説明

成膜装置および成膜方法

【課題】長尺な基板を、冷却されるドラムの周面に巻き掛けて、長手方向に搬送しつつ、成膜を行なう場合に、基板とドラムとの密着不良を抑制することにより、熱による基板の変形を防止し、高品質な機能性フィルムを効率よく連続成膜することができる成膜装置および成膜方法を提供する。
【解決手段】成膜手段による成膜領域を規定する開口部68aを有するマスク68と、マスクの開口部における基板Zの搬送方向の上流側の位置で、基板とドラム36との密着状態を検出する密着検出手段と、基板とドラムとの密着状態を制御する密着制御手段とを有し、密着制御手段が密着検出手段による密着状態の検出結果に応じて、基板とドラムとの密着状態を制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、機能性フィルムの製造等に好適な成膜装置および成膜方法に関する。
【背景技術】
【0002】
現在、液晶ディスプレイおよび有機ELディスプレイなどの表示装置、光学素子、半導体装置、または薄膜太陽電池など、各種の装置に、ガスバリアフィルム、保護フィルム、光学フィルタ、反射防止フィルム等の光学フィルムなど、各種の機能性フィルム(機能性シート)が利用されている。
また、これらの機能性フィルムの製造に、スパッタリングやプラズマCVD等の真空成膜法による成膜(薄膜形成)が利用されている。
【0003】
真空成膜法によって、効率良く、高い生産性を確保して成膜を行なうためには、長尺な基板に連続的に成膜を行なうのが好ましい。
このような成膜を実施する成膜装置としては、長尺な基板(ウェブ状の基板)をロール状に巻回してなる供給ロールと、成膜済の基板をロール状に巻回する巻取りロールとを用いる、いわゆるロール・ツー・ロール(Roll to Roll)の成膜装置が知られている。このロール・ツー・ロールの成膜装置は、基板に成膜を行なう成膜室を通過する所定の経路で、供給ロールから巻取りロールまで長尺な基板を挿通し、供給ロールからの基板の送り出しと、巻取りロールによる成膜済基板の巻取りとを同期して行いつつ、成膜室において、搬送される基板に連続的に成膜を行なう。
また、このようなロール・ツー・ロールの成膜装置では、真空チャンバ内に円筒状のドラムを設け、この周面に対面する位置に電極や反応ガス供給手段等の成膜手段を設けると共に、ドラムの周面に基板を巻き掛けて搬送しつつ、成膜手段によって連続的に成膜を行なう装置も知られている。
【0004】
成膜の際には、基板は成膜手段の熱により加熱されるため、熱によって伸びてシワや凹凸等が発生するおそれがある。特に、ロール・ツー・ロールにより成膜を行なう場合には、長尺な基板を搬送しつつ、連続的に成膜を行なうため、熱によって発生したシワや凹凸等が、基板の下流側にも拡大してしまうおそれもある。
また、特に、成膜手段の出力(電力)を上げて、生産性を向上させる場合や、熱に弱い基板を用いる場合には、熱による基板の変形が問題となる。
このような熱による基板の変形を抑制するために、ロール・ツー・ロールの成膜装置において、成膜時に基板を巻き掛けるドラムを冷却して、成膜中の基板を冷却することが一般的に行なわれている。
【0005】
例えば、特許文献1には、その外周面を冷却するための冷却手段を内蔵し、その外周面に基板(基材)を巻回して基板を走行させる冷却ドラムと、冷却ドラムの基板巻回部と対向して配置される成膜手段(蒸着材料保持部および加熱機構)と、成膜手段とドラムとの間に配置されるマスク支持体とを具備し、マスク支持体により成膜手段からの熱を部分的に遮蔽して、基板のピーク温度を低下させる蒸着装置が記載されている。
また、特許文献2には、その内部に冷媒が導入されたドラム(キャンロール)の外周面に基板(樹脂フィルム)の裏面を接触させて基板を搬送しながらその表面に成膜する真空成膜装置において、ドラムの外周面と基板の裏面との隙間に液体を供給することにより、基板の冷却効率を向上させることが記載されている。
また、特許文献3には、ドラム(支持体)上に樹脂層と金属薄膜層とを含む積層体を製造する方法であって、積層が進行するにしたがってドラムの温度を低くしていくことが記載されている。また、この特許文献3には、積層体の表面温度を測定し、測定された積層体の表面温度に基づいてドラムの温度を低くすることが記載されている。
【0006】
また、特許文献4には、熱による基板の変形に関する記載はないものの、基板(被成膜物)に格子パターンを投影可能な格子パターン投影手段と、基板を撮像可能な撮像手段と、撮像された基板上の格子パターンを画像処理して基板の三次元情報を得る情報処理手段とを有する成膜装置が記載され、基板の三次元情報に基づいて基板のテンションを調整することにより、基板のシワやねじれを防止することが記載されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平8−104979号公報
【特許文献2】特開2009−149963号公報
【特許文献3】特開2000−348971号公報
【特許文献4】特開平10−18034号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
前述のとおり、ドラムに基板を巻き掛けて搬送しつつ、成膜を行なう場合には、ドラムを冷却することにより、基板を冷却して基板の変形を防止している。そのため、基板を効率よく冷却するためには、基板とドラムとは密着する必要がある。
しかしながら、基板の成型時の歪みや、基板およびドラムの表面粗さ、および、基板とドラムとの間への異物の混入等の原因により、基板とドラムとの密着が十分でない場合がある。そのため、特許文献1に記載のように、マスク支持体により成膜手段からの熱を部分的に遮蔽しても、密着不良部分は冷却されづらいため、この部分が熱により伸びてシワになり、シワになった周辺部分がさらに密着不良を起こし、熱による変形が拡大していく。
また、熱による基板の変形を防止するために、ドラムの冷却温度を低くしすぎると、ドラム表面に水分が氷結して新たな密着不良の原因となるおそれがある。
【0009】
また、特許文献2のようにドラムと基板との隙間に液体を供給する場合には、局所的な密着不良の部分も液体を介して基板を冷却できるものの、装置構成が複雑になるため、コストが増加する。
また、特許文献3のように基板の表面温度を測定して、これに基づいてドラムの温度を低くする場合は、密着不良が拡大して、ある程度大きな範囲で密着不良となり、基板の温度上昇が測定できた場合には、ドラムの温度を下げるように制御できる。しかしながら、密着不良が拡大した部分は製品として利用できず生産効率やコストの面で問題となる。
密着不良の初期段階の局所的な密着不良を検知して、ドラムの温度を下げるように制御すれば、密着不良が拡大することを防止することができるが、密着不良の初期段階の局所的な密着不良の部分の面積割合は、全体に対して非常に小さいため、温度を測定する方法では、局所的な密着不良は検知することが難しい。
また、搬送中の基板には、張力(テンション)がかかっているため、搬送中(成膜中)は、基板とドラムとの密着不良は微小な場合でも、成膜終了後、長尺な基板から切り出してテンションレスにしないと変形が確認できない場合もあり、このような場合も、温度を測定する方法では、検知することが難しい。
【0010】
また、特許文献4のように撮像手段により、基板を撮像して、基板の密着不良を検知する場合は、ドラムに巻き掛けて成膜を行なう際には、成膜面側を撮像する必要があるため、堆積した膜の表面を撮像することになる。しかしながら、基板上に成膜される膜は、基板に比べて表面が粗いため、局所的な密着不良の検知の際のノイズとなる。また、局所的な密着不良の部分が膜に覆われて、検知しづらくなってしまう。また、無機膜を成膜すると、基板の剛性が上がるので、基板にテンションをかけても、一度できた密着不良を消すのが難しくなってしまう。
【0011】
本発明の目的は、前記従来技術の問題点を解消し、長尺な基板を、冷却されるドラムの周面に巻き掛けて、長手方向に搬送しつつ、成膜を行なう場合に、基板とドラムとの密着不良を抑制することにより、熱による基板の変形を防止し、高品質な機能性フィルムを効率よく連続成膜することができる成膜装置および成膜方法を提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明は、長尺な基板を円筒状のドラムの周面に巻き掛けて、長手方向に搬送しつつ、前記ドラムの周面に対面して配置された成膜手段によって、前記基板に成膜を行なう成膜方法であって、前記ドラムを冷却する冷却手段と、前記成膜手段による成膜領域を規定する開口部を有するマスクと、前記マスクの開口部における前記基板の搬送方向の上流側の位置で、前記基板と前記ドラムとの密着状態を検出する密着検出手段と、前記基板と前記ドラムとの密着状態を制御する密着制御手段とを有し、前記密着制御手段が前記密着検出手段による密着状態の検出結果に応じて、前記基板と前記ドラムとの密着状態を制御することを特徴とする成膜方法を提供するものである。
【0013】
また、本発明は、長尺な基板を円筒状のドラムに巻き掛けて、長手方向に搬送しつつ、前記基板に成膜を行なう成膜装置であって、前記ドラムを冷却する冷却手段と、前記ドラムの周面に対面して設けられる成膜手段と、前記成膜手段による成膜領域を規定する開口部を有するマスクと、前記マスクの開口部における、前記基板の搬送方向の上流側の位置で、前記基板と前記ドラムとの密着状態を検出する密着検出手段と、前記密着検出手段による密着状態の検出結果に応じて、前記基板と前記ドラムとの密着状態を制御する密着制御手段とを有することを特徴とする成膜装置を提供するものである。
【0014】
ここで、前記密着検出手段が、前記マスクの開口部の最上流位置から、前記基板の搬送方向0〜20%の位置で、前記密着状態を検出することが好ましい。
また、前記密着検出手段が、前記基板の表面を撮像する撮像手段と、前記撮像手段が撮像した前記基板表面の画像を解析する画像解析手段とを有することが好ましい。
また、前記撮像手段が前記基板の幅方向の全域を撮像することが好ましい。
また、前記撮像手段がCCDカメラであることが好ましい。
また、前記密着検出手段が前記基板の凹凸を検出する赤外線センサであることが好ましい。
【0015】
ここで、前記密着制御手段が前記基板にかかる張力を制御する張力制御手段であることが好ましい。
また、前記密着制御手段が前記冷却手段による冷却温度を調整することにより前記密着状態を制御することが好ましい。
【0016】
また、前記マスクの開口部以外で前記基板に膜が付着することを防止する防着板を有することが好ましい。
また、前記基板が樹脂フィルムであることが好ましい。
また、前記基板の厚さが100μm以下であることが好ましい。
また、前記成膜手段による成膜が真空成膜であることが好ましい。
【発明の効果】
【0017】
上記構成を有する本発明によれば、長尺な基板を、冷却されるドラムの周面に巻き掛けて、長手方向に搬送しつつ、成膜を行なう際に、成膜手段に対面する領域における上流側の位置で、基板とドラムとの密着状態を検出して、これに応じて、前記基板と前記ドラムとの密着状態を制御するので、基板とドラムとの密着不良を抑制することができ、熱による基板の変形を防止して、高品質な機能性フィルムを効率よく連続成膜することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の成膜装置の一例を概念的に示す図である。
【図2】図1の成膜装置の一部を概念的に示す図である。
【図3】本発明の成膜装置の他の一例を概念的に示す図である。
【図4】図3の成膜装置の一部を概念的に示す図である。
【発明を実施するための形態】
【0019】
以下、本発明の成膜装置および成膜方法について、添付の図面に示される好適例を基に、詳細に説明する。
【0020】
図1に、本発明の成膜装置の一例を概念的に示す。
図示例の成膜装置10は、長尺な基板Z(フィルム原反)を長手方向に搬送しつつ、この基板Zの表面に反応性スパッタリングによって目的とする機能を発現する膜を成膜(製造/形成)して、機能性フィルムを製造するものである。
また、この成膜装置10は、長尺な基板Zをロール状に巻回してなる基板ロール20から基板Zを送り出し、長手方向に搬送しつつ機能膜を成膜して、機能膜を成膜した基板Z(すなわち、機能性フィルム)をロール状に巻き取る、いわゆるロール・ツー・ロール(Roll to Roll)による成膜を行なう装置である。
【0021】
なお、本発明において、基板Zには、特に限定はなく、PET(ポリエチレンテレフタレート)、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリ塩化ビニル、ポリカーボネート、ポリアクリロニトリル、ポリイミド、ポリアクリレート、ポリメタクリレートなどの有機物からなる高分子フィルム(プラスチックフィルム/樹脂フィルム)、金属フィルム等、反応性スパッタリングによる成膜が可能な長尺なフィルム状物(シート状物)が、全て利用可能である。
また、樹脂フィルム等を基材として、平坦化層、保護層、密着層、反射層、反射防止層等の各種の機能を発現するための層(膜)を成膜してなるフィルム状物を、基板として用いてもよい。
【0022】
前述のように、図1に示す成膜装置10は、長尺な基板Zを巻回してなる基板ロール20から基板Zを送り出し、基板Zを長手方向に搬送しつつ機能膜を成膜して、再度、ロール状に巻き取る、いわゆるロール・ツー・ロールによる成膜を行なう装置である。この成膜装置10は、供給室12と、成膜室14と、巻取り室16とを有する。
なお、成膜装置10は、図示した部材以外にも、各種のセンサ、搬送ローラ対や基板Zの幅方向の位置を規制するガイド部材など、基板Zを所定の経路で搬送するための各種の部材(搬送手段)等、ロール・ツー・ロールによって反応性スパッタリングによる成膜を行なう装置が有する各種の部材を有してもよい。加えて、反応性スパッタリングによる成膜室が複数あってもよいし、反応性スパッタリング以外の蒸着やフラッシュ蒸着、プラズマCVD等の何らかの成膜を行う成膜室やプラズマ処理等の表面処理室が1つ以上連結されていてもよい。
【0023】
供給室12は、回転軸24と、ガイドローラ26と、真空排気手段28とを有する。
長尺な基板Zを巻回した基板ロール20は、供給室12の回転軸24に装填される。
回転軸24に基板ロール20が装填されると、基板Zは、供給室12から、成膜室14を通り、巻取り室16の巻取り軸30に至る所定の搬送経路を通される(送通される)。
成膜装置10においては、基板ロール20からの基板Zの送り出しと、巻取り室16の巻取り軸30における基板Zの巻き取りとを同期して行なって、長尺な基板Zを所定の搬送経路で長手方向に搬送しつつ、成膜室14において、基板Zに、反応性スパッタリングによる機能膜の成膜を連続的に行なう。
【0024】
供給室12は、図示しない駆動源によって回転軸24を図中時計方向に回転して、基板ロール20から基板Zを送り出し、ガイドローラ26によって所定の経路を案内して、基板Zを、隔壁32に設けられたスリット32aから、成膜室14に送る。
【0025】
図示例の成膜装置10においては、好ましい態様として、供給室12に真空排気手段28を、巻取り室16に真空排気手段60を、それぞれ設けている。これらの室に真空排気手段を設け、成膜中は、後述する成膜室14と同じ真空度(圧力)とすることにより、隣接する室の圧力が、成膜室14の真空度(機能膜の成膜)に影響を与えることを防止している。
真空排気手段28には、特に限定はなく、ターボポンプ、メカニカルブースターポンプ、ドライポンプ、ロータリーポンプなどの真空ポンプ、さらには、クライオコイル等の補助手段、到達真空度や排気量の調整手段等を利用する、真空成膜装置に用いられている公知の(真空)排気手段が、各種、利用可能である。この点に関しては、後述する他の真空排気手段50および60も同様である。
【0026】
なお、本発明においては、全ての室に真空排気手段を設けるのに限定はされず、処理として真空排気が不要な供給室12および巻取り室16には、真空排気手段は設けなくてもよい。但し、これらの室の圧力が成膜室14の真空度に与える影響を小さくするために、スリット32a等の基板Zが通過する部分を可能な限り小さくし、あるいは、室と室との間にサブチャンバを設け、このサブチャンバ内を減圧してもよい。
また、全室に真空排気手段を有する図示例の成膜装置10においても、スリット32a等の基板Zが通過する部分を可能な限り小さくするのが好ましい。
【0027】
前述のように、基板Zは、ガイドローラ26によって案内され、成膜室14に搬送される。
成膜室14は、基板Zの表面に、反応性スパッタリングによって、機能膜を成膜(形成)するものである。
図示例において、成膜室14は、ドラム36と、カソード38と、ガイドローラ40と、ピックアップローラ42と、制御ローラ52と、ガス供給手段46と、高周波電源48と、真空排気手段50と、密着検出手段54と、マスク68とを有する。また、ドラム36には温度制御手段44が接続され、ピックアップローラ42および制御ローラ52には張力制御手段62が接続されている。
【0028】
成膜室14のドラム36は、中心線を中心に図中反時計方向に回転する円筒状の部材で、ガイドローラ40によって所定の経路に案内された基板Zを、周面の所定領域に掛け回して、基板Zを後述するカソード38に対面する所定位置に保持しつつ、長手方向に搬送する。
この搬送中に、真空排気手段50によって排気すると共に、ガス供給手段46から、反応ガスを導入して成膜室14内を所定の真空度とし、さらに、高周波電源48からカソード38に所定の電力を投入することにより、基板Zの表面に、反応性スパッタリングによって成膜を行なう。
【0029】
なお、ドラム36は、対向電極としても作用するように、接地(アース)されてもよく、あるいは高周波電源等の電源に接続されてもよい。
また、図示例においては、ドラム36に対面するカソード38は、1つであるが、ドラム36による基板Zの搬送方向に、複数のカソード(成膜手段)を配置してもよい。
【0030】
本発明において、成膜する膜には、特に限定はなく、各種の公知の成膜法によって成膜可能なものであれば、製造する機能性フィルムに応じた、各種の無機物の膜が利用可能である。
また、成膜する膜の厚さにも、特に限定はなく、成膜する膜および機能性フィルムに要求される性能に応じて、必要な膜厚を、適宜、決定すればよい。
【0031】
ここで、ドラム36には、基板Zを冷却するための冷却手段が内蔵されている(図示せず)。
冷却手段には、特に限定はなく、冷媒等を循環する冷却手段、ピエゾ素子等を用いる冷却手段等、各種の冷却手段が、全て利用可能である。
また、冷却手段には、温度制御手段44が接続され、所定の冷却温度となるように制御されている。
この点に関しては、後に詳述する。
【0032】
冷却手段によってドラム36を冷却することにより、ドラム36に巻き掛けられて成膜される基板Zを冷却して、成膜の際の熱により加熱されて、基板Zが変形するのを防止する。
【0033】
なお、本発明において、冷却手段による冷却温度には、特に限定はなく、基板Zの種類や成膜条件等に応じて、適宜、設定すればよい。
【0034】
カソード38は、ターゲットTgに高周波電源48からの所定の電圧を印加するものであるとともに、ターゲットTgを保持するターゲットフォルダを兼ねる。
図示例においては、カソード38は、金属製の板状部材であり、基板Zを成膜位置に位置させるドラム36に対面して配置される。
カソード38は、各種の反応性スパッタリングによる成膜装置で利用されている、公知のカソードが全て利用可能である。
【0035】
図2は、図1に示す成膜装置10のドラム36、マスク68および撮像手段64をカソード38側から見た概略図である。
図1および図2に示されるように、マスク68は、基板Zが成膜される領域、すなわち、成膜領域を規定するためのものであると共に、成膜領域以外で基板Zに成膜物が付着することを防止するための防着板でもある。
マスク68は、板状部材で、ドラム36の周面の基板Zが巻き掛けられた領域全面(開口部68aを除く)に対応する大きさを有して、ドラム36の周面に沿って湾曲しており、ドラム36の周面に対向して配置されている。また、カソード38と対面する領域に平面視略長方形状の開口部68aが形成されている。
マスク68は、例えば、アルミナなどのセラミックス等の絶縁物により構成されている。
マスク68は、各種の反応性スパッタリングによる成膜装置で利用されている、公知のマスクが全て利用可能である。
【0036】
また、図示例においては、マスク68は、成膜領域を規定するマスクと、基板Zに成膜物が付着するのを防止する防着板とを一体にした部材としたが、本発明は、これに限定はされず、マスクと防着板とを別部材としてもよい。
【0037】
ガス供給手段46は、成膜室14内に反応ガスを導入するものである。ガス供給手段46は、各種の反応性スパッタリングによる成膜装置で利用されている、公知のガス供給手段が全て利用可能である。
また、ガス供給手段46が成膜室14内に供給する反応ガスの種類は、特に限定はなく、各種の公知の成膜法によって成膜可能なものであれば、製造する機能性フィルムに応じた、各種の反応ガスが利用可能である。
【0038】
高周波電源48は、カソード38に、電力を供給する電源である。高周波電源48は、各種の反応性スパッタリングによる成膜装置で利用されている、公知の高周波電源が、全て利用可能である。
【0039】
真空排気手段50は、反応性スパッタリングによる機能膜の成膜のために、成膜室14内を排気して、所定の成膜圧力に保つものであり、前述のように、真空成膜装置に利用されている、公知の真空排気手段である。
【0040】
密着検出手段54は、カソード38と対面する領域、すなわち、成膜領域において、基板Zの搬送方向上流側での、基板Zとドラム36との密着状態を検出するためのものである。
密着検出手段54は、撮像手段64と、画像解析手段66とを有する。
【0041】
撮像手段64は、カソード38と対面する領域、すなわち、成膜領域において、基板Zの搬送方向上流側で、基板Zの表面を撮像するためのものである。
図2に示すように、撮像手段64は、マスク68の開口部68aの上流側に配置され、成膜領域の上流側で、基板Zの幅方向(搬送方向と垂直な方向)の全体を撮像する。
撮像手段64は、撮像した画像データを画像解析手段66に供給する。
撮像手段64としては、各種の公知の撮像手段が利用可能である。撮像で得られるデータや器具の汎用性、また、コスト等の点で、CCDカメラを用いることが好ましい。
【0042】
画像解析手段66は、撮像手段64が撮像した画像データを解析して、基板Zとドラム36との密着状態を検出するものである。
本発明において、画像解析手段66による密着状態検出のための画像の解析方法に特に限定はない。例えば、画像解析手段66は、基板Zの表面を撮像した画像データから、基板Z表面の凸部を抽出して、大きさおよび高さが所定の閾値以上の凸部を、基板Zがドラム36から浮き上がって、密着不良となっている部分として検出する。
【0043】
画像解析手段66は、画像の解析結果から、密着不良を検出したら、基板Zの張力を、密着不良を解消するため予め設定された所定値とするように、張力制御手段62に指示を出す。具体的には、密着不良を検出したら、密着不良を検出した時点での張力に、予め設定された値を加えた値を所定値として、張力がこの所定値となるように、張力制御手段62に指示を出す。
同様に、画像解析手段66は、密着不良を検出したら、ドラム36の温度を、密着不良を解消するため予め定めた所定値(予め設定された値だけ低くした所定値)とするように、温度制御手段44に指示を出す。
あるいは、密着不良の状態に応じて、張力や温度調整の度合いを変更してもよい。一例として、密着不良箇所の数や大きさ等に応じて、密着不良の度合いを何段階か設定しておき、さらに、密着不良の度合いと、密着不良を解消するための基板Zの張力およびドラム36の温度との関係をテーブル(LUT)化して、画像解析手段66に記憶しておく。画像解析手段66は、画像の解析結果から密着不良の発生を検出したら、さらに、画像解析結果から、その度合いを検出する。次いで、前記LUTを参照して、密着不良を解消するための基板Zの張力およびドラム36の温度を検出し、これに応じて基板Zの張力およびドラム36の温度を検出して、これに応じて、基板Zの張力およびドラム36の温度制御を行なうように張力制御手段62および温度制御手段44に指示を出す。
【0044】
このように、密着検出手段54の撮像手段64によって、成膜領域における上流側で、基板Zの表面を撮像して、撮像して得られた画像データを画像解析手段66により解析して、基板Zとドラム36との密着状態を検出することにより、成膜の際の熱により膨らんで顕在化する局所的な密着不良を、密着不良が拡大する前の初期段階で検知することができる。
密着不良が拡大してから、密着不良を検知して、温度制御や張力制御により密着不良を改善する場合は、密着不良を完全に改善することは難しいが、初期段階の密着不良の検知結果を基に、温度制御手段44によるドラム36(基板Z)の冷却温度制御や、後述する張力制御手段62による基板Zの張力制御を行なうことにより、局所的な密着不良が拡大する前に、基板Zとドラム36との密着状態を改善することができ、これにより、基板Zが熱により変形することを防止できる。
【0045】
また、初期段階の局所的な密着不良の段階で密着状態を改善するので、成膜終了後、長尺な基板から切り出してテンションレスにしないと確認できないような弱い変形も防止することができる。
また、成膜領域における上流側で、撮像するので、膜がほとんど堆積していない状態の基板Zの表面を撮像することができる。そのため、密着不良の部分が膜に覆われて検知しづらくなることがなく、微小な密着不良を精度良くすることができる。また、無機膜が成膜されて基板Zの剛性が上がり、密着不良を改善することが難しくなることもない。
また、密着不良を確認した場合にドラム36の冷却温度を下げるので、ドラム36を冷却しすぎることが無く、ドラム36表面に水分が氷結して新たな密着不良の原因となることもない。
【0046】
また、基板Zとドラム36との密着不良を防止して、基板Zの熱による変形を好適に防止できるので、成膜の際の投入電力を高くすることができ、生産性を向上させることができる。
【0047】
ここで、撮像手段64は、マスク68の開口部68aに対応する領域(カソード38と対面する領域)、すなわち、成膜領域において、基板Zの搬送方向の上流側0〜20%の位置で、基板Zの表面を撮像することが好ましい。
これにより、より好適に密着不良を改善することができる。
【0048】
また、図示例においては、撮像手段64は、直接、基板Zの表面を撮像する構成としたが、本発明では、これに限定はされず、ミラーを介して、基板Zの表面を撮像する構成としてもよい。ミラーを介して、撮像を行なうことにより、撮像手段を成膜領域の近傍に配置する必要がないので、撮像手段64に成膜物が付着することを防止できる。また、撮像手段64が、成膜時の熱の影響を受けることも防止できる。
【0049】
前述のように、成膜装置10においては、密着検査手段54と、温度制御手段44と、張力制御手段62とを有することにより、成膜領域における上流側の位置で、基板Zとドラム36との密着状態を検出して、これに応じて、基板Zとドラム36との密着状態を制御して、基板Zとドラム36との密着不良を抑制して、熱による基板Zの変形を防止する。
【0050】
ピックアップローラ42は、搬送される基板Zを所定の経路に案内するためのものであると共に、搬送される基板Zにかかるテンション(張力)を測定するためのものである。
ピックアップローラ42は、基板Zの搬送方向において、ドラム36の下流側に配置されている。
ピックアップローラ42は、基板Zの張力の測定結果を張力制御手段62に送る。
【0051】
本発明において、基板Zの張力を測定するためのピックアップローラ42としては、ロードセルにより張力を検出するものや、ローラの変位を測定して張力を検出するもの等、ロール・ツー・ロールの成膜装置等に利用されている公知のピックアップローラが、各種利用可能である。
【0052】
制御ローラ52は、搬送される基板Zにかかる張力を調整するためのものである。
制御ローラ52は、基板Zの搬送方向において、テンションピックアップローラ42の下流側に配置されている。また、制御ローラ52は、張力制御手段62からの信号に応じて、基板Zの張力が所定の値となるように、基板面に略垂直な方向に移動して、基板Zに張力を加える。
【0053】
図示例の成膜装置10においては、制御ローラ52は、成膜室14内に配置したが、本発明は、これに限定はされず、供給室、巻取り室等に配置してもよい。
【0054】
張力制御手段62は、基板Zにかかる張力を所定の値となるように制御ローラ52を制御すると共に、密着検出手段54によるドラム36と基板Zとの密着状態の検出結果に応じて、成膜室14の制御ローラ52の変位を制御して、所定の経路を搬送される基板Zにかかる張力を、変更するものである。
張力制御手段62による制御により、基板Zは、所定の張力で、所定の経路を搬送される。
【0055】
張力制御手段62は、密着検出手段54から、基板Zとドラム36との密着状態の検出結果として、密着不良有りの信号が送られてきた場合に、基板Zにかかる張力が、密着検出手段54から指示された張力となるように、制御ローラ52を制御する。
【0056】
このように、張力制御手段62が、基板Zとドラム36との密着不良に対応して、基板Zにかかる張力を調整することにより、基板Zとドラム36との密着不良を改善することができる。これにより、基板Zが、冷却手段によって冷却されたドラム36と密着するので、基板Zが熱により変形することを防止できる。
【0057】
なお、本発明において、基板Zの張力の設定値には、特に限定はなく、基板Zの種類や成膜条件等に応じて、適宜、設定すればよい。
【0058】
ここで、成膜装置10における張力の調整の作用について説明する。
成膜装置10においては、張力制御手段62には、張力として、所定の値が設定されている(あるいは、オペレータが、基板Zの種類や成膜条件等に応じて、任意に設定可能にしてもよい)。
前述のとおり、成膜装置10において成膜が開始されると、長尺な基板Zは、基板ロール20(回転軸24)から巻取り軸30に至る所定の搬送経路を搬送される。
【0059】
ピックアップローラ42は、搬送中の基板Zにかかる張力を測定し、測定結果を張力制御手段62に送る。
張力制御手段62は、ピックアップローラ42から送られてきた張力の測定結果を基に、基板Zにかかる張力が設定された値となるように、制御ローラ52の変位量の信号を、制御ローラ52に送る。
制御ローラ52は、張力制御手段62から送られてきた信号に従い、基板面に略垂直な方向に移動して、基板Zに加わる張力を調整して、基板Zにかかる張力が設定された値となるように制御する。
【0060】
ここで、密着検出手段54(画像解析手段66)から、基板Zの張力調整の指示を受けた場合は、張力制御手段62は、基板Zにかかる張力が、密着検出手段54から、指示された張力となるように、制御ローラ52の変位量の信号を、制御ローラ52に送る。
張力制御手段62は、密着検出手段54から次の信号が送られてくるまで、基板Zにかかる張力が変更後の設定値となるように、制御ローラ52を制御する。
【0061】
温度制御手段44は、密着検出手段54によるドラム36と基板Zとの密着状態の検出結果に応じて、ドラム36に内蔵された冷却手段による冷却温度を制御するためのものである。
温度制御手段44は、通常は、ドラム36の温度(表面の温度)が予め設定された規定温度となるように、ドラム36が内蔵する冷却手段を制御する。前述のように、密着検出手段54(画像解析手段66)から、温度調整の指示を受けた際には、ドラム36の温度が、密着検出手段54から指示された温度となるように、ドラム36の冷却手段を制御する。
温度制御手段44は、密着検出手段54から次の信号が送られてくるまで、ドラム36の温度が変更後の設定値となるように、冷却手段を制御する。
【0062】
このように、温度制御手段44が、基板Zとドラム36との密着不良に対応して、冷却手段による冷却温度を低くすることにより、熱による基板Zの変形が小さくなって、基板Zとドラム36との密着不良を改善することができる。これにより、基板Zが、冷却手段によって冷却されたドラム36と密着するので、基板Zが熱により変形することを防止できる。
【0063】
以下、成膜室14における機能膜の成膜の作用を説明する。
前述のように、回転軸24に基板ロール20が装填されると、基板Zは、供給室12からガイドローラ26によって案内されて成膜室14に至り、成膜室14において、ガイドローラ40に案内されて、ドラム36の周面の所定領域に掛け回され、ピックアップローラ42および制御ローラ52によって案内されて、巻取り室16の巻取り軸30に至る所定の搬送経路を通される。
【0064】
供給室12から供給され、ガイドローラ40によって所定の経路に案内された基板Zはドラム36に支持/案内されつつ、所定の搬送経路を搬送される。なお、成膜室14内は、真空排気手段50によって所定の真空度に減圧され、また、供給室12は真空排気手段28によって、巻取り室16は真空排気手段60によって、それぞれ所定の真空度に減圧されている。
さらに、成膜室14内には、ガス供給手段46から反応ガスが供給される。
また、カソード38には、スパッタリング用のターゲットTgが装着されている。
【0065】
反応ガスの供給量および成膜室14の真空度が安定したら、カソード38には、高周波電源48から、電力が供給される。
【0066】
カソード38への電力の供給によって、カソード38を放電させて、成膜室14内に導入された反応ガスをプラズマ化する。プラズマ内のプラスイオンは、カソード38に保持されたターゲットTgをスパッタし、スパッタされたターゲットTgの構成元素は、ターゲットTgから放出され、中性あるいはイオン化された状態で、ドラム36周面に保持された基板Z上に蒸着され、成膜される。
【0067】
ここで、成膜装置10においては、撮像手段64によって、成膜領域における上流側で、基板Zの表面を撮像して、基板Zとドラム36との密着状態を検出しているので、局所的な密着不良を、密着不良が拡大する前の初期段階で検知することができる。そのため、この初期段階の密着不良の検知結果を基に、温度制御手段44によるドラム36(基板Z)の冷却温度制御や、張力制御手段62による基板Zの張力制御を行なうことにより、初期段階の局所的な密着不良が拡大する前に、基板Zとドラム36との密着状態を改善することができ、これにより、基板Zが熱により変形することを防止できる。
【0068】
このように、本発明は、基板Zとドラム36との密着不良を抑制できるので、熱による基板の変形を防止して、高品質な機能性フィルムを効率よく連続成膜することができる。
【0069】
なお、本発明において、基板Zには、特に限定はないが、基板Zの熱による変形を抑制するという本発明の効果が十分に発現できる等の点で、PET、PEN等の樹脂フィルムを用いることが好ましく、また、100μm以下の厚さの基板Zを用いることが好ましい。
【0070】
機能膜を成膜された基板Z(すなわち、機能性フィルム)は、ドラム36からピックアップローラ42に搬送され、ピックアップローラ42および制御ローラ52によって案内されて、成膜室14と巻取り室16とを隔離する隔壁56に形成されたスリット56aから、巻取り室16に搬送される。
【0071】
図示例において、巻取り室16は、ガイドローラ58と、巻取り軸30と、真空排気手段60とを有する。
巻取り室16に搬送された基板Z(機能性フィルム)は、ガイドローラ58に案内されて巻取り軸30に搬送され、巻取り軸30によってロール状に巻回され機能性フィルムロールとして、次の工程に供される。
また、先の供給室12と同様、巻取り室16にも真空排気手段60が配置され、成膜中は、巻取り室16も、成膜室14における成膜圧力に応じた真空度に減圧される。
【0072】
以上の例では、基板Zとドラム36との密着状態を制御する手段として、ドラム36の冷却温度を制御する温度制御手段44と、基板Zの張力を制御する張力制御手段62とを有する構成としたが、本発明は、これに限定はされず、ドラム36の冷却温度を制御する温度制御手段44、および、基板Zの張力を制御する張力制御手段62のいずれか一方を有する構成としてもよい。
【0073】
また、図示例においては、温度制御手段44(張力制御手段62)による冷却温度(張力)の変更後は、再び、密着不良が検知されるまでは、冷却温度(張力)を変更しない構成としたが、本発明は、これに限定はされず、密着不良を検知して、温度制御手段44(張力制御手段62)による冷却温度(張力)を変更した後、密着不良を検出した位置の基板Zがドラム36から、離間した後に、冷却温度(張力)を変更前の値に戻すようにしてもよい。
【0074】
また、図示例においては、成膜領域における上流側で撮像手段64によって撮像された画像データを解析することにより、基板Zとドラム36との密着不良を検出する構成としたが、本発明はこれに限定はされない。
例えば、成膜装置10に加えて、成膜領域よりも上流側で基板Zがドラム36に巻き掛けられた状態の位置、すなわち、マスク68の開口部68aよりも上流側の位置に、基板Zの表面を撮像する第2撮像手段を配置し、第2撮像手段によって撮像された画像データと、撮像手段64によって撮像された画像データとを比較して、密着不良を検出する構成としてもよい。
【0075】
ここで、図示例の成膜装置10においては、密着検出手段54は、撮像手段64と画像解析手段66とを有する構成としたが、本発明は、これに限定はされず、基板Zとドラム36との密着不良を好適に検出できればよい。
【0076】
図3は、本発明の成膜装置の他の一例を示す概略図であり、図4は、図3に示す成膜装置100のドラム36周辺をカソード38側から見た図である。なお、図3に示す成膜装置100は、図1に示す成膜装置10において、密着検出手段54に代えて、密着検出手段102を有する以外は、同じ構成を有するので、同じ部位には、同じ符号を付し、以下の説明は異なる部位を主に行なう。
【0077】
密着検出手段102は、赤外線センサ104と密着解析手段106とを有する。
赤外線センサ104は、カソード38と対面する領域(マスク68の開口部68a)、すなわち、成膜領域において、基板Zの搬送方向上流側で、基板Zの表面の凸部を検出するためのものであり、赤外線出射部104aと赤外線受光部104bとを有している。
【0078】
赤外線出射部104aは、ドラム36の周面に平行で、ドラム36の周面から所定高さh離間した位置に、赤外線を出射するものであり、ドラム36の一方の側面(周面とは異なる面)から所定距離離間して配置されている。
赤外線受光部104bは、赤外線出射部104aが出射した赤外線を受光するためのものであり、ドラム36の他方の側面から所定距離離間して配置されている。
【0079】
このように構成された赤外線センサ104において、赤外線出射部104aは、ドラム36の周面から所定高さhだけ離間した位置に赤外線を出射するので、ドラム36と基板Zとの密着不良がない場合(基板Z表面の凸の高さがh以下の場合)は、赤外線出射部104aから出射された赤外線は、遮られることなく、赤外線受光部104bで受光される。
これに対して、ドラム36と基板Zとの密着不良がある場合(基板Z表面の凸の高さがh以上の場合)は、赤外線出射部104aから出射された赤外線は、基板Zの凸部に遮られる。そのため、赤外線受光部104bは、赤外線を受光しない。
赤外線出射部104aは、赤外線の出射の有無の信号を密着解析手段106に供給し、赤外線受光部104bは、赤外線の受光の有無の信号を密着解析手段106に供給する。
【0080】
密着解析手段106は、赤外線出射部104aおよび赤外線受光部104bからの赤外線の出射/受光の有無の信号から、ドラム36と基板Zとの密着不良を判断する部位である。密着解析手段106は、赤外線出射部104aから赤外線の出射有りの信号を受け、かつ、赤外線受光部104bから赤外線の受光無しの信号を受けた場合に、ドラム36と基板Zとの密着不良があると判断する。
密着解析手段106は、密着不良有りの場合に、密着不良を解消するための予め設定された温度および張力の所定値を、温度制御手段44および張力制御手段62それぞれに供給する。
【0081】
このように、赤外線センサ104によって、基板Zの凸部を検出することで、基板Zの密着不良を検知する場合であっても、成膜領域において、基板Zの搬送方向上流側で、密着不良(基板Zの表面の凸部)を検知することによって、局所的な密着不良を、密着不良が拡大する前の初期段階で検知することができる。そのため、この初期段階の密着不良の検知結果を基に、温度制御手段44によるドラム36(基板Z)の冷却温度制御や、張力制御手段62による基板Zの張力制御を行なうことにより、初期段階の局所的な密着不良が拡大する前に、基板Zとドラム36との密着状態を改善することができ、これにより、基板Zが熱により変形することを防止できる。
【0082】
なお、赤外線出射部104aが出射する赤外線のドラム36周面からの高さhには特に限定はなく、基板Zの種類や成膜条件等に応じて、密着不良を好適に検出できる値とすればよい。
【0083】
また、成膜装置100においては、赤外線センサ104を1つ配置する構成としたが、本発明はこれに限定はされず、赤外線センサを、成膜領域における基板Zの搬送方向上流側に、複数配置する構成としてもよい。
【0084】
また、本発明において、成膜方法は反応性スパッタリングに限定はされず、通常のスパッタリング、プラズマCVD、蒸着等、各種の成膜方法が利用可能である。
すなわち、本発明は、長尺な基板をドラムに掛け回して搬送して、ドラムの周面に支持された基板に成膜を行なうものであれば、各種の成膜方法や成膜装置が、全て、利用可能である。
【0085】
以上、本発明の成膜装置および成膜方法について詳細に説明したが、本発明は、上記実施例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行なってもよいのは、もちろんである。
【実施例】
【0086】
図1に示す反応性スパッタリングによる成膜を行なう成膜装置を用いて、基板Zに、AlOx膜を形成した。
【0087】
[実施例1]
アルミナ膜の成膜源として、反応性スパッタを行うため、アルミニウム(Al)ターゲットを用いた直流パルス式デュアルカソードを用意した。不活性ガスとしてアルゴンガス(Ar)を、反応ガスとして酸素ガス(O)を用いた。
また、ドラムとして、材質SUSで、直径800mmのドラムを用いた。
【0088】
また、成膜室(真空チャンバ)の圧力は2.0×10−1Paとした。
また、カソードに供給される電力は、8kWとした。
また、透明なアルミナ膜の成膜において、十分な成膜速度が出るよう、発光分光による酸素導入量の制御を使用した反応性スパッタリング成膜を行い、成膜する機能膜の膜厚が50nmとなるよう、搬送速度を0.4m/minに設定した。
【0089】
また、撮像手段64は、成膜領域の上流側0〜20%の位置で基板Zの撮像を行なった。
ドラム36に内蔵された冷却手段による冷却温度は、成膜開始時は、20℃とし、温度制御手段44による制御方法は、密着不良を検出した際に、密着不良を検出した時の冷却温度よりも1℃低い温度を新たな設定温度とするようにした。また、最低温度は、5℃とした。
また、基板Zの張力は、成膜開始時は、40Nとし、張力制御手段62による制御方法は、密着不良を検出した際に、密着不良を検出したときの張力よりも2N高い値を新たな設定張力とするようにした。また、最大張力は、60Nとした。
【0090】
このような条件の下、成膜装置10において、厚さ100μmのPENフィルム(テイジン社製 Q65)、厚さ100、75、50μmのPETフィルム(東レ社製 ルミラー)をそれぞれ、基板Zとして用いて、基板Zに機能膜の成膜を行なった。
【0091】
4m分(10分間)の成膜終了後、基板Zから試料を切り出して、基板Zの変形を目視で検査した。4種類の基板Zいずれにおいても、変形が認められなかった(評価「○」)。
【0092】
[比較例1〜2]
撮像手段64が撮像する基板Zの位置を、成膜領域の中央部(上流側から30〜50%の位置)に変更した以外(比較例1);
撮像手段64が撮像する基板Zの位置を、成膜領域の下流部(上流側から80〜100%の位置)に変更した以外(比較例2); は、実施例1と同様にして、同様の試験を行なった。
【0093】
[比較例3]
また、比較例3として、密着不良の検出を行なわない、すなわち、冷却温度および張力を初期値から変更しない以外は、実施例1と同様にして、同様の試験を行なった。
【0094】
[評価]
作製した各機能性フィルムを基板Zから切り出して、基板Zの変形を目視により検査した。変形が認められなかったものを「○」、変形が認められたものを「×」と評価した。
結果を下記表1に示す。
【0095】
【表1】

【0096】
上記表1より明らかなように、成膜領域における上流側で、密着不良を検知するという本発明の成膜装置の実施例である実施例1は、いずれの基板Zでも、熱による変形が無く、また、高品質な機能性フィルムが得られた。
【0097】
これに対して、密着不良を検知しない比較例3は、いずれの基板Zでも、熱による変形が発生していた。また、成膜領域における中央部および下流側で、密着不良を検知する比較例1および2は、いずれも、基板Zの種類および厚さによっては、熱による変形が発生していた。
以上の結果より、本発明の効果は、明らかである。
【符号の説明】
【0098】
10、100 成膜装置
12 供給室
14 成膜室
16 巻取り室
20 基板ロール
24 回転軸
26、40、58 ガイドローラ
28、50、60 真空排気手段
30 巻取り軸
32、56 隔壁
32a、56a スリット
36 ドラム
38 カソード
42 ピックアップローラ
44 温度制御手段
46 ガス供給手段
48 高周波電源
52 制御ローラ
54、102 密着検出手段
62 張力制御手段
64 撮像手段
66 画像解析手段
68 マスク
68a 開口部
104 赤外線センサ
104a 赤外線出射部
104b 赤外線受光部
106 密着解析手段
Z 基板

【特許請求の範囲】
【請求項1】
長尺な基板を円筒状のドラムの周面に巻き掛けて、長手方向に搬送しつつ、前記ドラムの周面に対面して配置された成膜手段によって、前記基板に成膜を行なう成膜方法であって、
前記ドラムを冷却する冷却手段と、
前記成膜手段による成膜領域を規定する開口部を有するマスクと、
前記マスクの開口部における前記基板の搬送方向の上流側の位置で、前記基板と前記ドラムとの密着状態を検出する密着検出手段と、
前記基板と前記ドラムとの密着状態を制御する密着制御手段とを有し、
前記密着制御手段が前記密着検出手段による密着状態の検出結果に応じて、前記基板と前記ドラムとの密着状態を制御することを特徴とする成膜方法。
【請求項2】
前記密着検出手段が、前記マスクの開口部の最上流位置から、前記基板の搬送方向0〜20%の位置で、前記密着状態を検出する請求項1に記載の成膜方法。
【請求項3】
前記密着検出手段が、
前記基板の表面を撮像する撮像手段と、
前記撮像手段が撮像した前記基板表面の画像を解析する画像解析手段とを有する請求項1または2に記載の成膜方法。
【請求項4】
前記撮像手段が前記基板の幅方向の全域を撮像する請求項3に記載の成膜方法。
【請求項5】
前記撮像手段がCCDカメラである請求項3または4に記載の成膜方法。
【請求項6】
前記密着検出手段が前記基板の凹凸を検出する赤外線センサである請求項1〜5のいずれかに記載の成膜方法。
【請求項7】
前記密着制御手段が前記基板にかかる張力を制御する張力制御手段である請求項1〜6のいずれかに記載の成膜方法。
【請求項8】
前記密着制御手段が前記冷却手段による冷却温度を調整することにより前記密着状態を制御する請求項1〜7のいずれかに記載の成膜方法。
【請求項9】
前記マスクの開口部以外で前記基板に膜が付着することを防止する防着板を有する請求項1〜8のいずれかに記載の成膜方法。
【請求項10】
前記基板が樹脂フィルムである請求項1〜9のいずれかに記載の成膜方法。
【請求項11】
前記基板の厚さが100μm以下である請求項1〜10のいずれかに記載の成膜方法。
【請求項12】
前記成膜手段による成膜が真空成膜である請求項1〜11のいずれかに記載の成膜方法。
【請求項13】
長尺な基板を円筒状のドラムに巻き掛けて、長手方向に搬送しつつ、前記基板に成膜を行なう成膜装置であって、
前記ドラムを冷却する冷却手段と、
前記ドラムの周面に対面して設けられる成膜手段と、
前記成膜手段による成膜領域を規定する開口部を有するマスクと、
前記マスクの開口部における、前記基板の搬送方向の上流側の位置で、前記基板と前記ドラムとの密着状態を検出する密着検出手段と、
前記密着検出手段による密着状態の検出結果に応じて、前記基板と前記ドラムとの密着状態を制御する密着制御手段とを有することを特徴とする成膜装置。
【請求項14】
前記密着検出手段が、前記マスクの開口部の最上流位置から、前記基板の搬送方向0〜20%の位置で、前記密着状態を検出する請求項13に記載の成膜装置。
【請求項15】
前記密着検出手段が、
前記基板の表面を撮像する撮像手段と、
前記撮像手段が撮像した前記基板表面の画像を解析する画像解析手段とを有する請求項13または14に記載の成膜装置。
【請求項16】
前記撮像手段が前記基板の幅方向の全域を撮像する請求項15に記載の成膜装置。
【請求項17】
前記撮像手段がCCDカメラである請求項15または16に記載の成膜装置。
【請求項18】
前記密着検出手段が前記基板の凹凸を検出する赤外線センサである請求項13〜17のいずれかに記載の成膜装置。
【請求項19】
前記密着制御手段が前記冷却手段による冷却温度を調整するものである請求項13〜18のいずれかに記載の成膜装置。
【請求項20】
前記密着制御手段が前記基板にかかる張力を制御する張力制御手段である請求項13〜19のいずれかに記載の成膜装置。
【請求項21】
前記マスクの開口部以外で前記基板に膜が付着することを防止する防着板を有する請求項13〜20のいずれかに記載の成膜装置。
【請求項22】
前記基板が樹脂フィルムである請求項13〜21のいずれかに記載の成膜装置。
【請求項23】
前記基板の厚さが100μm以下である請求項13〜22のいずれかに記載の成膜装置。
【請求項24】
前記成膜手段による成膜が真空成膜である請求項13〜23のいずれかに記載の成膜装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−202248(P2011−202248A)
【公開日】平成23年10月13日(2011.10.13)
【国際特許分類】
【出願番号】特願2010−72169(P2010−72169)
【出願日】平成22年3月26日(2010.3.26)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】