説明

成膜基材の製造方法

【課題】蒸着重合において、ポリイミド被膜の密着力が低くなることを防止しつつ成膜速度を大きくすることができる成膜基材の製造方法を提供すること。
【解決手段】成膜基材の製造方法は、第1工程と第2工程とを備える。第1工程では、成膜室20内で、室内温度Tを予め設定される基材10の酸化基準温度(250度)より低い第1温度(220度)に設定し、室内圧力Pを第1温度で原料モノマー31,41が気化する第1圧力(15Pa)に設定して、基材10の表面にポリイミドの酸化防止用被膜11aを形成する。第2工程では、成膜室20内で、原料モノマー31,41の分子数を増加して室内圧力Pを第1圧力より大きい第2圧力(90Pa)に設定し、室内温度Tを酸化基準温度より高く且つ第2圧力で各原料モノマー31,41が気化する第2温度(300度)に設定して、酸化防止用被膜11aの表面にポリイミドの厚膜用被膜11bを形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蒸着重合により被膜が形成された成膜基材の製造方法に関し、特に、ポリイミド被膜の密着力が低くなることを防止しつつ成膜速度を大きくすることができる成膜基材の製造方法に関する。
【背景技術】
【0002】
基材の表面に被膜を形成する方法として、例えば、被膜を形成する原料モノマーを適当な溶媒に溶かし、溶媒中で重合させた高分子を溶媒と共に基材の表面に塗布する湿式重合がある。しかし、この湿式重合では、極めて薄い被膜を形成することが難しいとともに、被膜の密着力が不十分になり易く、更に塗液の調合や溶媒の除去(乾燥)・回収の工程時に不純物が混入し易いという問題があった。そこで、近年では、二種類の原料モノマーを真空状態の成膜室内で気化させ、気化した原料モノマーを基材の表面上で重合させる蒸着重合が注目されている。この蒸着重合では、極めて薄く且つ密着力が良い被膜を基材の表面に形成することができる。
【0003】
上述した蒸着重合は、例えば、下記特許文献1に記載されている。この蒸着重合では、二種類の原料モノマーとして、例えば、ピロメリット酸二無水物(PMDA)と4,4´−ジアミノジフェニルエーテル(ODA)とを用いて、基材の表面にポリイミド被膜を形成している。このポリイミド被膜は、高い強度及び耐熱性を有し、特に電気絶縁性に優れているため、例えば、モータのコイルの絶縁膜や半導体素子の絶縁膜として利用することができる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特公平07−18000号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、上記特許文献1に記載された蒸着重合においては、ポリイミド被膜と基材の表面との密着力が高いものの、成膜速度(単位時間あたりに被膜が形成される厚さ)が、0.36μm/hであり、極めて遅い。このため、所望の厚さの被膜を形成するためには、多くの時間が必要であり、所望の時間内に大量の成膜基材を製造するためには、多くの蒸着重合装置が必要であった。
ここで、成膜速度を大きくする方法として、真空状態の成膜室内に存在する原料モノマーの分子数を多くする、即ち成膜室の室内圧力を大きくすることが考えられる。しかし、この場合には、室内圧力が大きくなることにより、原料モノマーの飽和蒸気圧が大きくなり、原料モノマーを気化するために成膜室の室内温度を大きくする必要があった。そして、室内温度が大きくなると、ポリイミドが生成されるときに発生する水が、基材の表面と積極的に酸化するようになり、ポリイミド被膜の密着力が低下することになった。
以上要するに、蒸着重合において、ポリイミド被膜の密着力が高い状態を維持するためには成膜速度が遅く、成膜速度を大きくするためにはポリイミド被膜の密着力が低くなるという問題があった。
【0006】
本発明は、上記した課題を解決するためになされたものであり、蒸着重合において、ポリイミド被膜の密着力が低くなることを防止しつつ成膜速度を大きくすることができる成膜基材の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
上記した課題を達成するために、本発明の成膜基材の製造方法は、以下の構成を有する。
(1)二種類の原料モノマーを真空状態の成膜室内で気化させた状態で、前記各原料モノマーを基材の表面上で蒸着重合させることにより、前記基材をポリイミド被膜で成膜する成膜基材の製造方法において、前記成膜室内で、室内温度を予め設定される基材の酸化基準温度より低い第1温度に設定するとともに、室内圧力を前記第1温度で前記各原料モノマーが気化する第1圧力に設定して、蒸着重合により前記基材の表面にポリイミドの酸化防止用被膜を形成する第1工程と、前記成膜室内で、前記各原料モノマーの分子数を増加して室内圧力を前記第1圧力より大きい第2圧力に設定するとともに、室内温度を前記酸化基準温度より高く且つ前記第2圧力で前記各原料モノマーが気化する第2温度に設定して、蒸着重合により前記酸化防止用被膜の表面にポリイミドの厚膜用被膜を形成する第2工程と、を備えることを特徴とする。
ここで、基材の酸化基準温度とは、基材の構成に応じて予め設定される温度であり、蒸着重合によりポリイミドが生成されるときに発生する水が基材の表面と酸化して被膜と基材の表面との密着力を著しく低下させるときの基準となる温度である。
また、酸化防止用被膜とは、第2工程で蒸着重合により発生する水(水分子)が基材の表面にまで浸透することを防止する被膜である。
(2)(1)に記載する成膜基材の製造方法において、前記基材は、銅で構成されていて、前記基材の酸化基準温度は250度であることを特徴とする。
【発明の効果】
【0008】
上記した成膜基材の製造方法の作用及び効果について説明する。
(1)(2)先ず、第1工程では、成膜室内で、室内温度を第1温度に設定するとともに、室内圧力を第1温度で各原料モノマーが気化する第1圧力に設定する。このとき、第1温度は予め設定される基材の酸化基準温度より低いため、ポリイミドが生成されるときに発生する水が基材の表面との酸化により、ポリイミド被膜の密着力を著しく低下させるという問題は生じない。そして、第1工程では、第2工程で蒸着重合により発生する水(水分子)が基材の表面にまで浸透することを防止するポリイミドの酸化防止用被膜を基材の表面に形成する。
次に、第2工程では、成膜室内で、各原料モノマーの分子数を増加して室内圧力を第1圧力より大きい第2圧力に設定するとともに、室内温度を基材の酸化基準温度より高く且つ第2圧力で各原料モノマーが気化する第2温度に設定する。このとき、第2温度は基材の酸化基準温度より高いが、既に基材の表面に酸化防止用被膜が形成されているため、ポリイミドが生成されるときに発生する水が基材の表面にまで浸透することがない。このため、発生する水が基材の表面との酸化により、ポリイミド被膜の密着力を著しく低下させるという問題は生じない。そして、第2工程では、室内圧力が大きくなっているため、気化した各原料モノマーが衝突して反応する回数が多くなり、ポリイミドの厚膜用被膜が素早く形成される。
従って、この成膜基材の製造方法によれば、蒸着重合において、ポリイミド被膜の密着力が低くなることを防止しつつ成膜速度を大きくすることができる。
【図面の簡単な説明】
【0009】
【図1】蒸着重合装置の概略的な全体構成図である。
【図2】表面にポリイミド被膜が形成された成膜基材の断面図である。
【図3】各原料モノマーにおける飽和蒸気圧と温度との関係を示したグラフである。
【図4】成膜速度と室内圧力との関係を示したグラフである。
【図5】(a)蒸着重合における室内温度と時間との関係を示したグラフである。(b)蒸着重合における室内圧力と時間との関係を示したグラフである。(c)蒸着重合におけるポリイミド被膜の厚さと時間との関係を示したグラフである。
【発明を実施するための形態】
【0010】
本発明に係る成膜基材の製造方法について、図面を参照しながら以下に説明する。図1は、蒸着重合装置1の概略的な全体構成図である。図2は、表面に被膜としてのポリイミド被膜11が形成された基材10(成膜基材10A)の断面図である。蒸着重合装置1は、蒸着重合によって基材10の表面に被膜を形成するものであり、図1に示したように、成膜室20と、気化室30,40と、真空装置50とを備えている。なお、蒸着重合は、真空状態で気化した二種類の原料モノマー31,41が基材10の表面上で重合して基材10の表面に高分子の被膜を形成する方法である。
【0011】
基材10は、ポリイミド被膜11が形成されるものであれば、特に限定されるものではなく、この実施形態においては自動車用モータで用いられるコイルの銅線である。銅線としての基材10は、絶縁体であるエナメルが塗布される代わりに、絶縁体であるポリイミド被膜11が形成されるようになっている。ここで、図1及び図2では、基材10の端面が示されていて、基材10の端面は約1mm×約10mmの矩形形状であり、基材10の長手方向の長さは数mである。この基材10は、支持部材12によって成膜室20内に配置されている。なお、図2では、ポリイミド被膜11の厚さが約40μm程度であり、ポリイミド被膜11が拡大された状態で示されている。
【0012】
成膜室20は、真空状態で基材10を成膜するための部屋である。この成膜室20は、連通管21を介して真空装置50に接続され、導入管22,23を介して気化室30,40に接続されている。また、成膜室20には、温度センサ24と圧力センサ25とが設けられている。成膜室20の室内温度Tは、温度センサ24により測定される。成膜室20の室内圧力Pは、圧力センサ25により測定される。また、成膜室20には、ヒータ26が設けられている。ヒータ26は、温度センサ24により測定された測定値に基づいて室内温度Tを調節し、室内温度Tを一定温度に維持できるようになっている。
【0013】
気化室30,40は、各原料モノマー31,41をそれぞれ気化(昇華)するための部屋である。原料モノマー31は、ピロメリット酸二無水物(PMDA)であり、粉末状(固体)でタンク32の中に入っている。原料モノマー41は、4,4´−ジアミノジフェニルエーテル(ODA)であり、粉末状(固体)でタンク42の中に入っている。各原料モノマー31,41は、各気化室30,40内で各ヒータ33,43によって気化できるようになっている。気化した各原料モノマー31,41は、各導入管22,23に設けられたバルブ34,44が開いている状態で、成膜室20内に供給される。ここで、各導入管22,23には、流量コントローラ35,45が設けられている。このため、気化した各原料モノマー31,41の成膜室20への流量は、各流量コントローラ35,45によってそれぞれ調節されるようになっている。
【0014】
真空装置50は、成膜室20を真空状態にするためのものである。ここで、真空状態とは、成膜室20が大気圧より減圧されて、室内圧力Pが1000Pa以下である状態を意味する。真空装置50は、図示しない真空ポンプ等を有していて、成膜室20内の気体を連通管21を通して吸入するようになっている。ここで、連通管21には、圧力調整器51が設けられている。圧力調整器51は、圧力センサ25により測定された測定値に基づいて室内圧力Pを調節し、室内圧力Pを一定圧力に維持できるようになっている。
【0015】
次に、上記した蒸着重合装置1により、基材10の表面にポリイミド被膜11が形成されるときの作用について、説明する。先ず、成膜室20が、真空装置50により真空状態にされるともに、ヒータ26により加熱される。そして、原料モノマー31,41が、ヒータ33,43により気化室30,40内で気化される。その後、気化した原料モノマー31,41は、バルブ34,44が開いている状態で、導入管22,23を通って成膜室20へ供給される。こうして、原料モノマー31,41は、成膜室20内で気化した状態で、互いに衝突して反応する。これにより、先ずポリアミドが生成される。そして、このポリアミドに更に熱が付加され、ポリイミドが基材10の表面上で生成する。このようにして、基材10の表面に極めて薄く且つ密着力が良いポリイミド被膜11が形成される。
【0016】
なお、原料モノマー31(PMDA)と原料モノマー41(ODA)とを用いて形成されたポリイミド被膜11は、高い強度及び耐熱性を有し、特に電気絶縁性に優れたものである。また、このポリイミド被膜11は、図2に示したように、基材10の平面部分10a及び角部分10bに対して、均一の厚さで形成されている。即ち、例えばスプレー等により被膜を形成する場合には、角部分10bの被膜の厚さが、平面部分10aの被膜の厚さより薄くなり易いが、蒸着重合により被膜を形成する場合には、角部分10bの被膜の厚さと平面部分10aの被膜の厚さとを同程度にすることができる。
【0017】
ところで、従来においては、成膜室20の室内温度Tが、250度以下に設定されている。これは、以下の理由に基づく。ポリイミドが蒸着重合により生成するとき、水が発生する。この水(水分子)は、室内温度Tが大きくなる程、基材10(銅)の表面と積極的に反応して、酸化膜(酸化銅)を形成しようとする。そして、室内温度Tが250度より大きい、即ち基材10の表面の温度が250度より大きい場合に、形成される酸化膜により、ポリイミド被膜11と基材10の表面との密着力が著しく低下するという問題があった。このように、250度は、基材10の構成(銅)に応じて予め設定される温度であり、蒸着重合により発生する水が基材10の表面と酸化して、ポリイミド被膜11と基材10の表面との密着力を著しく低下させるときの基準となる温度である。このため、この実施形態における250度を基材10の酸化基準温度と呼ぶ。
【0018】
そこで、従来、発明者等は、室内温度Tを基材10の酸化基準温度である250度より低い220度に設定して、蒸着重合を行うことにしていた。ここで、図3に、原料モノマー31(PMDA)及び原料モノマー41(ODA)における飽和蒸気圧p(Pa)と1/温度t(K−1)との関係を示す。図3において、温度tが220度、即ち1/493(K−1)≒0.00203であるとき、原料モノマー31(ODA)の飽和蒸気圧pは約90Paであり、原料モノマー41(PMDA)の飽和蒸気圧pは約15Paである。このため、室内温度Tを220度に設定した場合、原料モノマー31(ODA)及び原料モノマー41(PMDA)を両方とも気化させるためには、成膜室20の室内圧力Pを15Pa以下に設定する必要がある。
【0019】
ここで、図4に、成膜速度V(μm/h)と室内圧力P(Pa)との関係を示す。成膜速度Vは、単位時間あたりにポリイミド被膜11が形成される厚さである。図4に示したように、成膜速度Vと室内圧力Pとの間には、比例関係があり、室内圧力Pが大きい程、成膜速度Vが大きくなる。これは、以下の理由に基づく。室内圧力Pが大きいということは、成膜室20内に存在する原料モノマー31,41の分子数が多いことを意味する。そして、原料モノマー31,41の分子数が多い程、原料モノマー31,41が互いに衝突して反応する回数が多くなり、ポリイミド被膜11が早く形成されるようになるためである。
【0020】
図4において、室内圧力Pを15Paに設定した場合、成膜速度Vは8μm/hである。この成膜速度Vが8μm/hという値は、未だ遅い値である。それは、コイルの銅線である基材10の表面にポリイミド被膜11を形成する場合、ポリイミド被膜11は所望の厚さとして約40μm程度必要である。これに対して、成膜速度Vが8μm/hである場合、成膜するのに5時間かかる。従って、成膜速度Vを8μm/hより大きくすることが望まれていた。
【0021】
ここで、成膜速度Vを大きくする方法として、成膜室20内に存在する原料モノマー31,41の分子数を多くすること、即ち室内圧力Pを大きくすることが考えられる。仮に、室内圧力Pを90Paに設定した場合、図4に示したように、成膜速度Vは40μm/hであり、約40μmのポリイミド被膜11を形成するのに1時間で済む。しかし、室内圧力Pが90Paである場合、図3の飽和蒸気圧pが90Paである部分を見ると、原料モノマー31(PMDA)が気化するための温度は約300度(1/0.00175K−1)であり、原料モノマー41(ODA)が気化するための温度は約220度(1/0.00203K−1)である。このため、室内圧力Pを90Paに設定した場合、原料モノマー31(ODA)及び原料モノマー41(PMDA)を両方とも気化させるためには、室内温度Tを約300度以上に設定する必要がある。従って、成膜速度Vを大きくしても、室内温度Tを基材10の酸化基準温度である250度より大きくする必要があるため、上述したように、ポリイミド被膜11の密着力が著しく低下するという問題があった。
【0022】
そこで、この実施形態では、ポリイミド被膜11の密着力が低くなることを防止しつつ成膜速度Vを大きくすることができるように、蒸着重合による工程を第1工程と第2工程とに分けて、成膜基材10Aを製造している。ここで、蒸着重合における室内温度T(度)と時間X(h)との関係を図5(a)のグラフで示す。また、蒸着重合における室内圧力P(Pa)と時間X(h)との関係を図5(b)のグラフで示す。また、蒸着重合における被膜の厚さS(μm)と時間X(h)との関係を図5(c)のグラフで示す。図5(a)(b)(c)では、この実施形態における状態を実線で示し、上述したように室内温度Tを220度に維持し且つ室内圧力Pを15Paに維持した場合の状態を一点鎖線で示し、上述したように室内温度Tを300度に維持し且つ室内圧力Pを90Paに維持した場合の状態を破線で示す。
【0023】
先ず、第1工程について説明する。第1工程では、気化された原料モノマー31,41が導入された成膜室20において、図5(a)の実線で示したように、室内温度Tがヒータ26によって220度(第1温度)に設定されるとともに、図5(b)の実線で示したように、室内圧力Pが圧力調整器51によって15Pa(第1圧力)に設定される。こうして、気化した原料モノマー31,41が、成膜室20内で衝突して反応し、基材10の表面でポリイミド被膜11を形成する。このとき、室内温度Tが基材10の酸化基準温度である250度より低いため、ポリイミドが生成されるときに発生する水が、基材10の表面との酸化により、ポリイミド被膜11の密着力を著しく低下させるという問題は生じない。
【0024】
そして、第1工程では、図5(c)の実線で示したように、ポリイミド被膜11を基材10の表面から約5μm程度形成する。この第1工程で形成されたポリイミド被膜11を酸化防止用被膜11a(図2参照)と呼ぶ。酸化防止用被膜11aは、後述する第2工程で、ポリイミドが生成されるときに発生する水(水分子)が、基材10の表面にまで浸透して、基材10の表面と酸化するのを防止するものである。なお、室内圧力Pが15Paであるときの成膜速度Vは8μm/hであるため(図4参照)、図5(c)に示したように、第1工程において約5μm程度の酸化防止用被膜11aを形成するまでに約5/8時間かかる。
【0025】
次に、第2工程について説明する。第2工程では、約5/8時間経過した後、気化室30,40で気化された原料モノマー31,41は、バルブ34,44が開いている状態で、導入管22,23を通って成膜室20へ導入される。ここで、気化した各原料モノマー31,41の成膜室20への流量は、各流量コントローラ35,45によってそれぞれ調節される。こうして、成膜室20内において、各原料モノマー31,41の分子数が増加して、図5(b)に示したように室内圧力Pが圧力調整器51によって90Pa(第2圧力)に設定される。また、同時に、各原料モノマー31,41が粉末状に戻らない(固体化しない)ように、図5(a)に示したように室内温度Tがヒータ26によって300度(第2温度)に設定される。なお、図5(a),(b),(c)において、室内温度Tが220度から300度へ瞬間的に切り替わるともに、室内圧力Pが15Paから90Paへ瞬間的に切り替わるように、理想的な状態が示されているが、切り替わる時間は非常に短いため、この実施形態を説明する上において特に問題はない。
【0026】
こうして、第2工程では、室内圧力Pが90Paに設定され且つ室内温度Tが300度に設定された状態で、気化した原料モノマー31,41が、衝突して反応し、ポリイミド被膜11を形成する。ここで、室内温度Tが基材10の酸化基準温度である250度より大きいため、ポリイミド被膜11の密着力の低下が問題となる。しかし、第2工程では、既に基材10の表面に酸化防止用被膜11aが形成されているため、ポリイミドが生成されるときに発生する水(水分子)が基材10の表面にまで浸透することがない。このため、発生する水と基材10の表面とが酸化して、ポリイミド被膜11の密着力が低下するという問題は生じない。なお、酸化防止用被膜11aの厚さ(5μm)は、第2工程で発生する水が基材10の表面にまで浸透することを十分防止できる厚さである。
【0027】
この第2工程では、図5(c)に示したように、ポリイミド被膜11を酸化防止用被膜11aの表面から約35μm程度形成する。この第2工程で形成されたポリイミド被膜11を厚膜用被膜11b(図2参照)と呼ぶ。厚膜用被膜11bは、所望の厚さのポリイミド被膜11を素早く形成する目的で形成されるものであり、少なくとも酸化防止用被膜11aの厚さ(5μm)より厚く形成されるものである。厚膜用被膜11bと酸化防止用被膜11aとは、異なる種類の高分子膜ではなく、同じ種類の高分子膜(ポリイミド被膜11)であるため、密着性、電気絶縁性、熱膨張率等の点で問題が生じることはない。
【0028】
そして、第2工程では、室内圧力Pが90Paであるため、図4に示したように、成膜速度Vは40μm/hである。このため、図5(c)に示したように、約35μm程度の厚膜用被膜11bを形成するまでに約7/8時間かかる。従って、この実施形態では、所望の厚さである約40μmのポリイミド被膜11を形成するのに、約3/2時間かかる。一方、従来では、図5(c)の一点鎖線で示したように、約5時間かかる。従って、この実施形態では、従来に比してポリイミド被膜11を7/2時間だけ早く形成して、成膜基材10Aを製造することができる。
【0029】
この実施形態における成膜基材の製造方法の作用効果について、説明する。
先ず、第1工程では、室内温度Tが予め設定される基材10の酸化基準温度である250度より低い。このため、ポリイミドが生成されるときに発生する水が、基材10の表面と酸化することにより、ポリイミド被膜11の密着力を著しく低下させるという問題は生じない。そして、第1工程では、ポリイミドの酸化防止用被膜11aを基材10の表面に形成する。
次に、第2工程では、室内温度Tが基材10の酸化基準温度である250度より高い。しかし、既に基材10の表面に酸化防止用被膜11aが形成されているため、ポリイミドが生成されるときに発生する水(水分子)が基材10の表面にまで浸透することがない。このため、発生する水と基材10の表面とが酸化して、ポリイミド被膜11の密着力が低下するという問題は生じない。そして、第2工程では、室内圧力Pが15Paから90Paまで大きくなっているため、各原料モノマー31,41が衝突して反応する回数が多くなり、ポリイミドの厚膜用被膜11bが素早く形成される。
従って、この実施形態によれば、蒸着重合において、ポリイミド被膜11の密着力が低くなることを防止しつつ成膜速度Vを大きくすることができる。
【0030】
以上、本発明に係る成膜基材の製造方法において、本発明はこれに限定されることはなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、本実施形態においては、ポリイミド被膜11を形成する原料モノマー31として、ピロメリット酸無水物(PMDA)を用いた。しかし、このPMDAに換えて、例えば、ピロメリット酸ジチオ二無水物(PMDTA)、二無水物3,3´,4,4´−ベンゾフェノンテトラカルボン酸(BTDA)、2,2−ビス(3,4−フェニルカルボキシル)ヘキサフロロプロパン二無水物(6FDA)等を用いても良い。
【0031】
また、本実施形態においては、ポリイミド被膜11を形成する原料モノマー41として、4,4´−ジアミノジフェニルエーテル(ODA)を用いた。しかし、このODAに換えて、例えば、パラフェニレンジアミン(p−PDA)、メタフェニレンジアミン(m−PDA)、4,4´−ビスアミノフェニルメタン(MDA)、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフロロプロパン(Bis−OAF)、ジアミノシロキサン(SiDA)、ビス(4−(トリメチルシリルアミノ)フェニル)エーテル(SiODA)等を用いても良い。
【0032】
また、本実施形態において、第1工程では、室内温度Tを220度に設定し、室内圧力Pを15Paに設定し、酸化防止用被膜11aを約5μm形成した。しかし、室内温度T、室内圧力P、酸化防止用被膜11aの厚さは、各原料モノマーの種類に応じて、適宜変更可能である。
また、本実施形態において、第2工程では、室内温度Tを300度に設定し、室内圧力Pを90Paに設定し、厚膜用被膜11bを約35μm形成した。しかし、室内温度T、室内圧力P、厚膜用被膜11bの厚さは、各原料モノマーの種類に応じて、適宜変更可能である。なお、室内温度Tは、形成されるポリイミド被膜の耐熱温度及び成膜室20の耐熱温度を考慮して、350度以下であることが好ましい。
【符号の説明】
【0033】
1 蒸着重合装置
10 基材
10A 成膜基材
11 ポリイミド被膜
11a 酸化防止用被膜
11b 厚膜用被膜
20 成膜室
24 温度センサ
25 圧力センサ
26 ヒータ
30,40 気化室
33,43 ヒータ
35,45 流量コントローラ
50 真空装置
51 圧力調整器

【特許請求の範囲】
【請求項1】
二種類の原料モノマーを真空状態の成膜室内で気化させた状態で、前記各原料モノマーを基材の表面上で蒸着重合させることにより、前記基材をポリイミド被膜で成膜する成膜基材の製造方法において、
前記成膜室内で、室内温度を予め設定される基材の酸化基準温度より低い第1温度に設定するとともに、室内圧力を前記第1温度で前記各原料モノマーが気化する第1圧力に設定して、蒸着重合により前記基材の表面にポリイミドの酸化防止用被膜を形成する第1工程と、
前記成膜室内で、前記各原料モノマーの分子数を増加して室内圧力を前記第1圧力より大きい第2圧力に設定するとともに、室内温度を前記酸化基準温度より高く且つ前記第2圧力で前記各原料モノマーが気化する第2温度に設定して、蒸着重合により前記酸化防止用被膜の表面にポリイミドの厚膜用被膜を形成する第2工程と、を備えることを特徴とする成膜基材の製造方法。
【請求項2】
請求項1に記載された成膜基材の製造方法において、
前記基材は、銅で構成されていて、
前記基材の酸化基準温度は250度であることを特徴とする成膜基材の製造方法。









【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−140647(P2012−140647A)
【公開日】平成24年7月26日(2012.7.26)
【国際特許分類】
【出願番号】特願2010−291968(P2010−291968)
【出願日】平成22年12月28日(2010.12.28)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】