説明

排気浄化装置

【課題】EHCにおける漏電の発生を確実に防止しつつ好適な排気浄化性能を担保する。
【解決手段】排気浄化装置は、内燃機関(200)から排出される排気を浄化するための装置であって、内燃機関の排気通路(215)に配置された電気加熱式触媒装置(400)と、排気通路における電気加熱式触媒装置の上流側及び下流側に夫々少なくとも一つ形成された、排気中の水分を貯留可能な第1の窪み部(219)及び第2の窪み部(220)又は排気中の水分を吸着可能な第1の吸着手段(700)及び第2の吸着手段(800)とを具備する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、内燃機関から排出される排気を浄化するための排気浄化装置の技術分野に関する。
【背景技術】
【0002】
この種の装置として、排ガス通路に、所謂EHC(Electrically Heated Catalyst:電気加熱式触媒装置)の一種として、高電圧発生器により印加される排ガス浄化器を配置したものが提案されている(例えば、特許文献1参照)。特許文献1に開示された排ガス浄化装置によれば、高電圧発生器又は排ガス浄化器における電圧、電流等に異常があると判断された場合に、高電圧発生器又は排ガス浄化器への給電を遮断又は大幅に制限することにより、排ガス浄化器が水分を含んでいることに起因する漏電を回避することが可能であるとされている。
【0003】
尚、この種のEHCを有さぬ構成としては、三元触媒の上下流側に夫々設置された吸水剤と、当該上流側の吸着剤の更に上流側に設けられた凹部とを備えた排気浄化装置も提案されている(例えば、特許文献2参照)。
【0004】
また、同様にEHCを有さぬ構成としては、排気凝縮水の流れを阻止する堰を無くすことにより、三元触媒作用を有する触媒コンバータから、当該触媒コンバータ下流側に形成されたV字溝に向かって流れ出す排気凝縮水を、排気通路下面に溜める車両用排気装置も提案されている(例えば、特許文献3参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2002−21541号公報
【特許文献2】特開2008−261263号公報
【特許文献3】特開平11−2120号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
上述した特許文献1に開示された装置では、特に排ガス通路内に比較的多くの水分が存在するエンジン始動時に、漏電或いはその危険性がある旨の判断がなされ、排ガス浄化器への給電が頻繁に遮断又は制限されかねない。この場合、EHCの昇温が阻害されることとなり、排ガス浄化器が予め期待された排気浄化性能を発揮することが困難となって、エミッションの悪化を生じかねない。即ち、特許文献1に開示された装置には、EHCの漏電を回避することの代償として内燃機関の始動時におけるエミッションの悪化が避け難いという技術的問題点がある。
【0007】
尚、上述した特許文献2及び特許文献3に開示された装置の各々においては、そもそもEHCの使用が想定されていない。このため、EHC特有の問題である漏電を防止する際に生じるこの種の問題に対する有効な解決策とはなり得ない。
【0008】
本発明は、上述した問題点に鑑みてなされたものであり、EHCにおける漏電の発生を確実に防止しつつ好適な排気浄化性能を担保し得る排気浄化装置を提供することを課題とする。
【課題を解決するための手段】
【0009】
上述した課題を解決するため、本発明に係る排気浄化装置は、内燃機関の排気通路に配置された電気加熱式触媒装置と、前記排気通路における前記電気加熱式触媒装置の上流側及び下流側に夫々少なくとも一つ形成された、排気中の水分を貯留可能な第1の窪み部及び第2の窪み部とを具備することを特徴とする。
【0010】
本発明に係る排気浄化装置によれば、例えば内燃機関の停止期間等において排気通路内に滞留する排気中の水分が凝縮して凝縮水が生成されたとしても、この凝縮水が、電気加熱式触媒装置の前後において排気通路に形成された第1及び第2の窪み部に導かれ、貯留される。このため、例えば内燃機関の始動時等、電気加熱式触媒装置への通電が必要とされる場合に、この凝縮水によって電気加熱式触媒又はその周辺の排気通路が結露することに起因する漏電の可能性について考慮する必要が生じない。従って、通電要求に対し、必要とされる通電を常時迅速に行うことが可能となり、触媒暖機が行われない或いは触媒暖機が不十分になるといった事態を回避することが可能となる。即ち、漏電を確実に回避しつつ好適な排気浄化性能が担保されるのである。
【0011】
上述した課題を解決するため、本発明に係る他の排気浄化装置は、内燃機関の排気通路に配置された電気加熱式触媒装置と、前記排気通路における前記電気加熱式触媒装置の上流側及び下流側に夫々少なくとも一つ形成された、排気中の水分を吸着可能な第1の吸着手段及び第2の吸着手段とを具備することを特徴とする。
【0012】
本発明に係る他の排気浄化装置によれば、例えば内燃機関の停止期間等において排気通路内に滞留する排気中の水分が凝縮して凝縮水が生成されたとしても、この凝縮水が、電気加熱式触媒装置の前後において排気通路に設置された第1及び第2の吸着手段に導かれ、吸着保持される。このため、例えば内燃機関の始動時等、電気加熱式触媒装置への通電が必要とされる場合に、この凝縮水によって電気加熱式触媒又はその周辺の排気通路が結露することに起因する漏電の可能性について考慮する必要が生じない。従って、通電要求に対し、必要とされる通電を常時迅速に行うことが可能となり、触媒暖機が行われない或いは触媒暖機が不十分になるといった事態を回避することが可能となる。即ち、漏電を確実に回避しつつ好適な排気浄化性能が担保されるのである。
【0013】
本発明のこのような作用及び他の利得は後に説明する実施形態から明らかにされる。
【図面の簡単な説明】
【0014】
【図1】本発明の内燃機関を備えるハイブリッド車両の構成を概念的に表してなる模式的なブロック図である。
【図2】図1の内燃機関の一断面構成を概念的に表してなる模式的な断面図である。
【図3】本発明の第1実施形態に係る電気加熱式触媒装置の一断面構成を概念的に且つ模式的に例示する模式断面図である。
【図4】本発明の第2実施形態に係る電気加熱式触媒装置の一断面構成を概念的に且つ模式的に例示する模式断面図である。
【図5】本発明の第3実施形態に係る電気加熱式触媒装置の一断面構成を概念的に且つ模式的に例示する模式断面図である。
【発明を実施するための形態】
【0015】
<発明の実施形態>
<第1実施形態>
<実施形態の構成>
始めに、図1を参照して、本発明の第1実施形態に係るハイブリッド車両10の構成について説明する。ここに、図1は、ハイブリッド車両10の構成を概念的に表してなる模式的なブロック図である。
【0016】
図1において、ハイブリッド車両10は、減速機構11及び車輪12、並びにECU100、エンジン200、モータジェネレータMG1、モータジェネレータMG2、動力分割機構300、EHC400、PCU500、バッテリ600及び通電許可スイッチ800を備える。
【0017】
減速機構11は、エンジン200及びモータジェネレータMG2から駆動軸(符号省略)に出力された動力に応じて回転可能に構成されたギア機構であり、当該駆動軸の回転速度を所定の減速比に従って減速可能に構成されている。減速機構11の出力軸は、ハイブリッド車両10の車軸(符号省略)に連結されており、駆動軸の動力は、回転速度が減速された状態で、当該車軸及び当該車軸に連結された車輪12に伝達されるように構成されている。
【0018】
ECU(Electronic Control Unit:電子制御ユニット)100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、ハイブリッド車両10の動作全体を制御することが可能に構成された電子制御ユニットである。
【0019】
エンジン200は、ハイブリッド車両10の主たる動力源として機能するように構成された、本発明に係る「内燃機関」の一例たるガソリンエンジンである。エンジン200は、気筒(不図示)内において点火装置(不図示)による点火動作を介して混合気を燃焼せしめると共に、係る燃焼による爆発力に応じて生じるピストン(不図示)の往復運動をクランクシャフト205の回転運動に変換することが可能に構成されている。
【0020】
ここで、図2を参照し、エンジン200の詳細について説明する。ここに、図2は、エンジン200の一断面構成を例示する模式断面図である。
【0021】
図2において、エンジン200は、気筒201内において燃焼室に点火プラグ(符号省略)の一部が露出してなる点火装置202による点火動作を介して混合気を燃焼せしめると共に、係る燃焼による爆発力に応じて生じるピストン203の往復運動を、コネクティングロッド204を介してクランクシャフト205の回転運動に変換可能に構成されている。また、クランクシャフト205の近傍には、クランクシャフト205の回転位置(即ち、クランク角)を検出するクランクポジションセンサ206が設置されている。尚、エンジン200は、紙面と垂直な方向に4本の気筒201が直列に配されてなる直列4気筒エンジンであるが、個々の気筒201の構成は相互に等しいため、図2においては一の気筒201についてのみ説明を行うこととする。
【0022】
尚、本発明に係る「内燃機関」は、燃料種別、燃料の供給態様、燃料の燃焼態様、気筒配列等を問わない各種の態様を採り得る。例えば、本実施形態に例示するガソリンエンジンに限らず、軽油を燃料とするディーゼルエンジン又はアルコールとガソリンとの混合燃料を使用可能なバイフューエルエンジン等の形態を有していてもよい。また、ガソリンエンジンであるにせよ、その気筒配列は、直列型式に限定されない。
【0023】
エンジン200において、外部から吸入された空気は吸気管207を通過し、吸気ポート210において、インジェクタ212から噴射された燃料と混合されて前述の混合気となる。燃料は、図示せぬ燃料タンクに貯留されており、図示せぬフィードポンプの作用により、図示せぬデリバリパイプを介してインジェクタ212に圧送供給されている。尚、燃料を噴射する噴射手段の形態は、図示するような所謂吸気ポート噴射型インジェクタの構成を採らずともよく、例えば、フィードポンプ或いは他の低圧ポンプにより圧送される燃料の圧力を更に高圧ポンプによって昇圧せしめ、高温高圧の気筒201内部へ燃料を直接噴射することが可能に構成された、所謂直噴インジェクタ等の形態を有していてもよい。
【0024】
気筒201内部と吸気管207とは、吸気バルブ211の開閉によってその連通状態が制御されている。気筒201内部で燃焼した混合気は排気となり吸気バルブ211の開閉に連動して開閉する排気バルブ213の開弁時に排気ポート214を介して排気管215に導かれる。排気管215は、本発明に係る「排気通路」の一例である。
【0025】
一方、吸気管207における、吸気ポート210の上流側には、図示せぬクリーナを経て導かれた吸入空気に係る吸入空気量を調節するスロットルバルブ208が配設されている。このスロットルバルブ208は、ECU100と電気的に接続されたスロットルバルブモータ209によってその駆動状態が制御される構成となっている。尚、スロットルバルブモータ209は、基本的にはアクセル開度センサにより検出されるアクセル開度Taに応じたスロットル開度が得られるように、ECU100により駆動制御されるが、その駆動制御に際してドライバの意思が介在する必要はなく(無論、ドライバの意思に反することのない範囲である)、言わば自動的にスロットル開度を調整することも可能である。即ち、スロットルバルブ209は、一種の電子制御式スロットルバルブとして構成されている。
【0026】
排気管215には、三元触媒216が設置されている。三元触媒216は、アルミナ等の塩基性担体に白金等の貴金属を担持すると共に排気管215の径方向に沿った断面がハニカム状をなし、排気中のNOx(窒素酸化物)の還元反応と、排気中のCO(一酸化炭素)及びHC(炭化水素)の酸化反応とを略同時に進行させることにより排気を浄化可能に構成された触媒コンバータである。
【0027】
また、排気管215には、エンジン200の排気空燃比を検出可能に構成された空燃比センサ217が設置されている。空燃比センサ217は、ECU100と電気的に接続されており、検出された排気空燃比は、ECU100により一定又は不定の周期で参照される構成となっている。更に、気筒201を収容するシリンダブロックに設置されたウォータジャケットには、エンジン200を冷却するために循環供給される冷却水(LLC)に係る冷却水温を検出するための水温センサ218が配設されている。水温センサ218は、ECU100と電気的に接続されており、検出された冷却水温は、ECU100により一定又は不定の周期で参照される構成となっている。
【0028】
エンジン200は、排気管215における三元触媒216の下流側に、本発明に係る「電気加熱式触媒装置」の一例としてEHC400を備える。
【0029】
EHC400は、排気管215と略同径を有する管状のケースを有し、当該ケースが上流側及び下流側の端部において排気管215に連結された構成を有する。このケースの内部には、ケースの内周面を覆うように設置され、断熱性と共に電気的絶縁性を有するセラミック製の断熱材(不図示)と、不図示のEHC担体が収容されている。
【0030】
EHC担体は、図2と直交する断面がハニカム状をなす導電性の触媒担体である。EHC担体には、不図示の酸化触媒が担持されており、EHCを通過する排気中のHC及びCOを酸化可能に構成されている。尚、EHC担体に担持される触媒は、酸化触媒に限定されず、三元触媒であってもよい。また、エンジン200は、三元触媒216に加えて或いは替えて、NSR(Nox Storage Reduction:NOx吸蔵還元)触媒等、他の触媒装置を有していてもよい。
【0031】
このEHC担体には、不図示の電極が取り付けられており、EHC担体に対し、約200Vの直流駆動電圧を供給可能に構成されている。このような構成を有するEHCでは、電極を介してこのEHC担体に駆動電圧が印加され、EHC担体に駆動電流が流れた際に、EHC担体がジュール熱により発熱する。この際、この発熱によりEHC担体に担持された酸化触媒の昇温が促されるため、酸化触媒は速やかに触媒活性状態に移行し、エンジン始動時の排気浄化性能が確保される構成となっている。また、EHC担体は、セラミック材料で構成された比較的電気抵抗の高い担体であり、駆動電圧が上記のように約200Vと高い代わりに十分なヒートマスが確保されている。
【0032】
尚、このようなEHC400の構成は、本発明に係る「電気加熱式触媒装置」の一例に過ぎず、触媒の加熱構造、EHC担体の構成及び各電極の付設態様及び制御態様等は公知の各種態様を採り得る。例えば、三元触媒216の上流側に、或いは三元触媒216を取り巻くように、セラミック等の電気抵抗体からなるヒータが設置され、当該ヒータからの輻射熱により三元触媒216の暖機を促進する構成であってもよい。即ち、この場合は、係るヒータ及び三元触媒216が、本発明に係る「電気加熱式触媒装置」の一例となり得る。また、本実施形態においては、EHC400が三元触媒216の下流側に配置されているが、EHC400は、三元触媒216の上流側に設置されていてもよい。この場合、図2における、三元触媒216とEHC400との位置関係が逆であってもよい。
【0033】
次に、図3を参照し、EHC400周辺における排気管215の構造について説明する。ここに、図3は、EHC400周辺部分における排気管215の、伸長方向に沿った概略断面図である。尚、同図において、図2と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
【0034】
図3において、排気管215におけるEHC400の上流側には、車両搭載状態において鉛直下方に向かって陥没する単一の上流側凹部219が形成されている。上流側凹部219は、EHC400よりも上流側の排気管215において排気中の水分が凝縮して凝縮水が生成された場合に排気管215の管壁を伝ってその凝縮水が流れ込むように、予め実験的にその全体形状、表面の加工態様、容積及び曲率等が定められた貯留手段であり、本発明に係る「第1の窪み部」の一例である。
【0035】
この上流側凹部219の最下方部分には、図示せぬドレイン孔が形成されており、図示せぬドレイン管に接続されている。このドレイン管は、更に図示せぬ排出装置に連結されており、ドレイン管に導かれた凝縮水は、最終的にハイブリッド車両10の車外に排出される構成となっている。また、このドレイン管とドレイン孔との接続部位には、上流側凹部219に貯留される凝縮水の貯留量が規定量を超えないように、当該貯留量が一定量を超えると開弁する弁装置が付設されており、凝縮水の貯留量に応じて適宜開弁する構成となっている。尚、この弁装置は、エンジン200の稼動期間においては開弁が禁止されており、排気がEHC400を通過することなく車外に排出されることはない。
【0036】
一方、排気管215におけるEHC400の下流側には、車両搭載状態において鉛直下方に向かって陥没する単一の下流側凹部220が形成されている。下流側凹部220は、EHC400よりも下流側の排気管215において排気中の水分が凝縮して凝縮水が生成された場合に排気管215の管壁を伝ってその凝縮水が流れ込むように、予め実験的にその全体形状、表面の加工態様、容積及び曲率等が定められた貯留手段であり、本発明に係る「第2の窪み部」の一例である。尚、上述の上流側凹部219及びこの下流側凹部220と、EHC400とにより、本発明に係る「排気浄化装置」の一例が構成されている。
【0037】
この下流側凹部220の最下方部分には、図示せぬドレイン孔が形成されており、図示せぬドレイン管に接続されている。このドレイン管は、上流側凹部220における先述したドレイン管と合流しており、先述の排出装置に連結されている。また、このドレイン管とドレイン孔との接続部位には、下流側凹部220に貯留される凝縮水の貯留量が規定量を超えないように、当該貯留量が一定量を超えると開弁する弁装置が付設されており、凝縮水の貯留量に応じて適宜開弁する構成となっている。尚、この弁装置は、エンジン200の稼動期間においては開弁が禁止されており、EHC400通過後の排気がドレイン管を経由して車外に排出されることはない。
【0038】
尚、本実施形態において、上流側凹部219及び下流側凹部220は、夫々単一の貯留手段として構成されるが、これらは複数形成されていてもよく、複数形成される場合には、各々その全体形状、表面の加工態様、容積及び曲率等が同一であってもよいし、異なっていてもよい。また、EHC400周辺の排気管215は、必ずしも図3に例示する如く鉛直方向に直交する方向へ伸長している必要はない。従って、上流側凹部219及び下流側凹部220の陥没方向もまた、その都度、水分の貯留が好適に促されるように、排気管215の形状や構成に応じて適宜調整されてよい。
【0039】
図1に戻り、モータジェネレータMG1は、バッテリ600を充電するための或いはモータジェネレータMG2に電力を供給するための発電機として、更にはエンジン200の動力をアシストする電動機として機能するように構成された電動発電機である。
【0040】
モータジェネレータMG2は、エンジン200の動力をアシストする電動機として、或いはバッテリ600を充電するための発電機として機能するように構成された電動発電機である。尚、これらモータジェネレータMG1及びモータジェネレータMG2は、例えば同期電動発電機として構成され、外周面に複数個の永久磁石を有するロータと、回転磁界を形成する三相コイルが巻回されたステータとを備える。但し、他の形式のモータジェネレータであっても構わない。
【0041】
動力分割機構300は、エンジン200の動力をMG1及び駆動軸へ分配することが可能に構成された遊星歯車機構である。尚、動力分割機構300の構成は公知の各種態様を採り得るため、ここではその詳細な説明を省略するが、簡略的に説明すると、動力分割機構300は、中心部に設けられたサンギアと、サンギアの外周に同心円状に設けられたリングギアと、サンギアとリングギアとの間に配置されてサンギアの外周を自転しつつ公転する複数のピニオンギアと、クランクシャフト205の端部に結合され、各ピニオンギアの回転軸を軸支するプラネタリキャリアとを備える。
【0042】
このサンギアは、サンギア軸を介してMG1のロータ(符合は省略)に結合され、リングギアは、リングギア軸を介してMG2の不図示のロータに結合されている。リングギア軸は、車軸と連結されており、MG2が発する動力は、リングギア軸を介して車軸へと伝達され、同様に車軸を介して伝達される車輪12からの駆動力は、リングギア軸を介してMG2に入力される。係る構成の下、動力分割機構300により、エンジン200が発する動力は、プラネタリキャリアとピニオンギアとによってサンギア及びリングギアに伝達され、エンジン200の動力が2系統に分割される。この際、サンギアに伝達される動力によって、モータジェネレータMG1が正回転側に駆動されると、モータジェネレータMG1により発電が行われる構成となっている。
【0043】
PCU500は、バッテリ600から取り出した直流電力を交流電力に変換して、モータジェネレータMG1及びモータジェネレータMG2に供給すると共に、モータジェネレータMG1及びモータジェネレータMG2によって発電された交流電力を直流電力に変換してバッテリ600に供給可能に構成された不図示のインバータ等を含み、バッテリ600と各モータジェネレータとの間の電力の入出力を、或いは各モータジェネレータ相互間の電力の入出力(即ち、この場合、バッテリ600を介さずに各モータジェネレータ相互間で電力の授受が行われる)を制御することが可能に構成された電力制御ユニットである。PCU500は、ECU100と電気的に接続されており、ECU100によってその動作が制御される構成となっている。
【0044】
一方、PCU500は、EHC400の電極と電気的に接続されており、上述したように、この電極に対して、直流駆動電圧Vdを供給可能に構成されている。前述のEHC担体には、この直流駆動電圧Vdに応じた駆動電流Idが生じ、この駆動電流IdとEHC担体の電気抵抗Rにより規定される熱エネルギW(W=Id*R)に応じて、EHC担体が発熱する構成となっている。
【0045】
バッテリ600は、モータジェネレータMG1及びモータジェネレータMG2を力行するための電力に係る電力供給源として機能することが可能に構成された充電可能な蓄電池である。
【0046】
ここで、上記EHC400では、その熱容量を十分に担保する目的から、EHC担体として、電気抵抗が比較的大きいセラミック素材(本実施形態では、SiC)が使用されている。このヒートマスの大きいEHC担体を十分に発熱させるためには、必然的に印加電圧として高電圧が要求される傾向にあり、EHC400には、上述したように約200Vの直流駆動電圧が供給される構成となっている。この際、バッテリ600は、一般的な車載用12Vバッテリと異なり、複数の電池セルが直列に配置された数百Vの高圧バッテリであり、EHC400への通電に供すべき電力資源として、電気ロスを伴う昇圧処理を介さずに済む点等において適当である。
【0047】
<実施形態の効果>
本実施形態に係るハイブリッド車両によれば、エンジン200の排気管215において、EHC400の上流側に形成された上流側凹部219と、EHC400の下流側に形成された下流側凹部220とにより、排気中の水分が、例えばエンジン200の停止期間中に、或いは、排気温度が100℃を超えない程度の軽負荷運転が継続した場合等において凝縮した結果生成される凝縮水が、EHC400上流側で生成された分については上流側凹部219に、またEHC400下流側で生成された分については下流側凹部220に、夫々遅滞なく導かれ貯留される。
【0048】
その結果、EHC400における、例えば電極、電極と絶縁部材とのモールド部分又はEHC担体等に凝縮水による結露が生じる又は凝縮水が付着することが夫々回避され、またECH400における例えばこれらの部位が凝縮水に浸潤することも防止される。従って、EHC400に対し駆動電圧Vdを印加するにあたって、この種の凝縮水による漏電の懸念が払拭され、通電要求時に即座にEHC400へ通電を行うことが可能となり、エンジン200の始動期間等における排気浄化性能が確実に担保されるのである。
【0049】
特に、本実施形態において、これらEHC400及び各凹部による排気浄化に係る利益を享受する対象車両は、エンジン200の始動機会が比較的少ない、言い換えれば、エンジン200が冷間始動を要求される可能性が通常車両と較べて高いハイブリッド車両10である。このため、漏電を防止しつつ高い排気浄化効果を得られるEHC400、上流側凹部219及び下流側凹部220からなる排気浄化装置が顕著に効果的である。
【0050】
尚、バッテリ600は、ハイブリッド車両10の車外に設置される各種外部電源により適宜充電可能に構成されていてもよい。即ち、ハイブリッド車両は、所謂PHVとして構成されていてもよい。PHVにおいては、通常のハイブリッド車両と較べてなおエンジンの始動機会が減少するため、エンジンは、冷間始動を余儀なくされ易い。このため、本発明に係る排気浄化装置が更に効果的である。また、本発明に係る排気浄化装置は、ハイブリッド車両以外の車両においても何ら問題なく搭載可能であることは言うまでもない。
【0051】
<第2実施形態>
次に、図4を参照し、本発明の第2実施形態に係る排気浄化装置について説明する。ここに、図4は、EHC400周辺部分における排気管215の、伸長方向に沿った他の概略断面図である。尚、同図において、図3と重複する箇所には同一の符合を付してその説明を適宜省略することとする。
【0052】
図4において、排気管215におけるEHC400の上流側には、上流側吸着材700が設置されている。上流側吸着材700は、活性炭により構成された、排気の流れと交わる方向の断面がハニカム状をなす、本発明に係る「第1の吸着手段」の一例である。上流側吸着材700は、EHC400の上流側に滞留する排気に含まれる水分を吸着可能に構成されている。
【0053】
また、図4において、排気管215におけるEHC400の下流側には、下流側吸着材800が設置されている。下流側吸着材800は、活性炭により構成された、排気の流れと交わる方向の断面がハニカム状をなす、本発明に係る「第2の吸着手段」の一例である。下流側吸着材800は、EHC400の下流側に滞留する排気に含まれる水分を吸着可能に構成されている。下流側吸着材800は、上流側吸着材700と共に、本発明に係る「排気浄化装置」の他の一例を構成している。
【0054】
尚、上流側吸着材700及び下流側800における全体形状、材料、表面の加工態様及び吸着容量等は、例えば予め実験的に、経験的に、理論的に、又はシミュレーション等に基づいて、可及的に高効率に水分を吸着し得るように、また排気抵抗が可及的に小さくなるように、更には吸着した水分が飽和を超えることのないように、夫々最適化されている。
【0055】
これら上流側吸着材700及び下流側吸着材800によれば、第1実施形態に係る各凹部と同様に、排気中の水分が、例えばエンジン200の停止期間中に、或いは、排気温度が100℃を超えない程度の軽負荷運転が継続した場合等において凝縮した結果生成される凝縮水が、EHC400上流側で生成された分については上流側吸着材700に、またEHC400下流側で生成された分については下流側吸着材800に、夫々吸着される。
【0056】
その結果、EHC400における、例えば電極、電極と絶縁部材とのモールド部分又はEHC担体等に凝縮水による結露が生じる又は凝縮水が付着することが夫々回避され、またECH400における例えばこれらの部位が凝縮水に浸潤することも防止される。従って、EHC400に対し駆動電圧Vdを印加するにあたって、この種の凝縮水による漏電の懸念が払拭され、通電要求時に即座にEHC400へ通電を行うことが可能となり、エンジン200の始動期間等における排気浄化性能が確実に担保されるのである。尚、これら吸着材は、排気中に含まれる水分の一部を、凝縮水として生成される以前に吸着することも可能であり、第1実施形態と較べて凝縮水の生成自体をより抑制することが可能である。
【0057】
<第3実施形態>
次に、図5を参照し、本発明の第3実施形態に係る排気浄化装置について説明する。ここに、図5は、EHC400周辺部分における排気管215の、伸長方向に沿った更に他の概略断面図である。尚、同図において、図4と重複する箇所には同一の符合を付してその説明を適宜省略することとする。尚、第3実施形態に係る排気浄化装置の構成は、第2実施形態と略同一であるとする。
【0058】
図5において、排気管215は、EHC400の上流側の一部区間が、区画壁222により上下に区画されており、上方の通路部分は、上流側吸着材700が設置された吸着通路となっている。一方、区画壁222の下方に相当する通路部分は、上流側吸着材700をバイパスするバイパス通路となっている。この吸着通路とバイパス通路とは、EHC400の直上流において合流している。
【0059】
区画壁222の上流側端部には、排気の流路を、この吸着通路とバイパス通路との間で切り替え可能な切り替え弁221が設置されている。切り替え弁221は、薄板状の仕切り弁であり、区画壁222に設けられた回転軸を回転中心として所定範囲で回動することにより、排気の通路を選択的に上記のいずれか一方に切り替え可能に構成されている。より具体的には、切り替え弁221は、バイパス通路を閉塞させる吸着側位置と、吸着通路を閉塞させるバイパス側位置との間で二値的に位置制御される。尚、切り替え弁221は、不図示のステッピングモータにより駆動される構成となっており、このステッピングモータを含む不図示の駆動系は、ECU100と電気的に接続され、ECU100によりその駆動状態が制御される構成となっている。
【0060】
ここで、エンジン200の停止期間及び始動期間における位置を含む、この切り替え弁221の通常位置は、上記吸着側位置に設定されている。このため、基本的な排気浄化装置としての効能は、上記第2実施形態と同様であり、排気中の水分が吸着されることによりEHC400の被水又は冠水が防止され、通電機会が減じられることなく通電要求に対し迅速な通電が実現される。一方、エンジン200の始動後、例えば高負荷運転が継続する等して、排気が十分に高温となり、排気管215における排気中の水分を考慮する必要がなくなった場合には、ECU100により、切り替え弁221の駆動制御を介して、切り替え弁221の位置がバイパス側位置に変更され、排気の経路が吸着通路からバイパス通路に切り替えられる。その結果、第3実施形態においては、高負荷運転時における排気抵抗の増大が抑制される。また、EHC400への通電要求時(即ち、主としてエンジン200の冷間始動時)において、EHC400の上流に凝縮水が生じていないと判断される場合(例えば、前トリップにおけるEHC400の温度が100℃よりも高い場合等)にも、ECU100により、切り替え弁221の位置がバイパス側位置に変更される。この場合、上流側吸着材700を経由することによる温度低下を生じない比較的高温の排気が、EHC400へ供給され、通電による発熱との相乗効果によりEHC400の昇温が好適に促進される。
【0061】
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う排気浄化装置もまた本発明の技術的範囲に含まれるものである。
【産業上の利用可能性】
【0062】
本発明に係る排気浄化装置は、内燃機関の始動機会が少なく、特に内燃機関の冷間始動を要求される可能性が比較的高いハイブリッド車両に適用可能である。
【符号の説明】
【0063】
10…ハイブリッド車両、100…ECU、200…エンジン、219…凹部、220…凹部、400…EHC、500…PCU、600…バッテリ。

【特許請求の範囲】
【請求項1】
内燃機関の排気通路に配置された電気加熱式触媒装置と、
前記排気通路における前記電気加熱式触媒装置の上流側及び下流側に夫々少なくとも一つ形成された、排気中の水分を貯留可能な第1の窪み部及び第2の窪み部と
を具備することを特徴とする排気浄化装置。
【請求項2】
内燃機関の排気通路に配置された電気加熱式触媒装置と、
前記排気通路における前記電気加熱式触媒装置の上流側及び下流側に夫々少なくとも一つ形成された、排気中の水分を吸着可能な第1の吸着手段及び第2の吸着手段と
を具備することを特徴とする排気浄化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−209699(P2010−209699A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2009−53869(P2009−53869)
【出願日】平成21年3月6日(2009.3.6)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】