説明

慣性センサおよびその製造方法

【課題】本発明は、慣性センサおよびその製造方法を提供する。
【解決手段】慣性センサは、検出された圧力差(圧力勾配)による移動対象物の加速度および角加速度を測定する。慣性センサは、基板と、該基板上に配置された回路と、第1端部および第2端部を有した環状チャンバを備える加圧装置と、第1端部および第2端部を有し且つ該第2端部が環状チャンバの第2端部に接続されたチャネルと、環状チャンバの第1端部とチャネルの第1端部とにそれぞれ接続され且つ前記回路に電気的に接続された圧力計と、環状チャンバを満たす液体とを備えている。したがって、本発明は、構造を簡素化し、製造工程を容易にし、コストを低減した高感度平面慣性センサを提供する。この発明に基づいた慣性センサは、移動または回転する対象物の加速度および角加速度を測定することができ、さらに、相互一体化の結果、多重軸測定を可能にする。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、慣性センサおよびその製造方法に関し、特に、改善された感度の平面慣性センサおよびそのような慣性センサの製造方法に関する。
【背景技術】
【0002】
先行技術に開示された慣性センサは、加速度計またはマイクロ加速度計に主として適用される。4つの典型的な実施形態としては、次のようなものが与えられる。
たとえば、特許文献1に開示された単一のユニットの位置センサは、弾性構造を介してシリコン基板に接続された質量単位を生成し、コンデンサを作るために使用される。加速度は、該加速度が質量単位の移動を通じて生じるときに、弾性構造の弾性係数によって演算されることができる。
【0003】
また、特許文献2に開示された対流電流応答機器は、ガスチャンバを製造するために使用される。発熱体は、ガスを熱するためにガスチャンバの内部に設けられ、チャンバのガス密度を変更する。温度分布は、浮力の影響によって、加速度の変化の結果として検出されることができる。加速度は、電熱線の温度差を読むために、抵抗ブリッジを使用することによってさらに演算されることができる。
【0004】
さらに、特許文献3に開示された熱気泡式のマイクロ慣性センサは、液封チャンバを製造するために使用される。発熱体は、液体を部分的にガス化することによって泡を形成するように、液体を熱するために液封チャンバの内部に設けられる。温度分布は、加速度の変化によって、泡の位置の変化の結果として検出されることができる。その結果、加速度を演算することができる。
【0005】
さらに、特許文献4に開示された加速度計は、液封チャンバを製造するために使用され、その壁には、液体の慣性の平均圧力を検出する圧力検出要素が設けられ、その結果、加速度を演算することができる。この特許は、平均(合計)圧力の測定を通じて加速度を演算するために使用される。実際には、密封容器内の液体の平均圧力は、加速度との直接の関係においては必要ではない。
【0006】
最後に、特許文献5に開示された液体充填加速度計は、液封チャンバを製造するために使用され、圧力検出要素は、チャンバ壁に取り付けられる。この特許は、チャンバ壁上の液体によって及ぼされる加速度と反作用力との両方を明らかにしている。それは、圧力検出要素によって測定される反作用力である。この特許は、圧力勾配を検出することを明らかにはしていない。
【特許文献1】米国特許第6,713,829号明細書
【特許文献2】米国特許第2,440,189号明細書
【特許文献3】米国特許第7,069,785号明細書
【特許文献4】米国特許第2,650,991号明細書
【特許文献5】米国特許第2,728,868号明細書
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の目的は、高感度の平面慣性センサを提供することにある。すなわち、本発明は、圧力差(圧力勾配)によって回転する対象物の角加速度を測定する慣性センサおよびその製造方法に関する。
【0008】
本発明の別の目的は、低コストの慣性センサおよびその製造方法を提供することにある。
【課題を解決するための手段】
【0009】
上記の目的を達成するために、一実施形態に開示される慣性センサは、(1)基板と、(2)該基板上に配置された回路と、(3)第1端部および第2端部を有する環状チャンバを有した加圧装置と、(4)第1端部および第2端部を有し、該第2端部が前記環状チャンバの第2端部に接続されたチャネルと、(5)前記環状チャンバの第1端部と前記チャネルの第1端部とにそれぞれ接続され、前記回路に電気的に接続された圧力計と、(6)前記環状チャンバを満たす流体とを備えている。したがって、本発明は、簡単な構造、容易な製造、および低コストの利点を達成することができる。
【0010】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
前記圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
【0011】
前記流体は、水、油、液晶、またはそれらの混合物であることができる。
前記慣性センサは、前記圧力計と基準圧力との間の圧力差を通じて得られる角加速度感度をさらに備えている。前記角加速度は、下の式を適用することによって決定される。
【0012】
α=P/(2πdR)、
ここで、
Pは、前記圧力計の圧力値を表わし、
Dは、流体密度を表わし、
αは、角加速度を表わし、
Rは、前記環状チャンバの半径を表わしている。
【0013】
本発明は、回転する対象物の角加速度を測定するために圧力差(圧力勾配)を利用する慣性センサの別の実施形態を提供する。前記慣性センサは、(1)基板と、(2)該基板上に配置された回路と、(3)第1端部および第2端部を有した環状チャンバを備える加圧装置と、(4)第1端部および第2端部を有したチャネルを収容するベースと、(5)前記環状チャンバの第1端部と前記チャネルの第1端部とにそれぞれ接続され、前記回路に電気的に接続された第1圧力計と、(6)前記環状チャンバの第2端部と前記チャネルの第2端部とにそれぞれ接続され、前記回路に電気的に接続された第2圧力計と、(7)前記環状チャンバを満たす流体とを備えている。
【0014】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、またはセラミック基板であることができる。
前記チャネルは、前記基板上に配置されるか、または、前記基板内に延長されることができる。さらに、前記チャネルは、空気で満たされるか、または、真空状態下にあることができる。さらに、前記チャネルは、密封されるか、または、外界と連通されることができる。
【0015】
前記第1圧力計および前記第2圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
前記流体は、水、油、液晶、またはそれらの混合物であることができる。
【0016】
前記慣性センサは、前記第1圧力計と前記第2圧力計との間の圧力差を通じて得られる角加速度感度をさらに備えている。前記角加速度は、下の式を適用することによって決定される。
【0017】
α=(P−P)/(2πdR)、
ここで、
は、前記第1圧力計の圧力値を表わし、
は、前記第2圧力計の圧力値を表わし、
dは、流体密度を表わし、
αは、角加速度を表わし、
Rは、前記環状チャンバの半径を表わしている。
【0018】
本発明は、前記慣性センサのさらに別の実施形態を提供する。この実施形態と第2実施形態との間の差異は、この実施形態に対して設計された前記チャネルが前記基板内に延びることができるということだけである。この実施形態の残りの要素の構成は、第2実施形態のそれと同一である。
【0019】
本発明にかかる前記慣性センサの実施形態は、対象物の加速度を測定するために圧力差(圧力勾配)を利用する慣性センサを示している。該慣性センサは、(1)回路と、(2)チャネルを収容したベースを備え、第1端部および第2端部を有した加圧装置と、(3)前記チャネルの第1端部に接続され、前記回路に電気的に接続された第1圧力計と、(4)前記チャネルの第2端部に接続され、前記回路に電気的に接続された第2圧力計と、(5)前記加圧装置を収容したハウジングと、(6)該ハウジングを満たす流体とを備えている。
【0020】
前記ハウジングは、該ハウジングの底部上に配置された基板を備え、前記回路および前記加圧装置は、前記基板上に配置されている。
前記チャネルは、第3端部をさらに備え、平面でL字形の形態をなし、前記加圧装置は、前記チャネルの第3端部に接続され、前記回路に電気的に接続された第3圧力計をさらに備えている。
【0021】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
前記チャネルは、前記基板上に配置されるか、または前記基板内に延びることができる。さらに、前記チャネルは、空気で満たされるか、または、真空状態下にあることができる。さらに、前記チャネルは、密封されるか、または、外界と連通されることができる。
【0022】
前記第1圧力計、前記第2圧力計、および前記第3圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
前記流体は、水、油、液晶、またはそれらの混合物であることができる。
【0023】
前記慣性センサは、前記第1圧力計と前記第2圧力計との間の圧力差を通じて得られる線形加速度感度をさらに備えている。該線形加速度は、下の式を適用することによって決定される。
【0024】
a=(P−P)/(d×S)、
ここで、
は、前記第1圧力計の圧力値を表わし、
は、前記第2圧力計の圧力値を表わし、
dは、流体密度を表わし、
aは、加速度を表わし、
Sは、前記第1圧力計の中心と前記第2圧力計の中心との間の距離を表わしている。
【0025】
本発明にかかる前記慣性センサの製造方法であって、該方法は、(1)ハウジングを設けること、(2)該ハウジング内に回路を形成すること、(3)前記ハウジングの内部に加圧装置を形成すること、および(4)前記ハウジングを流体で満たすことを含んでいる。したがって、前記慣性センサを製造する微細構造製造方法を利用することによって、本発明は、前記慣性センサの大きさを低減し、製品用途を向上させることができる。
【0026】
前記ハウジングは、該ハウジングの底部上に配置された基板を備え、前記回路および前記加圧装置は、前記基板上に配置されている。
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
【0027】
前記加圧装置は、(1)第1端部および第2端部を有したチャネルを収容するベースと、(2)前記チャネルの第1端部に接続され、前記回路に電気的に接続された第1圧力計と、(3)前記チャネルの第2端部に接続され、前記回路に電気的に接続された第2圧力計とを備えている。
【0028】
前記チャネルは、第3端部をさらに備え、平面でL字形の形態をなし、前記加圧装置は、前記チャネルの第3端部に接続され、前記回路に電気的に接続された第3圧力計をさらに備えている。
【0029】
前記チャネルは、前記基板上に配置されるか、または、前記基板内に延長されることができる。さらに、前記チャネルは、空気で満たされるか、または、真空状態下にあることができる。さらに、前記チャネルは、密封されるか、または、外界と連通されることができる。
【0030】
前記第1圧力計、前記第2圧力計、および前記第3圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
前記流体は、水、油、液晶、またはそれらの混合物であることができる。
【0031】
前記慣性センサのさらに別の実施形態において、本発明は、移動対象物の加速度を測定するために圧力差(圧力勾配)を利用する慣性センサに関する。該慣性センサは、(1)回路と、(2)チャネルを収容したベースを備え、第1端部および第2端部を有した加圧装置と、(3)前記チャネルの第1端部に接続され、前記回路に電気的に接続された第1圧力計と、(4)前記チャネルの第2端部に接続され、前記回路に電気的に接続された第2圧力計と、(5)前記チャネルを満たす流体とを備えている。
【0032】
本実施形態および先の実施形態の両方は、基板チャネルを流体を満たすハウジングとしてなすことができ、ここで、外側圧力は、本構造をより複雑でないようにするために基準圧力として提供されることができる。流体の内側圧力勾配の形成が前記ハウジングの形状とは全く関係がないので、前記チャネルの設計は、それが流体の自由な連通を可能にすれば十分であろう。
【0033】
本発明は、慣性センサ(すなわち、移動または回転する対象物の加速度または角加速度を測定するために圧力差を利用する慣性センサ)を製造する微細構造製造方法を利用する。本発明は、高感度の平面慣性センサを提供し、それは、単純な構造および多くを求めない製造工程を提供し、移動または回転する対象物の加速度または角加速度の測定を可能にし、さらに、相互一体化を通じた多重軸測定を試みる。
【発明を実施するための最良の形態】
【0034】
慣性センサは、主として、加速度計およびジャイロスコープを備えている。加速度計は
、振動、衝撃、および傾斜などを検出するために使用されることができ、その感度は、慣性センサの市場用途を決定する。たとえば、高感度の加速度計は、主に自動車および消費者市場に適用される通常感度の加速度計に対して、主として、国防および地震検出に適用される。80%の加速度計は、自動車市場において使用されており、ここでは、高重力加速度計は、エアバッグおよび他の安全制御システムに適用され、低重力加速度計は、電子制御安定装置、アンチロック・ブレーキ・システム、電子制御懸垂システム、電子駐車支援システム、自動車警報システム、およびナビゲーション・システムなどに適用されている。医学用途では、慣性センサは、ペースメーカおよび転落検出器のような患者監視装置に一般に採用されている。国防分野では、慣性センサは、ミサイル誘導システムおよびスマート爆弾において一般に使用されている。産業用途では、慣性センサは、輸送ツールおよび建設機械において頻繁に使用されている。輸送ツールについては、慣性センサは、高速列車のスムーズさおよび安定性を維持する際のような、傾斜検出、位置監視、回転制御、およびプラットフォーム・レベル維持に対して使用される。さらに、慣性センサは、地震の監視、そして、構造の傾斜検出、ならびに変位および振動の監視に使用されることもできる。
【0035】
図1および図2は、それぞれ、本発明の第1実施形態にかかる慣性センサの正面図および平面図を示している。慣性センサ100は、回転する対象物の角加速度を測定するために圧力差(圧力勾配)を利用する。慣性センサ100は、基板110と、該基板110上に配置された回路120と、加圧装置130と、流体Lとを備えている。加圧装置130は、(1)第1端部131Aおよび第2端部131Bを有した環状チャンバ131と、(2)第1端部133Aおよび第2端部133Bを有したチャネル133と、(3)環状チャンバ131の第1端部131Aとチャネル133の第1端部133Aとに接続された圧力計135とを備えている。チャネル133の第2端部133Bは、環状チャンバ131の第2端部131Bに接続され、圧力計135は、回路120に電気的に接続され、流体Lは、環状チャンバ131の内部を満たしている。好ましくは、流体Lは、水、油、液晶、またはそれらの混合物であることができる。
【0036】
圧力計135の構造は、図3、図4、および図5に示されるようなものであることができる。図3における圧力計135は、その最上端部に取り付けられたピエゾ抵抗の歪みゲージ、容量検出または同様のセンサを有することができ、チャンバ135Cは、その底端部に形成され、チャネル133に接続されている。さらに、圧力計135の前述の構造は、図4および図5に示されるようなものであることができ、その構造は、図3に示される圧力計135のそれと同様である。いずれにせよ、図4に示される圧力計135の底部は、その開口によってチャンバ135Cがチャネル133に接続されることを可能にするガラス基板135Gを有している。図5に示される圧力計135の底部は、チャンバ135Cを密封するために使用されるガラス基板135Gを有している。圧力計135によって測定される圧力値は、通常、チャンバ135Cの圧力を基準値として取る。圧力計135よりも上の圧力が基準圧力として取られる場合、それは、チャンバ135Cの圧力を検出する別の実施形態になる。チャンバ135Cが閉じており、チャンバ135C内の基準圧力が環境圧の変化の影響を受けない場合には、それは、絶対圧計として従来から公知の別の実施形態になる。
【0037】
本発明にかかる慣性センサ100の製造方法は、(1)基板110を設けること、(2)該基板110上に回路120を形成すること、(3)基板110上に加圧装置130を形成することであって、加圧装置130のチャネル133が基板110内に形成されることができ、圧力計135が回路120に電気的に接続され、さらに、加圧装置130の環状チャンバ131の第1端部131Aとチャネル133の第1端部133Aとにそれぞれ接続され、環状チャンバ131の第2端部131Bとチャネル133の第2端部133Bとが互いに接続されること、および(4)流体Lを環状チャンバ131に満たすことを含
んでおり、ここでは、流体Lが、水、油、液晶、またはそれらの混合物であることができる。加圧装置130の圧力計135が圧力の変化を検出したときに、それは、回路120に信号を送信し、回転する対象物の角加速度を得るように演算されるであろう。
【0038】
角加速度感度は、圧力計135の圧力値Pとチャネル内の基準圧力Pとの間の圧力差を通じて得られる。角加速度は、下の式(1)を適用することによって決定される。
α=P/(2πdR) …(1)
ここで、dは、流体Lの密度を表わし、
αは、角加速度を表わし、
Rは、環状チャンバの半径を表わしている。
【0039】
たとえば、流体密度が1g/cmに等しいときには、環状チャンバの半径は、5mmに等しく、圧力値は、0.157Nt/mに等しく、角加速度は、1rad/sになるであろう。
【0040】
好ましくは、基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
好ましくは、圧力計135は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
【0041】
図6および図7は、本発明の第2実施形態にかかる慣性センサ200の正面断面図および平面図をそれぞれ示している。本発明の慣性センサ200は、回転する対象物の角加速度を測定するために圧力差(圧力勾配)を利用する。慣性センサ200は、基板210と、該基板210上に配置された回路220と、加圧装置230と、流体Lと、ガスAとを備えている。加圧装置230は、(1)第1端部231Aおよび第2端部231Bを有した環状チャンバ231と、(2)第1端部233Aおよび第2端部233Bを有したチャネル233を有するベース232と、(3)環状チャンバ231の第1端部231Aとチャネル233の第1端部233Aとにそれぞれ接続された第1圧力計235と、(4)環状チャンバ231の第2端部231Bとチャネル233の第2端部233Bとにそれぞれ接続された第2圧力計237とを備えており、第1圧力計235および第2圧力計237は、両方とも回路220に電気的に接続されている。流体Lは、環状チャンバ231の内部を満たし、ガスAは、チャネル233の内部を満たしている。加圧装置230の第1圧力計235と第2圧力計237とが圧力の変化を検出したときに、それらは、回路220に信号を送信し、回転する対象物の角加速度を得るように演算されるであろう。
【0042】
本発明にかかる慣性センサ200の製造方法は、(1)基板210を設けること、(2)該基板210上に回路220を形成すること、(3)基板210上に加圧装置230を形成することであって、加圧装置230のチャネル233を基板210内に形成することができ、第1圧力計235が環状チャンバ231の第1端部231Aとチャネル233の第1端部233Aとにそれぞれ接続され、第2圧力計237が環状チャンバ231の第2端部231Bとチャネル233の第2端部233Bとにそれぞれ接続され、第1圧力計235および第2圧力計237が回路220に電気的に接続されていること、および、(4)環状チャンバ231を流体Lで満たし、チャネル233をガスAで満たすことであって、流体Lが、水、油、液晶、またはそれらの混合であることができ、ガスAが、空気であるか、または、真空状態下にあることができることを含んでいる。
【0043】
慣性センサの角加速度感度は、第1圧力計235の圧力値Pと第2圧力計237の圧力値Pとの間の圧力差を通じて得られる。角加速度は、下の式(2)を適用することによって決定される。
【0044】
α=(P−P)/(2πdR) …(2)
ここで、dは、流体Lの密度を表わし、
αは、角加速度を表わし、
Rは、環状チャンバの半径を表わしている。
【0045】
たとえば、流体密度が1g/cmに等しいときには、環状チャンバの半径は、5mmに等しく、圧力差は、(P−P)=0.157Nt/mに等しく、角加速度αは、1rad/sの大きさになるであろう。
【0046】
好ましくは、第1圧力計235および第2圧力計237は、容量式、圧電式およびピエゾ抵抗式の圧力計であることができる。
好ましくは、基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
【0047】
本発明の第1実施形態および第2実施形態は、高感度に平面慣性センサの角加速度を測定するために提供され、それは、単純な構造および多くを求めない製造工程を提供し、コストを低減し、そして、様々な種類の製品の一体化を可能にする。
【0048】
図8は、本発明にかかる慣性センサ300の第3実施形態の正面断面図を示している。この実施形態と第2実施形態の慣性センサ200との間の差異は、チャネル333が基板310内に延びることができるということだけである。この実施形態の残りの要素の構成は、第2実施形態のそれと同一である。
【0049】
図9、図10、および図11eは、本発明の第4、第5、および第6実施形態にかかる慣性センサ400、500、および600の正面断面図をそれぞれ示している。第4、第5、および第6実施形態の慣性センサと第2実施形態の慣性センサ200との間の差異は、チャネル433,533,633が外界と連通するように、それぞれの通路を通じて基板410,510,610に延びているということだけである。第4、第5、および第6実施形態の残りの要素の構成は、第2実施形態のそれと同一である。
【0050】
図12および図13は、本発明の第7実施形態にかかる慣性センサ700の正面断面図および平面図をそれぞれ示している。慣性センサ700は、一方向に移動する対象物の線形加速度を測定するために圧力差(圧力勾配)を利用している。慣性センサ700は、回路720と、加圧装置730と、ハウジング740と、流体Lとを備えている。ハウジング740は、該ハウジングの底部上に配置された基板710を備え、加圧装置730は、第1端部733Aおよび第2端部733Bを有するチャネル733を有したベース732を備え、第1圧力計735は、チャネル733の第1端部733Aに接続されている。また、慣性センサ700は、チャネル733の第2端部733Bに接続された第2圧力計737を備えている。第1圧力計735および第2圧力計737の両方とも、回路720に電気的に接続されている。ハウジング740は、基板上に配置され、回路720および加圧装置730を覆っている。流体Lは、ハウジング740の内部を満たし、ガスAは、チャネル733の内部を満たしている。加圧装置730の第1圧力計735および第2圧力計737が圧力の変化を検出したときに、それらは、回路720に信号を送信し、一方向に移動する対象物の線形加速度を得るように演算されるであろう。
【0051】
本発明にかかる慣性センサ700の製造方法は、ハウジング740を設けること、該ハウジング740内に回路720を形成すること、および、ハウジング740の内部に加圧装置730を形成することを含んでおり、流体Lが、ハウジング740を満たしている。ハウジング740は、該ハウジングの底部上に配置された基板710を備えており、加圧装置730のチャネル733は、ベース732内に形成されることができ、第1圧力計7
35は、チャネル733の第1端部733Aに接続され、第2圧力計737は、チャネル733の第2端部733Bに接続され、そして、第1圧力計735および第2圧力計737は、回路720に電気的に接続されている。流体Lは、水、油、液晶、またはそれらの混合物であることができ、チャネル733は、ガスA(たとえば、空気)で満たすことができるか、または、真空状態下にあることができる。さらに、チャネルは、密封されるか、または、外界と連通されることができる。
【0052】
好ましくは、第1圧力計735および第2圧力計737は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
好ましくは、基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
【0053】
慣性センサの線形加速度感度は、第1圧力計735の圧力値Pと第2圧力計737の圧力値Pとの間の圧力差を通じて得られる。加速度は、下の式(3)を適用することによって決定される。
【0054】
a=(P−P)/(d×S) …(3)
ここで、dは、流体密度を表わし、
aは、加速度を表わし、
Sは、第1圧力計の中心から第2圧力計の中心までの距離を表わしている。
【0055】
たとえば、流体密度が1g/cmに等しいときには、距離は、5mmに等しく、圧力差は、49Nt/mに等しく、加速度は、1gの大きさになるであろう(gは、地球の表面での重力加速度を表わし、それは、約9.8m/sの大きさになる)。チャネル733がガスで満たされる理由は、ガスの軽い密度のためであり、したがって、ガスAの密度は、容易な理解のために上記の演算においては無視される。本発明のチャネル733の唯一の目的は、例示のみの目的のためにチャネルにおいてガスを使用して圧力計に同一の基準圧力を提供することである。実際のところ、本発明によれば、チャネルは、真空状態下にあることができるか、または、チャネルの内部のガスは、一般には、より小さい密度を持った流体と称することができる。したがって、チャネルが異なる種類の流体で満たされる場合であっても、その流体は、依然として加速度の影響下で圧力勾配を生じることができる。流体Lの密度が流体Aの密度と異なる場合には、上式は、元の式における密度dを流体Lと流体Aとの間の密度差と入れ替えれば、依然として成立することができる。
【0056】
円運動に起因する遠心力もまた、圧力勾配をもたらす。遠心力への慣性センサの感度は、第1圧力計735の圧力値Pと第2圧力計737の圧力値Pとの間の圧力差を通じて得られる。圧力差は、下の式(4)を適用することによって決定される。
【0057】
【数1】

ここで、dは、流体密度を表わし、
ωは、角速度を表わし、
は、回転中心Cと第1圧力計735の中心との間の距離を表わし、
は、回転中心Cと第2圧力計737の中心との間の距離を表わしている。
【0058】
一般的には、回転速度がそれほど速くない場合には、遠心力の影響は無視されることができる。
図14によれば、回転中心Cが第1圧力計735および第2圧力計737と非同一直線上であっても、式(4)は、依然として適用可能である。
【0059】
図15は、本発明の第8実施形態にかかる慣性センサ800の正面断面図を示している。この実施形態と第7実施形態の慣性センサ700との間の差異は、チャネル833が基板810内に延びることができるということだけである。この実施形態の残りの要素の構成は、第7実施形態のそれと同一である。
【0060】
図16、図17、および図18は、本発明の第9、第10、および第11実施形態にかかる慣性センサ900,1000,および1100の正面断面図を示している。これら3つの実施形態と第7および第8実施形態との間の差異は、これら3つの実施形態にはベース要素がないということだけである。さらに、これら3つの実施形態におけるチャネル933,1033,1133が、外界と連通するように、それぞれの通路を通じて基板910,1010,1110内に延びるという事実を除いては、3つの実施形態の残りの要素は、第7実施形態のものと同一である。
【0061】
図19は、本発明の第12実施形態にかかる慣性センサ1200の平面図を示している。慣性センサ1200は、対象物がX−Y平面において任意の方向に沿って移動するときに、x方向加速度およびy方向加速度を測定するために圧力差(圧力勾配)を利用する。慣性センサ1200は、基板1210と、該基板1210上に形成された回路1220と、加圧装置1230と、ハウジング1240と、流体Lと、ガスAとを備えている。加圧装置1230は、(1)第1端部1233A、第2端部1233B、および第3端部1233Cを有するL字形チャネル1233を有したベース1232と、(2)L字形チャネル1233の第1端部1233Aに接続された第1圧力計1235と、(3)L字形チャネル1233の第2端部1233Bに接続された第2圧力計1237と、(4)L字形チャネル1233の第3端部1233Cに接続された第3圧力計1239とを備えており、第1圧力計1235、第2圧力計1237、および第3圧力計1239は全て、回路1220に電気的に接続されている。さらに、ハウジング1240は、基板1210上に配置され、回路1220および加圧装置1230を覆い、流体Lは、ハウジング1240の内部を満たし、そして同様に、ガスAは、チャネル1233の内部を満たしている。加圧装置1230の第1圧力計1235、第2圧力計1237、および第3圧力計1239が圧力の変化を検出したときに、それらは、回路1220に信号を送信し、X−Y方向に沿った移動対象物のx方向加速度およびy方向加速度を得るように演算されるであろう。
【0062】
L字形ベースおよびL字形チャネルは、ここでは例示だけの目的のために提供されている。実際のところ、ベースの輪郭は、該ベースの機能と関係がなく、ガス・チャネルの唯一の目的は、圧力計間で共有される基準圧力を提供することである。チャネルは、外界に接続されるか、または、外界を介して相互に連通することもできる。3つの圧力計が三角形の形態(つまり、非同一直線上)に配置されるならば、X−Y方向に沿った検出加速度の情報を得ることができる。
【0063】
本発明の慣性センサ1200の製造方法は、(1)基板1210を設けること、(2)該基板1210上に回路1220を形成すること、(3)基板1210上に加圧装置1230を形成することであって、加圧装置1230のL字形チャネル1233がL字形ベース1232内に形成されることができ、第1圧力計1235がL字形チャネル1233の第1端部1233Aに接続され、第2圧力計1237がL字形チャネル1233の第2端部1233Bに接続され、第3圧力計1239がL字形チャネル1233の第3端部1233Cに接続され、第1圧力計1235、第2圧力計1237、および第3圧力計1239が全て回路1220に電気的に接続されていること、および(4)チャンバ(図示せず)を流体Lで満たし、チャネル1233をガスAで満たすことを含んでいる。流体Lは、
水、油、液晶、またはそれらの混合物であることができ、ガスAは、空気であることができるか、または、真空状態下にあることができる。チャネルは、密封されるか、または、外界と連通されることができる。
【0064】
好ましくは、第1圧力計1235、第2圧力計1237、および第3圧力計1239は、容量式、圧電式、またはピエゾ抵抗式の圧力計であることができる。
好ましくは、基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板であることができる。
【0065】
図20〜図23は、本発明の第13、第14、第15、および第16実施形態にかかる慣性センサ1300,1400,1500,および1600を示している。第7実施形態に適用された原理および数式は、第13、第14、第15、および第16実施形態に適用されるものと同一であり、その差異は、チャネル1333,1433,1533,および1633が、流体Lを満たすハウジングとして得られ、その結果、外圧Aを基準圧力として取り、本発明の構造を簡素化することだけである。流体の内側圧力勾配の形成がハウジングの形状とは全く関係がないので、チャネル1333,1433,1533,および1633の設計は、それが流体Lの自由な連通を可能にするのであれば十分であろう。
【0066】
したがって、本発明には、次の長所がある。
1.平面設計は、可動部を殆ど包含することなしに構造を大幅に簡素化する。
2.液圧を利用し、感度を向上させる。
3.加熱は必要ではなく、エネルギは殆ど消費されず、流体の流れは殆ど必要なく、本発明は非常に反応が良い。
4.平面構造は、現代のPCBベースのSIP製造要件を満たす。これに代えて、平面構造は、1つのチップに組み込まれた複数の圧力計を有することもでき、その結果、可動部を殆ど包含することなしにそれを2軸構造にする。
5.基本的に、測定に使用される慣性質量は、それを通じて高感度を容易に得ることができる圧力計検出領域、圧力計間の距離、および充填流体の密度の積と等価である。
6.本発明は、従来の櫛形電極よりも大きいキャパシタンスを有した容量圧力センサを収容している。
7.望ましい非圧縮性流体に対しては、圧力勾配の生成および変化は、流体の流れと同調する必要はない。本システムは、そういうものとして非常に良好な反応であることができる。
【0067】
要約すれば、本発明は、高感度の平面慣性センサを製造するための微細構造製造方法を利用し、その結果、慣性センサの大きさを低減し、本製品の市場用途を拡張する。さらに、慣性センサの単純な構造を与えることによって、加工費が大量生産の際に大きく低減されることができる。さらに、本発明にかかる慣性センサは、移動または回転する対象物の加速度または角加速度を測定するために圧力差(圧力勾配)を利用し、さらに、相互一体化に基づいた多軸測定を可能にする。本発明は、特許要件を全て満たしており、したがって、本願は、特許法に準ずるように出願されている。
【0068】
本発明の上記の好ましい実施形態は、本発明の範囲を限定することを意図するものではない。本発明の記述は、当業者によって理解されるべきである。さらに、本発明の精神から逸脱せずになされることができる如何なる変更または修正またはその等価物も、次の請求の範囲によって保護されるべきである。
【図面の簡単な説明】
【0069】
【図1】本発明の第1実施形態にかかる慣性センサの正面断面図である。
【図2】本発明の第1実施形態にかかる慣性センサの平面図である。
【図3】本発明にかかる慣性センサの圧力計の構造である。
【図4】本発明にかかる慣性センサの圧力計の別の構造である。
【図5】本発明にかかる慣性センサの圧力計のさらに別の構造である。
【図6】本発明の第2実施形態にかかる慣性センサの正面断面図である。
【図7】本発明の第2実施形態にかかる慣性センサの平面図である。
【図8】本発明の第3実施形態にかかる慣性センサの正面断面図である。
【図9】本発明の第4実施形態にかかる慣性センサの正面断面図である。
【図10】本発明の第5実施形態にかかる慣性センサの正面断面図である。
【図11】本発明の第6実施形態にかかる慣性センサの正面断面図である。
【図12】本発明の第7実施形態にかかる慣性センサの正面断面図である。
【図13】本発明の第7実施形態にかかる慣性センサの平面図である。
【図14】本発明の第7実施形態にかかる慣性センサの平面図である。
【図15】本発明の第8実施形態にかかる慣性センサの正面断面図である。
【図16】本発明の第9実施形態にかかる慣性センサの平面図である。
【図17】本発明の第10実施形態にかかる慣性センサの正面断面図である。
【図18】本発明の第11実施形態にかかる慣性センサの正面断面図である。
【図19】本発明の第12実施形態にかかる慣性センサの平面図である。
【図20】本発明の第13実施形態にかかる慣性センサの正面断面図である。
【図21】本発明の第14実施形態にかかる慣性センサの正面断面図である。
【図22】本発明の第15実施形態にかかる慣性センサの正面断面図である。
【図23】本発明の第16実施形態にかかる慣性センサの正面断面図である。
【符号の説明】
【0070】
100〜1600 慣性センサ
110〜1610 基板
120〜1620 回路
130〜1630 加圧装置
131〜1631 環状チャンバ
131A〜1631A 環状チャンバの第1端部
131B〜1631B 環状チャンバの第2端部
133〜1633 チャネル
133A〜1633A チャネルの第1端部
133B〜1633B チャネルの第2端部
135〜1635 圧力計
A ガス
C 回転中心
L 流体

【特許請求の範囲】
【請求項1】
基板と、回路と、加圧装置とを備えた慣性センサであって、前記慣性センサは、
第1端部および第2端部を有した環状チャンバと、
第1端部および第2端部を有し、該第2端部が前記環状チャンバの第2端部に接続されたチャネルと、
前記環状チャンバの第1端部と前記チャネルの第1端部とにそれぞれ接続され、前記回路に電気的に接続された圧力計と、
前記環状チャンバを満たす流体と
を備える、慣性センサ。
【請求項2】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項1記載の慣性センサ。
【請求項3】
前記圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項1記載の慣性センサ。
【請求項4】
前記流体は液体である、請求項1記載の慣性センサ。
【請求項5】
前記液体は、水、油、液晶、またはそれらの混合物を含んでいる、請求項4記載の慣性センサ。
【請求項6】
前記回路は、前記基板上に配置されている、請求項1記載の慣性センサ。
【請求項7】
前記回路は、前記慣性センサの外部に配置されている、請求項1記載の慣性センサ。
【請求項8】
前記慣性センサは、前記圧力計によって測定される前記圧力値を通じて得られる角加速度感度をさらに備え、それによって、前記角加速度は、下の式を適用することによって決定され、
α=P/(2πdR)、
ここで、
Pは、前記圧力計によって測定される圧力値を表わし、
dは、流体密度を表わし、
αは、角加速度を表わし、
Rは、前記環状チャンバの半径を表わしている、請求項1記載の慣性センサ。
【請求項9】
基板と、回路と、加圧装置とを備えた慣性センサであって、前記慣性センサは、
第1端部および第2端部を有した環状チャンバと、
ベースと、
前記環状チャンバの第1端部に接続され且つ前記回路に電気的に接続された第1圧力計と、
前記環状チャンバの第2端部に接続され且つ前記回路に電気的に接続された第2圧力計と、
前記環状チャンバを満たす流体と
を備える、慣性センサ。
【請求項10】
前記ベースは、第1端部および第2端部を有したチャネルを備え、該チャネルの第1端部は、前記第1圧力計のチャンバに接続され、前記チャネルの第2端部は、前記第2圧力計のチャンバに接続されている、請求項9記載の慣性センサ。
【請求項11】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項9記載の慣性センサ。
【請求項12】
前記チャネルは、前記基板上に配置されている、請求項10記載の慣性センサ。
【請求項13】
前記チャネルは、前記基板内に延びている、請求項10記載の慣性センサ。
【請求項14】
前記チャネルは、空気で満たされている、請求項10記載の慣性センサ。
【請求項15】
前記チャネルは、真空状態下にある、請求項10記載の慣性センサ。
【請求項16】
前記第1圧力計および前記第2圧力計の各々は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項9記載の慣性センサ。
【請求項17】
前記回路は、前記基板上に配置されている、請求項9記載の慣性センサ。
【請求項18】
前記回路は、前記慣性センサの外部に配置されている、請求項9記載の慣性センサ。
【請求項19】
前記流体は液体である、請求項9記載の慣性センサ。
【請求項20】
前記液体は、水、油、液晶、またはそれらの混合物を含んでいる、請求項19記載の慣性センサ。
【請求項21】
前記慣性センサは前記第1圧力計と前記第2圧力計との間の圧力差を通じて得られる角加速度感度をさらに備え、それによって、前記角加速度は、下の式を適用することによって決定され、
α=(P−P)/(2πdR)、
ここで、
は、前記第1圧力計によって測定される圧力値を表わし、
は、前記第2圧力計によって測定される圧力値を表わし、
dは、流体密度を表わし、
αは、角加速度を表わし、
Rは、前記環状チャンバの半径を表わしている、請求項9記載の慣性センサ。
【請求項22】
回路と、加圧装置とを備えた慣性センサであって、前記慣性センサは、
ベースと、
前記ベース上に配置され且つ前記回路に電気的に接続された第1圧力計と、
前記ベース上に配置され且つ前記回路に電気的に接続された第2圧力計と、
前記加圧装置を収容したハウジングと、
前記ハウジングを満たす流体と
を備える、慣性センサ。
【請求項23】
前記ベースは、第1端部および第2端部を有したチャネルを備え、該チャネルの第2端部は、前記第1圧力計のチャンバに接続され、前記チャネルの第1端部は、前記第2圧力計のチャンバに接続されている、請求項22記載の慣性センサ。
【請求項24】
基板が前記ハウジングの底部上に配置されている、請求項22記載の慣性センサ。
【請求項25】
前記ハウジングは、上側蓋および基板を備えている、請求項22記載の慣性センサ。
【請求項26】
前記チャネルは、前記第1端部および前記第2端部と非同一直線上の第3端部をさらに備えている、請求項23記載の慣性センサ。
【請求項27】
前記加圧装置は、前記チャネルの第3端部に接続され且つ前記回路に電気的に接続された第3圧力計を、さらに備えている、請求項26記載の慣性センサ。
【請求項28】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項24記載の慣性センサ。
【請求項29】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項25記載の慣性センサ。
【請求項30】
前記チャネルは、前記基板上に配置されている、請求項23記載の慣性センサ。
【請求項31】
前記チャネルは、前記基板内に延びている、請求項23記載の慣性センサ。
【請求項32】
前記チャネルは、空気で満たされている、請求項23記載の慣性センサ。
【請求項33】
前記チャネルは、真空状態下にある、請求項23記載の慣性センサ。
【請求項34】
前記第1圧力計および前記第2圧力計の各々は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項22記載の慣性センサ。
【請求項35】
前記第1圧力計、前記第2圧力計、および前記第3圧力計の各々は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項27記載の慣性センサ。
【請求項36】
前記流体は液体である、請求項22記載の慣性センサ。
【請求項37】
前記液体は、水、油、液晶、またはそれらの混合物である、請求項36記載の慣性センサ。
【請求項38】
前記慣性センサは、前記第1圧力計と前記第2圧力計との間の圧力差を通じて得られる線形加速度感度をさらに備え、それによって、前記加速度は、下の式を適用することによって決定され、
a=(P−P)/(d×S)、
ここで、
は、前記第1圧力計の圧力値を表わし、
は、前記第2圧力計の圧力値を表わし、
dは、流体密度を表わし、
aは、加速度を表わし、
Sは、前記第1圧力計の中心と前記第2圧力計の中心との間の距離を表わしている、請求項22記載の慣性センサ。
【請求項39】
前記慣性センサは、前記第1圧力計と前記第2圧力計との間の圧力差を通じて得られる角速度感度をさらに備え、それによって、前記圧力差は、下の式を適用することによって決定され、
【数1】

ここで、
は、前記第1圧力計の圧力値を表わし、
は、前記第2圧力計の圧力値を表わし、
dは、流体密度を表わし、
ωは、角速度を表わし、
は、回転中心と前記第1圧力計の中心との間の距離を表わし、
は、回転中心と前記第2圧力計の中心との間の距離を表わしている、請求項22記載の慣性センサ。
【請求項40】
ハウジングを設けること、
回路を形成すること、
前記ハウジング内に加圧装置を形成すること、および
前記ハウジングを流体で満たすことと
を含む、慣性センサの製造方法。
【請求項41】
基板が前記ハウジングの底部上に配置されている、請求項40記載の慣性センサの製造方法。
【請求項42】
前記回路は、前記ハウジングの内部に配置されている、請求項40記載の慣性センサの製造方法。
【請求項43】
前記回路は、前記ハウジングの外部に配置されている、請求項40記載の慣性センサの製造方法。
【請求項44】
前記回路および前記加圧装置は、前記基板上に配置されている、請求項41記載の慣性センサの製造方法。
【請求項45】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項41記載の慣性センサの製造方法。
【請求項46】
前記加圧装置は、
第1端部および第2端部を有したチャネルを収容するベースと、
前記チャネルの第1端部に接続され、前記回路に電気的に接続された第1圧力計と、
前記チャネルの第2端部に接続され、前記回路に電気的に接続された第2圧力計と
を備える、請求項40記載の慣性センサの製造方法。
【請求項47】
前記チャネルは第3端部をさらに備え、前記チャネルは平面でL字形の形態をなしている、請求項46記載の慣性センサの製造方法。
【請求項48】
前記加圧装置は、前記チャネルの第3端部に接続され且つ前記回路に電気的に接続された第3圧力計を、さらに備えている、請求項47記載の慣性センサの製造方法。
【請求項49】
前記チャネルは、前記基板上に配置されている、請求項46記載の慣性センサの製造方法。
【請求項50】
前記チャネルは、前記基板内に延びている、請求項46記載の慣性センサの製造方法。
【請求項51】
前記チャネルは、空気で満たされている、請求項46記載の慣性センサの製造方法。
【請求項52】
前記チャネルは、真空状態下にある、請求項46記載の慣性センサの製造方法。
【請求項53】
前記第1圧力計および前記第2圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項46記載の慣性センサの製造方法。
【請求項54】
前記第1圧力計、前記第2圧力計、および前記第3圧力計は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項48記載の慣性センサの製造方法。
【請求項55】
前記前記ハウジングを満たす流体は液体である、請求項40記載の慣性センサ。
【請求項56】
前記液体は、水、油、液晶、またはそれらの混合物を含んでいる、請求項55記載の慣性センサの製造方法。
【請求項57】
回路と、加圧装置とを備えた慣性センサであって、前記慣性センサは、
第1端部および第2端部を有したチャネルを収容するベースと、
前記チャネルの第1端部に接続され且つ前記回路に電気的に接続された第1圧力計と、
前記チャネルの第2端部に接続され且つ前記回路に電気的に接続された第2圧力計と、
前記チャネルを満たす流体と
を備える、慣性センサ。
【請求項58】
前記第1圧力計および前記第2圧力計の各々は、容量式、圧電式、またはピエゾ抵抗式の圧力計を備えている、請求項57記載の慣性センサ。
【請求項59】
基板が前記加圧装置の底部上に配置されている、請求項57記載の慣性センサ。
【請求項60】
前記基板は、シリコン・ウェハ、集積回路、プリント回路基板、ガラス基板、プラスチック基板、またはセラミック基板を含んでいる、請求項57記載の慣性センサ。
【請求項61】
前記チャネルを満たす流体は液体である、請求項57記載の慣性センサ。
【請求項62】
前記液体は、水、油、液晶、またはそれらの混合物を含んでいる、請求項61記載の慣性センサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate


【公開番号】特開2008−275583(P2008−275583A)
【公開日】平成20年11月13日(2008.11.13)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−331268(P2007−331268)
【出願日】平成19年12月25日(2007.12.25)
【出願人】(598132657)インダストリアル テクノロジー リサーチ インスティチュート (26)