説明

応力測定方法

【課題】等速ジョイント等の回転装置に発生する応力を、正確に測定する方法を提供する。
【解決手段】回転装置に発生する応力を、赤外線サーモグラフィを用いて測定する応力測定方法であって、まず、回転装置に荷重を付与する前の初期温度を測定した後、回転装置に繰り返し荷重変動を生じさせ、荷重変動の最初の1周期分の温度平均値、及び、最後の1周期分の温度平均値をそれぞれ求めて第1平均温度及び第2平均温度とする。これら第1平均温度及び第2平均温度の差(応力消去)に基づいて時間に対する温度勾配を求め、かつ、これと、初期温度とに基づいて摩擦熱の温度特性を決定する。そして、回転装置について測定された実温度分布から、温度特性に基づいて求めた温度を減じて、補正された温度分布を求め、応力分布を求める。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば等速ジョイントや軸受等の回転装置について、その応力を測定する方法に関する。
【背景技術】
【0002】
等速ジョイントは、ジョイント角が付与されたシャフト間において等速に回転駆動力を伝達できる継ぎ手として、自動車等の車両や産業機械の駆動系に用いられている。この等速ジョイントを最適設計するためには、回転駆動力を伝達している実用状態において、当該等速ジョイントを構成する部材にどのように応力が発生しているかを把握することが重要である。そのためには、例えば有限要素法(FEM)や境界要素法(BEM)等の数値解析により応力分布を求める方法が適用できる。また、歪みゲージを使用して、シャフトに加わる応力を測定するシステムも提案されている(例えば、特許文献1参照。)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−200953号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記の等速ジョイントを構成するのは複雑な形状の複数の部材であり、実用状態ではこれらの各部材の相互作用により回転駆動力を伝達している。そのため、数値解析において適切な負荷条件や境界条件を設定することは困難であり、結果的に、応力を正確に求めることは困難である。また、等速ジョイントは、強い回転駆動力を伝達するために高剛性の部材によって構成されていることが多い。このような高剛性の部材に歪みゲージを使用しても、歪み量が小さく、そのため、応力を正確に求めることは困難である。
【0005】
かかる従来の問題点に鑑み、本発明は、回転装置に発生する応力を正確に測定する方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
(1)本発明は、回転装置に発生する応力を、赤外線サーモグラフィを用いて測定する応力測定方法であって、
(a)前記回転装置に荷重を付与する前の初期温度を測定した後、前記回転装置に繰り返し荷重変動を生じさせ、荷重変動の少なくとも1周期分をそれぞれ含む第1周期及びそれ以降の第2周期について、それぞれ温度平均値を求めて第1平均温度及び第2平均温度とし、(b)前記第1平均温度及び前記第2平均温度の差に基づいて時間に対する温度勾配を求め、かつ、当該温度勾配及び前記初期温度に基づいて温度特性を決定し、(c)前記回転装置について測定された実温度分布から、前記温度特性に基づいて求めた温度を減じて、補正された温度分布を求め、(d)補正された温度分布に基づいて応力分布を求める、というものである。
【0007】
上記のような応力測定方法では、温度分布に基づいて応力分布を求めるので、数値解析のような条件設定の難しさが無く、また、微小な変位を測定する難しさも無い。温度分布には応力の他、摩擦熱も影響を与えるが、第1平均温度及び第2平均温度の差をとることによって、応力の影響を消去した、摩擦熱のみに基づく温度特性が得られる。この温度特性に基づいて実温度分布を補正することにより、摩擦熱の影響を排除することができる。
【0008】
(2)また、上記(1)の応力測定方法において、(a)〜(d)の工程は、赤外線サーモグラフィにおける画素ごとに行われるようにしてもよい。
この場合、画素ごとに摩擦熱の影響を排除する緻密な補正を行うことができる。
【0009】
(3)また、上記(1)又は(2)の応力測定方法において、第1周期は測定開始後の初期の1周期であり、第2周期は終期の1周期であってもよい。
この場合、摩擦熱による温度変化が直線的なときに、簡便に温度特性を導出することができる。
【0010】
(4)また、上記(1)又は(2)の応力測定方法において、第1周期及び第2周期は、時間的に互いに隣接する2周期であってもよい。
この場合、摩擦熱による温度勾配が時間によって変化する場合でも、正確に温度特性を導出することができる。
【発明の効果】
【0011】
本発明の応力測定方法によれば、回転装置に発生する応力を正確に測定することができ、最適設計が可能となる。
【図面の簡単な説明】
【0012】
【図1】回転装置としての等速ジョイントの軸方向断面図である。
【図2】等速ジョイントの赤外線応力測定を示す模式図である。
【図3】赤外線カメラ及びミラーの配置を示す模式図である。
【図4】外輪の着目箇所を示す模式図である。
【図5】外輪の着目箇所を示す説明図である。
【図6】応力測定方法の工程の流れを示す図である。
【図7】着目箇所の荷重変動を示すグラフである。
【図8】(a)は、(b)に示す荷重変動と同期して周期的に変動する温度を示す図、(c)は補正後の状態を示す図である。
【図9】補正の処理の概略を示すフローチャートである。
【図10】(a)は、等速ジョイントを回転させて応力測定する場合において、(b)に示す荷重変動と同期して周期的に変動する温度を示す図、(c)は補正後の状態を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態に係る応力測定方法について図面を参照しつつ説明する。
《等速ジョイントの構造》
まず、応力測定の対象となる等速ジョイントの構造について説明する。
図1は、回転装置としての等速ジョイント1の軸方向断面図である。本実施形態の等速ジョイント1は、固定式ボール型等速ジョイント(一般に「ツェッパ型等速ジョイント」とも称する。)であり、外輪10と、内輪20と、ボール30と、保持器40と、シャフト50とを備えている。
【0014】
外輪10は、カップ状に形成されており、一体的に形成されたシャフト10sが他の動力伝達軸(図示せず。)に連結される。外輪10の筒状部分の内周面には、外輪回転軸方向(図1の左右方向)に延びる外輪ボール溝11が、外輪回転軸の周方向に等間隔に6本形成されている。各外輪ボール溝11における外輪回転軸に直交する断面形状は、ほぼ円弧凹状をなしている。
【0015】
内輪20は、環状に形成され、外輪10の内側に配置されている。この内輪20の外周面には、内輪回転軸方向(図1の左右方向)に延びる内輪ボール溝21が、内輪回転軸の周方向に等間隔に6本形成されている。各内輪ボール溝21における内輪回転軸に直交する断面形状は、ほぼ円弧凹状をなしている。6本の内輪ボール溝21は、6本の外輪ボール溝11にそれぞれ対向するように位置している。また、内輪20の内周面には、内歯スプライン22が形成されている。この内歯スプライン22は、シャフト50の端部に形成された外歯スプライン51に圧入嵌合される。
【0016】
6個のボール30は、それぞれ、外側が外輪10の外輪ボール溝11に、内側が内輪20の内輪ボール溝21に嵌っている。そして、6個のボール30はそれぞれ、外輪ボール溝11及び内輪ボール溝21に沿って転動自在であるとともに、周方向には、外輪ボール溝11及び内輪ボール溝21に対して動きが規制されており、これによって、外輪10と内輪20とを周方向に互いにロックしている。従って、ボール30は、外輪10と内輪20との間で回転駆動力を伝達する役目を担っている。
【0017】
環状の保持器40は、外輪10の内周面と内輪20の外周面との間に配置されている。保持器40の内周面は、内輪20の最外周面にほぼ対応する部分球面凹状に形成されている。また、保持器40の外周面は、部分球面凸状に形成されている。そして、保持器40の内周面の球面中心と外周面の球面中心は、ジョイント回転中心に対して、軸方向に等距離だけそれぞれ反対側にオフセットさせてある。また、保持器40には、周方向に等間隔に6個の開口窓部41が形成されている。この開口窓部41は、外輪ボール溝11および内輪ボール溝21と同数形成されている。そして、それぞれの開口窓部41には、ボール30が嵌め込まれている。つまり、保持器40は、6個のボール30を保持している。
【0018】
上記シャフト50の他端部には、応力測定対象ではない補助等速ジョイント2(図2参照。)が組み付けられる。この補助等速ジョイント2は、シャフト50と後述する荷重付与部62を連結し、荷重付与部62による回転駆動力をシャフト50へ伝達可能としている。
【0019】
等速ジョイント1は、上述したような構成となっているが、応力測定を行う試験体としての等速ジョイント1の表面には、黒色塗料が塗布される。例えば、外輪10の表面に合成樹脂などからなる艶消し黒色の塗料が20〜25μm程度の厚さに塗布される。これにより、試験体の表面の熱放射率は、約0.94(黒体を1.00とした場合)となる。このように熱放射率を高くすることで、熱放射によって放出する熱量を多くすることができるので、試験体の温度変動をより確実に検出することができる。
【0020】
《応力測定装置》
次に、等速ジョイント1の外輪10を測定対象とした応力測定装置60について説明する。図2は、等速ジョイント1の赤外線応力測定を示す模式図である。基本的な応力測定の態様は3種類あり、具体的には、
(イ)外輪10を固定してシャフト50に回転トルクを付与することにより等速ジョイント1に静的ねじり負荷を繰り返しかける状態での応力測定、
(ロ)外輪10を固定してシャフト50に歳差運動をさせる状態での応力測定、
(ハ)外輪10を回転自在に保持してシャフト50から外輪10を回転駆動させる状態での応力測定、である。
なお、歳差運動とは、外輪10を固定してシャフト50をすりこぎ状あるいはコマ状に首振り回転させる運動であり、このときボール30はボール溝(11,21)を往復する。
【0021】
まず、上記(イ)及び(ロ)に関する応力測定装置60について、図2を参照して説明する。応力測定装置60は、主な構成要素として、軸支台61と、荷重付与部62と、赤外線カメラ63と、ロックインプロセッサ64と、演算部65(記憶部65mを含む。)と、表示部66とを備える。軸支台61は、等速ジョイント1の一端である外輪10をチャックにより把持している。すなわち、軸支台61は、外輪10が回転しないように固定している。
【0022】
荷重付与部62は、軸支台61の軸方向に対向して配置され、駆動モータ62aを介して等速ジョイント1の他端であるシャフト50を保持している。また、荷重付与部62は、等速ジョイント1に所定のジョイント角が付与された状態が維持されるように、外輪10及び内輪20の軸心を位置決めしている。これにより、外輪10と内輪20との位置関係が設定されている。軸支台61に固定された外輪10に対して、駆動モータ62aによりシャフト50から回転トルクを付与することができる。このような回転トルクの付与及び解放を繰り返し周期的に行うことにより、上記(イ)の態様で応力測定を行うことができる。
【0023】
一方、荷重付加部62は、等速ジョイント1の他端を保持した状態で、軸支台61の軸を中心に旋回可能な駆動装置(図示せず。)に支持されている。従って、荷重付加部62を旋回させれば、シャフト50をコマの軸のように歳差運動させることができる。こうして、軸支台61に固定された外輪10に対して歳差運動による荷重変動をかけ、上記(ロ)の態様で応力測定を行うことができる。
【0024】
赤外線カメラ63は、物体の表面から放出される赤外線を検出し、赤外線センサにより電気信号に変換し、画像信号として出力する。この赤外線カメラ63は、応力分布の測定対象である外輪10に向けて設置されている。ロックインプロセッサ64は、赤外線カメラ63により出力された画像信号から、対象とする熱弾性効果による温度変動の波形をロックイン処理する。すなわち、赤外線カメラ63により出力された画像信号から所定の周波数成分のみを抽出する。具体的には、荷重(応力)変動に同期する画像信号、または、荷重(応力)変動に同期する周波数を含む所定範囲の周波数帯の画像信号のみを抽出する。これにより、S/N比を向上させている。
【0025】
演算部65は、ロックインプロセッサ64により出力される画像信号を受信する。そして、この画像信号から得られる等速ジョイント1の温度変動の分布に基づき、等速ジョイント1の応力分布を算出する。表示部66は、この演算部65による算出結果をモニタ上に表示する。
【0026】
次に、上記(ハ)に関する応力測定装置60について、図2及び図3を参照して説明する。図3は、赤外線カメラ及びミラーの配置を示す模式図である。この応力測定装置60は、図2および図3に示すように、軸支台61と、荷重付与部62と、赤外線カメラ63と、ロックインプロセッサ64と、演算部65と、表示部66と、2枚のミラー67,68とを備える。なお、図2は上記(イ)及び(ロ)に関する説明と共用するが、一部の機能が異なる。
【0027】
軸支台61は、等速ジョイント1の一端である外輪10を、軸受を介して回転可能に支持している。すなわち、上記(イ)及び(ロ)の場合とは異なり、外輪10は固定されず、回転可能である。荷重付与部62は、軸支台61の軸方向に対向して配置され、駆動モータ62aを介して等速ジョイント1の他端であるシャフト50を保持している。また、荷重付与部62は、等速ジョイント1に所定のジョイント角が付与された状態が維持されるように、外輪10及び内輪20の軸心を位置決めしている。これにより、外輪10と内輪20の位置関係が設定されている。この荷重付与部62は、軸支台61に回転可能に支持された外輪10に対して、駆動モータ62aによりシャフト50から回転駆動力を付与可能となっている。こうして、シャフト50から外輪10を回転駆動させることによる荷重変動を等速ジョイント1に発生させ、上記(ハ)の態様で応力測定を行うことができる。
【0028】
赤外線カメラ63は、物体の表面から放出される赤外線を検出し、赤外線センサにより電気信号に変換し、画像信号として出力する。図3に示すように、赤外線カメラ63は、応力の測定対象である外輪10の着目箇所に向けて設置されている。
【0029】
図4は、外輪の着目箇所を示す模式図、また、図5は、外輪の着目箇所を示す説明図である。外輪10の着目箇所は、図4及び図5に示すように、外輪ボール溝11の外輪開口側の端部(以下、A領域という。)としている。このA領域は、等速ジョイント1がジョイント角を付与された状態で回転駆動力を伝達する際に、外輪ボール溝11を転動するボール30が到達若しくは最も接近する領域である。A領域にボール30が到達若しくは最も接近した時に、A領域における負荷が極大値となる。よって、ボール30が到達若しくは最も接近した状態にある位相のA領域を、赤外線カメラ63で正面から撮影して第1温度分布を得るようにしている。
【0030】
また、外輪10の第1温度分布の撮影方向の位相を0度としたとき、外輪10が半回転した180度の位相では、外輪ボール溝11を転動するボール30がA領域から最も遠ざかる状態となり、このとき、A領域における負荷が極小値となる。よって、第1温度分布の撮影方向と位相が180度ずれた位置(背面)のA領域を、赤外線カメラ63で撮影して第2温度分布を得る。なお、180度の位相では、A領域における最小負荷が無負荷となるので、A領域に発生する応力絶対値を測定することができる。
【0031】
第1温度分布と第2温度分布とは、2枚のミラー67,68を利用して1台の赤外線カメラ63で同時に撮影する。図3に示すように、外輪10の0度の位相と対向するように赤外線カメラ63が設置される。そして、外輪10の背面側(位相180度側)には、2枚のミラー67,68が開き角度90度となるように設置される。2枚のミラー67,68は、外輪10の位相180度の面の像が、2枚のミラー67,68を反射して赤外線カメラ63に到達するように位置調整されている。これにより、1台の赤外線カメラ63で、第1温度分布と第2温度分布とを同時に撮影することができる。
【0032】
なお、上記(イ)、(ロ)、(ハ)のいずれの態様においても、外輪10の所定の着目箇所に周期的な荷重変動を発生させることができる。荷重変動によって、温度分布の変動が生じる。
【0033】
《応力測定方法》
次に、基本的な応力測定方法の手順について図6および図7を参照して説明する。図6は、応力測定方法の工程の流れを示す図である。図7は、着目箇所の荷重変動を示すグラフである。
【0034】
まず、荷重付与工程101では、例えば上記(イ)又は(ロ)の態様によって、外輪10に対して周期的に変動する荷重を付与する。このとき、外輪10のある部位に生じる荷重変動は、図7に示すように、一定周期の波形となる。このような荷重変動によって、外輪10は、赤外線応力測定における熱弾性効果による温度変動を生じるようになる。
【0035】
次の温度測定工程102では、赤外線カメラ63が外輪10の温度変動により表面から放出される赤外線を検出する。
次の温度変化演算工程103では、温度変化を演算する。最後の応力分布算出工程104では、演算部65が、温度変化演算に基づいて、応力分布を算出する。そして、この応力分布の算出結果は、表示部66のモニタ上に表示される。
【0036】
以上のように、上記の応力測定方法によれば、荷重付与工程101と、温度測定工程102と、温度変化演算工程103と、応力分布算出工程104とを順次行うことによって、応力分布を測定することができる。これにより、測定したい部位の応力分布を正確に把握し、外輪10の十分な強度を確保しつつ薄肉化を図るなど、外輪10の最適な形状や肉厚を設計することができる。
また、上記のような応力測定方法では、温度分布に基づいて応力を求めるので、数値解析のような条件設定の難しさが無く、また、歪みゲージを用いて微小な変位を測定するような難しさもない。
【0037】
なお、上記の応力測定方法は、上記(イ)又は(ロ)の態様に関して説明したが、上記(ハ)の態様に関しても同様である。但し、この場合、温度測定工程102では、赤外線カメラ63により、赤外線カメラ63の正面にある、A領域において負荷が極大値となる位相(0度)の表面を撮影した第1温度分布と、外輪10の背面側ある、A領域において負荷が極小値となる位相(180度)の表面を、ミラー67,68を介して撮影した第2温度分布を得る。
【0038】
次の温度変化演算工程103では、A領域の温度変化を演算する。温度測定工程102で得られた第1温度分布と第2温度分布の同一箇所は、半回転ずれて表れるため、半回転分フレームをずらして組み合わせることにより、第1温度分布と第2温度分布の差をとり、A領域の温度変化を演算する。そして、最後の応力分布算出工程104では、演算部65が、温度変化演算に基づいて、A領域の応力分布を算出する。そして、この応力分布の算出結果は、表示部66のモニタ上に表示される。
【0039】
このようにして、等速ジョイント1の実用状態により近い状態で等速ジョイント1を駆動させながら、A領域において実際に生じる応力分布を正確に測定することができる。これにより、外輪10の最弱部位となり易い実用状態におけるA領域の応力分布を正確に把握し、外輪10の十分な強度を確保しつつ薄肉化を図るなど、外輪10の最適な形状や肉厚を設計することができる。
【0040】
《応力測定方法における補正》
ところが、上記の基本的な応力測定方法において、温度分布に影響を与えるのは、応力だけではなく、摩擦熱もある。摩擦熱の影響が含まれている温度分布では、応力分布を正確に求めることができない。そこで、摩擦熱の影響を排除する補正を考える。
【0041】
図8の(a)は、(b)に示す荷重変動と同期して周期的に変動する温度を示す図である。摩擦熱によって、徐々に波形のピーク値が上昇し、初期と終期とではピーク値が明らかに異なる。そこで、以下の処理を演算部65において行う。図9は、この処理の概略を示すフローチャートである。これは、例えば温度測定工程102(図6)の一部として行われる。
【0042】
まず、等速ジョイント1に荷重変動を付与する前の初期温度を測定して記憶する(ステップS1)。記憶は、記憶部65mを用いて行われる(以下、同様。)。
次に、等速ジョイント1に荷重変動を付与し、温度測定を開始する。測定開始後の最初の1周期分を第1周期とし、温度分布より温度平均値(第1平均温度)を求める。また、測定終了前の最後の1周期分を第2周期とし、温度分布より温度平均値(第2平均温度)を求める(ステップS2)。
【0043】
そして、第1平均温度及び第2平均温度の差に基づいて時間xに対する温度勾配aを求める。また、この温度勾配a及び、前述の初期温度bに基づいて温度特性y=ax+bを決定する(ステップS3)。
次に、等速ジョイント1について測定された実温度分布から、温度特性に基づいて求めた温度を減じて、補正された温度分布を求める(ステップS4)。これにより、例えば波形で言えば、図8の(a)が、(c)に示すように補正される。そして、補正された温度分布に基づいて応力分布を求める。
【0044】
上記のような応力測定方法では、温度分布には応力の他、摩擦熱も影響を与えるが、第1平均温度及び第2平均温度の差をとることによって、応力の影響を消去した、摩擦熱のみに基づく温度特性が得られる。この温度特性に基づいて実温度分布を補正することにより、摩擦熱の影響を排除することができる。従って、当該応力測定方法によれば、等速ジョイント1等の回転装置に発生する応力を正確に測定することができ、最適設計が可能となる。
【0045】
なお、補正に関する上記の各工程(ステップS1〜S4)は、赤外線サーモグラフィにおける画素ごとに行われる。これにより、画素ごとに摩擦熱の影響を排除する緻密な補正を行うことができる。
また、第1周期は測定開始後の初期の1周期、第2周期は最終の1周期とすることで、摩擦熱による温度変化が直線的なときに、簡便に温度特性を導出することができる。
【0046】
但し、応力以外を原因とする温度勾配が時間によって変化する場合には、上記の直線的な勾配では適切でない場合もある。そこで、このような場合には、第1周期及び第2周期は、時間的に互いに隣接する2周期とする。すなわち、立て続けに2周期の平均を求め、温度特性を逐次更新していくのである。この場合、摩擦熱による温度勾配が時間によって変化する場合でも、正確に温度特性を導出することができる。
【0047】
なお、上記(ハ)の態様では、着目箇所が回転するので、温度測定は、回転と同期して同一箇所が回転位相上の同じ位置に来るタイミングで行われる。図10の(a)は、(b)に示す荷重変動と同期して周期的に変動する温度を示す図である。二点鎖線は測定した点の間での温度変化を想定したもので、実際に測定される温度ではない。すなわち、この場合は、例えば温度の極大値及び極小値を捉えることになる。従って、1周期の温度平均値とは、1周期内の極大値及び極小値の平均値となる。また、この場合も同様に、補正により、(c)に示す温度分布を得ることができる。
【0048】
《その他》
なお、上記の応力測定方法は、等速ジョイントを測定対象としたが、対象はこれに限定されず、種々の回転装置に適用可能である。
【符号の説明】
【0049】
1:等速ジョイント(回転装置)、63:赤外線カメラ

【特許請求の範囲】
【請求項1】
回転装置に発生する応力を、赤外線サーモグラフィを用いて測定する応力測定方法であって、
(a)前記回転装置に荷重を付与する前の初期温度を測定した後、前記回転装置に繰り返し荷重変動を生じさせ、荷重変動の少なくとも1周期分をそれぞれ含む第1周期及びそれ以降の第2周期について、それぞれ温度平均値を求めて第1平均温度及び第2平均温度とし、
(b)前記第1平均温度及び前記第2平均温度の差に基づいて時間に対する温度勾配を求め、かつ、当該温度勾配及び前記初期温度に基づいて温度特性を決定し、
(c)前記回転装置について測定された実温度分布から、前記温度特性に基づいて求めた温度を減じて、補正された温度分布を求め、
(d)補正された温度分布に基づいて応力分布を求める、
ことを特徴とする応力測定方法。
【請求項2】
前記(a)〜(d)の工程は、前記赤外線サーモグラフィにおける画素ごとに行われる請求項1記載の応力測定方法。
【請求項3】
前記第1周期は測定開始後の初期の1周期であり、前記第2周期は終期の1周期である請求項1又は2に記載の応力測定方法。
【請求項4】
前記第1周期及び第2周期は、時間的に互いに隣接する2周期である請求項1又は2に記載の応力測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−103124(P2012−103124A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−252157(P2010−252157)
【出願日】平成22年11月10日(2010.11.10)
【出願人】(000001247)株式会社ジェイテクト (7,053)