスプリッタ20と、被測定物Tを設置する設置台30と、参照ミラー40と、撮像手段としてのCCD50とを備えている。
【0026】
光源10としては、ハロゲンランプやLEDなどの白色光源を採用してもよいし、レーザ光源を用いても良い。白色光源の場合には、レーザ光源に比して集光しにくいため、X,Y方向の分解能が低いものの可干渉長さが短く、Z方向の分解能は高くなる。これに対して、レーザ光源の場合には、白色光源に比して可干渉長さが長いため、Z方向の分解能が低いものの、集光し易くX,Y方向の分解能が高くなる。従って、性能要求に応じて、適宜、白色光源かレーザ光源を選択すればよい。
【0027】
スプリッタ20は、ハーフミラーなどにより構成される。そして、このスプリッタ20は、入射された光を2つの光束に分割して、一方の光束を被測定物Tに照射し、他方の光束を参照ミラー40に照射させる分割手段としての機能を備えている。また、スプリッタ20は、照射された被測定物Tから反射された光と、照射された参照ミラー40から反射された光とを合波させる合波手段としての機能を備えている。このスプリッタ20によって合波された光は、CCD50に導かれ、被測定物Tからの光と参照ミラー40からの光とが合波し干渉した光の強度が検出される。
【0028】
設置台30では、その設置面に被測定物Tが固定される。また、この設置台30は、X方向に伸びる第1軸31,Y方向に伸びる第2軸32及びZ方向に伸びる第3軸33に沿って移動可能に構成されている。すなわち、設置台30は、面方向(光軸に垂直な方向)と高さ方向(光軸方向)に3次元的に移動可能に構成されている。また、参照ミラー40は、伸縮機構41によって、光軸方向に移動可能に構成されている。なお、後述のように、被測定物Tの高さ(Z方向の高さ)を測定するためには、スプリッタ20により分割後、合波されるまでの被測定物T側の光路長と参照ミラー40側の光路長とを相対的に変化させることができればよい。すなわち、被測定物T又は参照ミラー40を光軸に沿って移動させることができればよい。従って、参照ミラー40のみ光軸方向に移動可能に構成して、設置台30については光軸方向(Z方向)には移動できない構成を採用してもよいし、設置台30について上記の通り3次元的に移動可能に構成し、参照ミラー40は固定させてしまってもよい。ただし、測定精度を高めるためには、被測定物Tを固定させたまま、参照ミラー40のみを移動させたほうがよい。
【0029】
<形状測定方法>
以上のように構成された形状測定装置100による形状測定方法について、図1及び図2を参照して説明する。光源10からの光は、第1光学手段としての第1レンズ(コリメータレンズ)61によって平行光とされた状態でスプリッタ20に入射する。そして、スプリッタ20によって分割された一方の光束は被測定物Tに向かい、他方の光束は参照ミラー40に向かう。一方の光束は、第2光学手段としての第2レンズ62によって集光された状態で被測定物Tに照射され、その反射光が第2レンズ62によって、再び平行光となった状態でスプリッタ20に入射する。他方の光束は、参照ミラー40によって反射されて、スプリッタ20に入射する。このように、被測定物Tからの反射光と参照ミラー40からの反射光がスプリッタ20で合波され、第3光学手段としての第3レンズ(集光レンズ)63により集光されてCCD50に導かれ、被測定物Tからの光と参照ミラー40からの光とが合波し干渉した光の強度が検出される。
【0030】
次に、被測定物Tの高さの求め方を説明する。スプリッタ20から被測定物Tに照射され、その反射光がスプリッタ20に至るまでの光路長と、スプリッタ20から参照ミラー40に照射され、その反射光がスプリッタ20に至るまでの光路長とを相対的に変化させた場合、スプリッタ20によって合波された光の強度は変化する。そして、これらの光路長が等しいときに、光の強度が最大となる。従って、光の強度が最大となったときの被測定物Tの位置(設置台30の位置)及び参照ミラー40の位置(光軸方向の位置)から、被測定物Tの高さ(Z方向の高さ)を求めることができる。なお、被測定物Tのみを光軸方向に移動させる場合には、被測定物Tの位置(設置台30の位置)のみで被測定物Tの高さを求めることができ、参照ミラー40のみを光軸方向に移動させる場合には、参照ミラー40の位置のみで被測定物Tの高さを求めることができる。
【0031】
ところで、本実施例においては、後述する光路切り替え手段によって光源10からCCD50に至る間で光束の一部についての光路を切り替えることによって、CCD50に至る光束を絞り込んでいる。また、この光路切り替え手段によって切り替え対象とする光束の一部を他部に変えることで絞りの位置を変え、被測定物Tにおける測定点を変えること
ができる。ここで、測定点とは、面方向(光軸に垂直な方向)における測定位置をいう。この測定点を移動させながら、順次、被測定物Tにおける測定点での高さを求めていくことで、被測定物Tにおける面方向の全領域の高さを測定し、3次元形状を測定することができる。具体的には、上記の通り、面方向に測定点を移動させながらCCD50によって、上述した合波し干渉した光の強度を検出する。そして、画像処理手段55は、被測定物Tの各測定点におけるCCD50により得られた画像を解析し、被測定物Tの立体形状を算出する。また、算出された測定結果は、制御手段としてのコンピュータ75によって、形状データや寸法データとして出力される。
【0032】
ここで、本実施形態においては、面方向(X,Y方向)への測定点の移動は、デジタルマイクロミラーデバイス(以下、DMD70と称する)をコンピュータ75によって制御することにより行う。この詳細については、後述する。そして、上記の通り、被測定物T側の光路長と参照ミラー40側の光路長とを相対的に変化させることによって、被測定物Tの測定点における高さ(Z方向の高さ)を測定する。図2は参照ミラー40を静止させたまま、設置台30をZ方向に移動させた場合におけるCCD50におけるある画素の信号強度の変化を示したグラフである。このグラフにおいては、距離Zのときに、信号強度が最も高くなり、当該位置において干渉縞が現われている。これにより、この画素に対応する被測定物Tの測定点の表面の高さがZであることが分かる。
【0033】
そして、各測定点について被測定物Tの表面の高さを順次求めることによって、被測定物Tの形状を測定することができる。すなわち、コンピュータ75内の不図示の記憶媒体に測定用のフローを実行するプログラムを記憶させておくことで、被測定物Tの形状を測定することが可能となる。以下、測定フローの一例を説明する。ここでは、参照ミラー40を静止させたまま設置台30をZ方向に移動させることによって、被測定物T側の光路長と参照ミラー40側の光路長とを相対的に変化させる場合を示す。
【0034】
まず、設置台30を初期位置にセットする。そして、設置台30を一定間隔でZ方向にステップ送りさせながら、ステップ毎に所望の測定点の画像を取り込み、当該測定点に対応する画素のデータを画像処理手段55に設けられた不図示のメモリに蓄える。この画像の取り込み動作を、各測定点について行う。その後、画像処理手段55は、メモリに蓄えられた画像のデータから、各測定点における被測定物Tの表面の高さをそれぞれ算出する。このようにして、被測定物Tの形状を測定することができる。例えば、横軸を画素、縦軸を高さとするグラフによって、被測定物Tのある断面の形状をグラフ化することができる。
【0035】
<本実施形態に係る形状測定装置の特徴的な構成>
特に、図3及び図4を参照して、本実施形態に係る形状測定装置100における特徴的な構成である、デジタルマイクロミラーデバイスを配置した点について説明する。
【0036】
本実施形態に係る形状測定装置100においては、光源10からスプリッタ20に至るまでの第1光路R1、スプリッタ20から被測定物Tに至る第2光路R2、スプリッタ20から参照ミラー40に至る第3光路R3、またはスプリッタ20からCCD50に至る第4光路R4上の少なくとも1つの途中に、光路切り替え手段としてのDMD70を配置している。または、参照ミラー40を、DMD70で構成することもできる。
【0037】
DMD70自体の構成については、公知技術であるので、概略構成のみを簡単に説明する。DMD70は、制御手段としてのコンピュータ75からのオンオフ制御によって、2つの傾き状態に制御される多数の微小ミラー71を備えている。これらの微小ミラー71のそれぞれをオンオフ制御することによって、個々の微小ミラー71に入射される光を、それぞれ2方向に反射させることができる。これにより、それぞれの微小ミラー71毎に
、光路を切り替えることができる。
【0038】
図3はDMD70を、第1光路R1のうち、第1レンズ61よりも光の進行方向の下流側に配置する場合を示している。DMD70を、当該位置に配置する場合には、光源10からの光軸と、スプリッタ20に向かう光軸とが、例えば、90°で交わるように、光源10と第1レンズ61とスプリッタ20とをそれぞれ配置する。そして、DMD70に設けられた微小ミラー71を、例えばオンにしたときには、光源10からの光が微小ミラー71で反射されることで90°向きを変えて、スプリッタ20に向かう光路L1を形成するようにする。一方、微小ミラー71をオフにしたときには、微小ミラー71からの反射光が、スプリッタ20に向かわないようにする。図3中、点線で示す微小ミラー71、及び点線で示す光路L2は微小ミラー71をオフにした場合を示している。
【0039】
このように、DMD70における各々の微小ミラー71は、一方の傾き状態の場合には光源10からスプリッタ20(最終的にはCCD50)に至る光路L1を形成し、他方の傾き状態の場合には反射光を光路L1から外すように構成される。
【0040】
図3においては、DMD70を第1光路R1に配置する場合を示したが、DMD70は、第2光路R2,第3光路R3、または第4光路R4のいずれの位置に配置してもよい。これらの光路上に配置する場合には、第1光路R1に配置する場合と同様に、DMD70(微小ミラー71)に対して両側の光軸が交差する(例えば、90°で交わる)ように、各部材を配置する必要がある。これに対して、参照ミラー40をDMD70で構成する場合には、例えば、微小ミラー71が一方の傾き状態の場合には、入射光をそのまま180°反射させてスプリッタ20に向かうようにし、他方の傾き状態の場合にはスプリッタ20に向かわないようにすればよいので、図1に示す配置構成を採用できる。
【0041】
ここで、DMD70を第1光路R1に配置する場合には、微小ミラー71毎に、微小ミラー71が一方の傾き状態の場合には光源10からスプリッタ20に光を入射させる光路を形成し、他方の傾き状態には反射光を当該光路から外す(つまりスプリッタ20に入射させない)ようにすることが可能である。すなわち、微小ミラー71毎に、被測定物T及び参照ミラー40への光の入射の有無を選択することが可能である。また、DMD70を第2光路R2に配置する場合には、微小ミラー71毎に、微小ミラー71が一方の傾き状態の場合にはスプリッタ20から被測定物Tに光を入射させる光路を形成し、かつ他方の傾き状態の場合には反射光を当該光路から外すようにすることが可能である。すなわち、微小ミラー71毎に、被測定物Tへの光の入射の有無を選択することが可能である。また、DMD70を第3光路R3に配置する場合には、微小ミラー71毎に、微小ミラー71が一方の傾き状態の場合にはスプリッタ20から参照ミラー40に光を入射させる光路を形成し、かつ他方の傾き状態の場合には反射光を当該光路から外すようにすることが可能である。すなわち、微小ミラー71毎に、参照ミラー40への光の入射の有無を選択することが可能である。また、参照ミラー40をDMD70で構成する場合には、微小ミラー71毎に、微小ミラー71が一方の傾き状態の場合には反射光がスプリッタ20に至る光路を形成し、かつ他方の傾き状態の場合には反射光を当該光路から外すようにすることが可能である。すなわち、微小ミラー71毎に、スプリッタ20への反射光の有無を選択することが可能である。更に、DMD70を第4光路R4に配置する場合には、微小ミラー71毎に、微小ミラー71が一方の傾き状態の場合にはスプリッタ20からCCD50に至る光路を形成し、かつ他方の傾き状態の場合には反射光を当該光路から外すようにすることが可能である。すなわち、微小ミラー71毎に、CCD50への光の入射の有無を選択することが可能である。以上のように、DMD70をいずれかの光路上に配置することによって、各微小ミラー71が一方の傾き状態の場合には光源10からCCD50に至る光路を形成し、他方の傾き状態の場合には反射光を当該光路から外すようにすることが可能となる。
【0042】
本実施形態に係る形状測定装置100によれば、光路上にDMD70を配置する構成を採用し、各微小ミラー71をオンオフ制御することによって、光束の絞りや位置を変更することが可能となる。なお、第1光路R1にDMD70が配置された場合には被測定物T及び参照ミラー40への照射光が絞られ、第2光路R2にDMD70が配置された場合には被測定物Tへの照射光が絞られ、第3光路R3にDMD70が配置された場合には参照ミラー40への照射光が絞られ、参照ミラー40がDMD70で構成される場合には参照ミラー40からの反射光が絞られ、第4光路R4にDMD70が配置された場合にはCCD50への入射光が絞られることによって、それぞれ合波される光の光束が絞られる。図4は合波される光を絞った場合の一例を示したものである。
【0043】
図4(a)は、DMD70において、複数配列された微小ミラー71を模式的に示したものである。図中、Sで囲った範囲に微小ミラー71が配列されており、光はこの範囲Sに照射されるように構成されている。図中、白抜きの微小ミラー71aはオン状態(一方の傾き状態)のものを示し、斜線の入った微小ミラー71bはオフ状態(他方の傾き状態)のものを示している。この図示の例においては、範囲S1内の隣り合う16か所(4×4か所)の微小ミラー71a(ミラー群)をオンにした場合を示している。
【0044】
上記の通り、オンにした微小ミラー71aに入射される光のみがCCD50まで導かれるため、DMD70に入射された光のうち、範囲S1に絞られた光束のみが、CCD50まで導かれる。
【0045】
図4(b)は、CCD50に導かれる光束を模式的に示したものである。図4(b)において、SXで囲った範囲は、DMD70における全ての微小ミラー71がオンの状態で、DMD70に入射された光のうち、全ての光束が導かれた場合の光束の範囲を示している。また、図中白抜きの枠は、合波された光が導かれている光電変換素子51aを示し、斜線の入った枠は、合波された光が導かれていない光電変換素子51bを示している。図4(b)中、範囲SX1は、上記の範囲S1に絞られた光束が入射する範囲である。そして、CCD50に導かれた範囲SX1内の光電変換素子51aから送られる各データに基づいて、所望の測定点の高さが求められる。そして、オンにする微小ミラー71を、例えば、図4に示す矢印方向にずらしていくことで、測定点の位置をずらしていくことができる。なお、この図4に示す例においては、DMD70における微小ミラー71と、CCD50における画素とを、1対1で対応するようにしているが、必ずしも、1対1にする必要はない。
【0046】
形状測定装置100においては、上記の通り、CCD50に導かれる合波された光の強度から被測定物Tの高さ(測定点の高さ)を求めることになるが、合波された光の強度は光束全体の平均値で求めるため、光束の面積が小さいほど(つまり、光束を絞るほど)、測定精度が高くなる。従って、n×nか所の隣り合うnの微小ミラー71をオンにする場合において、nを小さくするほど測定精度を高くすることができる。
【0047】
<形状測定制御>
特に、図5〜図7を参照して、本発明の実施形態に係る形状測定装置100による形状測定制御について説明する。
【0048】
<<絞り制御モード>>
上記の通り、合波された光の強度は光束全体の平均値で求めるため、扁平な部位(面方向に対する高さ方向の変化が小さな部位)の高さを求める場合には、光束の面積は広くても良い。一方、急こう配な部位(面方向に対する高さ方向の変化が大きな部位)の高さを求める場合には、光束の面積を狭くしないと測定精度が低くなってしまう。この点につい
て、図5を参照して、より詳しく説明する。図5は被測定物Tが凸レンズT1の場合を示している。凸レンズT1の場合、その中心付近は扁平であるのに対して、端の付近は急こう配となる形状をしている。
【0049】
図5において、図中、S3,S4はCCD50に導かれる合波された光に対応する範囲を示している。凸レンズT1の中央の扁平な付近においては、比較的大きな範囲S3の光束に基づいて高さを測定しても、範囲S3内における凸レンズT1の表面の高さの変化が少ないため、高精度に高さを測定できる。これは、合波された光の強度のバラツキが範囲S3内において少ないからである。これに対して、仮に、同じ範囲S3で凸レンズT1の端の付近を測定した場合、図5(a)中、左側に示すように、範囲S3内における凸レンズT1の表面の高低差dHが大きいため、高さの測定精度が低くなってしまう。これは、合波された光の強度のバラツキが範囲S3内において大きくなってしまうからである。従って、図5(a)(b)に示すように、凸レンズT1の端の付近を測定する場合には、比較的小さな範囲S4の光束に基づいて高さを測定するのが望ましい。
【0050】
しかしながら、高さを測定する部位の光束を小さくすればするほど、測定精度は高くなるものの、測定箇所が増えてしまい、測定効率が低下してしまう。そこで、被測定物Tにおける面方向に対する高さ方向の変化が大きな部位ほどCCD50に至る合波された光の光束を絞るようにすることで、測定精度を高めつつ、測定効率を高めることができる。
【0051】
本実施形態に係るコンピュータ75においては、そのような制御モード(絞り制御モード)を備えている。この制御モードは、被測定物Tのおおよその形状が予め分かっている場合には、当該制御モードのみによる測定が可能である。例えば、上記のような凸レンズT1を量産する場合において、製造された凸レンズT1の形状を検査する場合などに効果的に用いることができる。
【0052】
このような場合には、凸レンズT1の面方向(X方向,Y方向)を順次走査しながら高さを測定する際に、凸レンズT1の端の付近ほど、小さな範囲の光束に基づき高さを測定し、中央付近ほど大きな範囲の光束に基づき高さを測定する制御を行うことができる。なお、凸レンズT1の全体を測定する必要がなく、予め定められた複数の箇所を測定すれば良いような場合には、各箇所について予め定められた範囲の光束に基づいて測定を行えばよい。
【0053】
ここで、DMD70における全ての微小ミラー71がオンの場合の合波された光の光束の範囲内に被測定物Tが納まる場合には、設置台30をX,Y方向に移動させることなく、微小ミラー71のオンオフ制御だけで、被測定物T全体の形状を測定することができる。
【0054】
<<複数個所測定制御モード>>
上記のように、被測定物Tのおおよその形状が予め分かっている場合には、複数個所を同時に測定することにより、測定効率をより高めることができる。すなわち、例えば、図5(b)に示すように、範囲S4だけでなく、範囲S41,S42,S43を同時に測定することで、測定効率を高めることができる。勿論、範囲S3も同時に測定してもよい。なお、凸レンズT1の全体を測定する必要がなく、予め定められた複数の箇所を測定すれば良いような場合には、一度に必要な個所の全てを測定することも可能である。
【0055】
<<予備測定後絞り制御モード>>
上記のように、被測定物Tのおおよその形状が予め分かっている場合には、測定する部位の形状に応じた光束の範囲を個々に予め定めることができる。しかし、被測定物Tの形状が未知の場合には、測定する部位の形状に応じて、光束の範囲を個々に予め定めること
ができない。ここでは、そのような場合において、予備測定を行うことで、被測定物Tのおおよその形状を測定した後に、上述した「絞り制御」や「複数個所測定制御」を行う場合について、特に図6を参照して説明する。なお、図6は測定対象の一例を示しており、同図(a)は側面図を示し、同図(b)は平面図を示したものである。
【0056】
この図6に示す被測定物T2は、全ての微小ミラー71をオンにした場合に、被測定物T2の全体を同時に観測できる程度の大きさのものである。また、この被測定物T2は、上方から見た形状が楕円形で、かつ、図中右側に偏った位置に最高点を有する山形状の物体である。
【0057】
DMD70における全ての微小ミラー71をオンにした状態で被測定物T2を観測する。すると、図6(b)に示すように、干渉縞Uを観測することができる。この干渉縞Uは、合波された光における光の強度が大きな位置に現われるもので、等高線に沿うような縞模様となる。なお、上記の通り、スプリッタ20と被測定物T2との間の往復の光路長と、スプリッタ20と参照ミラー40との間の往復の光路長とが等しいときに合波された光の強度が大きくなるが、これらの光路長の差が、光の波長の整数倍ずれた位置においても光の強度が大きくなり干渉縞Uが形成される。ただし、光路長の差が大きくなると、光の波長の整数倍ずれた位置でも干渉縞Uは形成され難い。このような場合には、被測定物T2または参照ミラー40のうちの少なくともいずれか一方を光軸方向に移動させることによって、被測定物T2全体に亘って、少なくともある時点においては干渉縞Uが観測されるようにするとよい。従って、図6(b)においては、6本の干渉縞Uを示しているが、これらは同時に現われる干渉縞Uである必要はない。例えば、これらの干渉縞Uは、被測定物T2または参照ミラー40のうちの少なくともいずれか一方を一定の速度で移動させた際において、あるタイミング毎に現われた干渉縞Uであってもよい。
【0058】
いずれにしても、図6(b)に示す干渉縞Uにおいて、干渉縞U同士の間隔が広い箇所(例えば図中V1)では、被測定物T2における面方向に対する高さ方向の変化が小さく、間隔が狭い箇所(例えば図中V2)では、被測定物T2における面方向に対する高さ方向の変化が大きい。従って、前者の場合には、CCD50に至る合波された光の光束の範囲は広くても良く、後者の場合には、その範囲を狭くする必要がある。
【0059】
以上のように、被測定物T2に形成される干渉縞を観測(測定)することで、干渉縞同士の間隔から被測定物T2のおおよその形状を認識することができる。従って、このような予備測定を行った後に、上述した「絞り制御」や「複数個所測定制御」を行うことによって、測定精度を高めつつ、測定効率を高めることができる。なお、被測定物T2全体を順次走査しながら各々の測定点の高さを順次測定する場合には、測定点の位置を変更する度に、上記予備測定結果に基づいて、測定点の面積(つまりオンにする隣り合う微小ミラー71の数)を変更させるように制御すればよい。
【0060】
なお、上記においては、説明の便宜上、縞模様を実際に観測する必要があるかのごとく説明したが、実際の装置においては、コンピュータ75によって、縞模様が形成される箇所を認識できればよく、画像として縞模様を観測する必要はない。
【0061】
<<設置台移動制御モード>>
被測定物Tが、全ての微小ミラー71をオンにした場合に、被測定物Tの全体を同時に観測できる程度の大きさの場合には、上記の「絞り制御」、「複数個所測定制御」及び「予備測定後絞り制御」は、いずれも微小ミラー71のオンオフ制御だけで実行することができる。しかしながら、被測定物Tが上記の場合よりも大きな場合には、設置台30を面方向に移動させることによって、被測定物Tを面方向に移動させる必要がある。そのような場合について、図7を参照して説明する。
【0062】
被測定物T3は、全ての微小ミラー71をオンにしても、観測できない箇所ができてしまうような大きな物体である。このように大きな被測定物T3を測定する場合には、図示のように、範囲W1(実線の囲み)分だけ測定した後に、設置台30の移動により被測定物T3を移動させて範囲W2(一点鎖線の囲み)分を測定し、その後範囲W3(点線の囲み)分を測定するというように測定範囲を順次移動させる必要がある。なお、図中、W1,W2,W3は、いずれも全ての微小ミラー71をオンにした場合におけるCCD50に導かれる合波された光の光束の範囲を示している。
【0063】
ここで、測定範囲を移動させる場合には、図示のように、既に測定した範囲と次に測定する範囲の一部が重なるようにすることで、より高精度に測定することができる。
【0064】
以上のように、本実施形態においては、コンピュータ75は複数の制御モードを有している。そして、被測定物Tが既知の形状の場合には、「絞り制御モード」、「複数個所測定制御モード」及び「設置台移動制御モード」を適宜組み合わせた制御を行わせればよい。また、被測定物Tが未知の形状の場合には、「予備測定後絞り制御モード」の他、被測定物Tが大きな場合には、「設置台移動制御モード」を組み合わせればよい。
【0065】
<本実施形態に係る形状測定装置の優れた点>
本実施形態に係る形状測定装置100によれば、コンピュータ75によって、DMD70における複数の微小ミラー71のうちの一部の傾きを制御することで、CCD50に至る合波される光の光束の絞りや位置を変更することができる。これにより、被測定物に対する面方向の分解能や測定位置の変更を容易に行うことができる。なお、DMD70における複数の微小ミラー71の傾きを変更する制御は、μsecオーダーで変更可能なため、測定時間を非常に短くすることができる。
【0066】
また、複数の微小ミラー71の傾きを制御するだけで、光束を絞ることができ、上記分解能を容易に高めることができる。すなわち、従来、対物レンズ等によってのみ光束を絞ることができたのに対して、本実施形態の場合には、上記図4を参照して説明したように、所定の範囲内の微小ミラー71のみをオンにすることにより、CCD50まで導かれる合波される光の光束を絞ることができる。そして、オンにする微小ミラー71の数を少なくするほど、当該光束を絞ることが可能となる。ここで、光束を絞ることによって分解能を高めることができる理由について簡単に説明する。例えば、参照ミラー40をDMD70で構成した場合、上記の通り、参照ミラー40からの反射光に絞りを入れることが可能となる。この場合、被測定物Tからの反射光のうち干渉に寄与するのは参照ミラー40によって絞られた光束と重なる領域の光のみである。このため、上記の絞りがない場合に比べて、被測定物Tからの反射光の広がりを抑制することができる。これにより、CCD50により得られる画像のノイズを減らすことができ、その結果、当該画像の解像度を高めることができる。なお、第1光路R1〜第4光路R4のいずれかにDMD70を配置した場合でも、同様の作用効果を得ることができる。以上のことから、DMD70によって光束を絞ることにより、干渉が生じる範囲が狭くなる一方で、CCD50により得られる画像の解像度を高めることが可能となる。
【0067】
ここで、DMD70は、上記の通り、様々な位置に配置可能であるが、例えば、上記図3に示すように、平行光となる光路上に配置することで、集光部等に配置する場合に比して、合波される光の光束を、より絞ることが可能となる。つまり、一定の領域内に配置できる微小ミラー71の個数は制限されるので、平行光となる光路上に微小ミラー71を配置した方が、集光されるような光路上に配置するよりも、より多くの微小ミラー71を配置できる。従って、CCD50に導き得る合波される光の光全体のうち、微小ミラー71によって選択可能な光路数をより多くすることができ、CCD50まで導かれる合波され
る光の光束を、より絞ることが可能となる。つまり、X,Y方向の分解能をより高めることができる。
【0068】
また、本実施形態においては、上記の通り各種の制御モードを有しており、被測定物Tが既知の場合、未知の場合、大きな物体の場合、それぞれに対応して、最適な制御を行わせることで、測定精度を高めつつ、測定効率を高めることができる。
【0069】
<その他>
本実施形態においても、対物レンズ(第2レンズ62)を交換可能に構成することで、対物レンズの倍率を変更させて、測定エリアを変更できるようにしてもよい。また、本実施形態において、被測定物Tが透明の場合には、被測定物Tの裏面側についても合波される光の強度を測定可能であるので、被測定物Tの厚みを測定することもできる。なお、上記実施形態では、分割手段の機能と合波手段の機能とを兼ね備えているスプリッタ20を用いる場合を示したが、分割手段と合波手段をそれぞれ設ける構成を採用してもよい。
【符号の説明】
【0070】
10・・・光源,20・・・スプリッタ,40・・・参照ミラー,50・・・CCD,70・・・DMD,71・・・微小ミラー,75・・・コンピュータ,100・・・形状測定装置,T・・・測定対象

【特許請求の範囲】
【請求項1】
発光手段と、
該発光手段からの光を2つの光束に分割して、一方の光束を被測定物に照射し、他方の光束を参照ミラーに照射させる分割手段と、
照射された前記被測定物から反射された光と、照射された前記参照ミラーから反射された光とを合波させる合波手段と、
該合波手段によって合波された光により得られる画像を撮像する撮像手段と、
2つの傾き状態に制御されることにより、入射された光の反射光の向きを2方向に切り替え可能な複数の微小ミラーを有し、かつ各微小ミラーは、一方の傾き状態の場合には前記発光手段から前記撮像手段に至る光路を形成し、他方の傾き状態の場合には反射光を当該光路から外すように構成されている光路切り替え手段と、
前記複数の微小ミラーの一部を前記一方の傾き状態となるように制御することで、前記撮像手段に至る光束を絞り込み、その状態で撮像された画像に基づき、測定点の高さを測定する制御手段を備えることを特徴とする形状測定装置。
【請求項2】
前記発光手段から前記分割手段への入射光を平行光とする第1光学手段と、
前記被測定物への入射光を集光させ、かつその反射光を平行光とする第2光学手段と、
前記撮像手段への入射光を集光させる第3光学手段と、が設けられており、
前記光路切り替え手段は平行光が通る光路上に設けられていることを特徴とする請求項1に記載の形状測定装置。
【請求項3】
前記制御手段は、前記被測定物における面方向に対する高さ方向の変化が大きな部位ほど前記撮像手段に至る光束を絞る絞り制御モードを有することを特徴とする請求項1または2に記載の形状測定装置。
【請求項4】
前記制御手段は、前記被測定物における所定領域全体の干渉縞を測定する予備測定を行った後に、該測定結果に基づいて、前記所定領域内の各部位を、隣り合う干渉縞の間隔が狭いほど前記撮像手段に至る光束を絞りながら測定する予備測定後絞り制御モードを有することを特徴とする請求項1,2または3に記載の形状測定装置。
【請求項5】
前記制御手段は、前記撮像手段に至る光束を複数に分けて絞ることで複数個所を同時に測定する複数個所測定制御モードを有することを特徴とする請求項1〜4のいずれか一つに記載の形状測定装置。
【請求項6】
発光手段と、
該発光手段からの光を2つの光束に分割して、一方の光束を被測定物に照射し、他方の光束を参照ミラーに照射させる分割手段と、
照射された前記被測定物から反射された光と、照射された前記参照ミラーから反射された光とを合波させる合波手段と、
該合波手段によって合波された光により得られる画像を撮像する撮像手段と、
2つの傾き状態に制御されることにより、入射された光の反射光の向きを2方向に切り替え可能な複数の微小ミラーを有し、かつ各微小ミラーは、一方の傾き状態の場合には前記発光手段から前記撮像手段に至る光路を形成し、他方の傾き状態の場合には反射光を当該光路から外すように構成されている光路切り替え手段と、
を備え
る形状測定装置を用いて、
前記複数の微小ミラーの一部を前記一方の傾き状態となるように制御することで、前記撮像手段に至る光束を絞り込み、その状態で撮像された画像に基づき、測定点の高さを測定することを特徴とする形状測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2013−104672(P2013−104672A)
【公開日】平成25年5月30日(2013.5.30)
【国際特許分類】
【出願番号】特願2011−246393(P2011−246393)
【出願日】平成23年11月10日(2011.11.10)
【出願人】(000005186)株式会社フジクラ (4,463)
【Fターム(参考)】