説明

接着剤組成物及びそれを用いた半導体装置の製造方法、半導体装置

【課題】半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続するための接着剤を提供する。
【解決手段】半導体チップ10及び配線回路基板20のそれぞれの接続部15が互いに電気的に接続された半導体装置100、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において、接続部を封止する接着剤組成物を、重量平均分子量が10000以上の高分子成分と、エポキシ樹脂と、硬化剤と、アミン系表面処理フィラーとを含有する接着剤組成物とした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、接着剤組成物及びその接着剤組成物を用いた半導体装置の製造方法、半導体装置に関する。
【背景技術】
【0002】
近年、半導体チップを基板に実装し接続するには、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く用いられている。一方、半導体装置に対する小型化、薄型化、高機能化の要求に対応するため、半導体チップ及び基板間にバンプと呼ばれる導電性突起を形成して、両者を接続するフリップチップ接続方式(FC接続方式)が広まりつつある。
【0003】
例えば、半導体チップ及び基板間の接続に関して、BGA(Ball Grid Array)、CSP(Chip Size Package)等に盛んに用いられているCOB(Chip On Board)型の接続方式もFC接続方式に該当する。また、FC接続方式は、半導体チップ上に接続部(バンプや配線)を形成して、半導体チップ間を接続するCOC(Chip On Chip)型の接続方式にも広く用いられている(例えば、特許文献1参照)。
【0004】
しかしながら、更なる小型化、薄型化、高機能化の要求に対応するため、上述した接続方式を積層・多段化したチップスタック型パッケージやPOP(Package On Package)、TSV(Through Silicon Via)等も広く普及し始めている。このような積層・多段化技術は、半導体チップ等を三次元的に配置することから、二次元的に配置する手法と比較してパッケージを小さくできる。特に、TSV技術は、半導体の性能向上、ノイズ低減、実装面積の削減、省電力化にも有効であり、次世代の半導体配線技術として注目されている。
【0005】
ところで、上記接続部(バンプや配線)に用いられる主な金属としては、ハンダ、スズ、金、銀、銅、ニッケル等があり、これらの複数種を含んだ導電材料も用いられている。接続部に用いられる金属は、表面が酸化して酸化膜が生成してしまうことや、表面に酸化物等の不純物が付着してしまうことにより、接続部の接続面に不純物が生じる場合がある。このような不純物が残存すると、半導体チップ及び基板間や2つの半導体チップ間における接続性・絶縁信頼性が低下し、上述した接続方式を採用するメリットが損なわれてしまうことが懸念される。
【0006】
これらの不純物の発生を抑制すると共に接続性を向上させる方法としては、接続前に基板や半導体チップの表面に前処理を施す方法が挙げられ、OSP(Organic Solderbility Preservatives)処理に用いられるプリフラックスや防錆処理剤を施す方法が挙げられる。しかし、前処理後にプリフラックスや防錆処理剤が残存し劣化することで、接続性が低下する場合もある。
【0007】
一方、半導体チップ及び基板間等の接続部を半導体封止材料(半導体封止用接着剤)で封止する方法によれば、半導体チップ及び基板や半導体チップ同士の接続と同時に接続部を封止することが可能となる。そのため、接続部に用いられる金属の酸化や、接続部への不純物の付着を抑制し、接続部を外部環境から保護することができる。したがって、効果的に接続性・絶縁信頼性、作業性、生産性を向上させることができる。
【0008】
また、フリップチップ接続方式で製造された半導体装置では、半導体チップと基板との熱膨張係数差や半導体チップ同士の熱膨張係数差に由来する熱応力が接続部に集中して接続不良を起こさないようにするために、半導体チップ及び基板間等の空隙を半導体封止材料で封止する必要がある。特に、半導体チップと基板とでは熱膨張係数の異なる成分が用いられることが多く、半導体封止材料により封止して耐熱衝撃性を向上させることが求められる。
【0009】
上述した半導体封止材料による封止方式には大きく分けて、Capillary−Flow方式とPre−applied方式とが挙げられる(例えば、特許文献2〜6参照)。Capillary−Flow方式とは、半導体チップ及び基板等の接続後に、半導体チップ及び基板間等の空隙に液状の半導体封止材料を毛細管現象によって注入する方式である。Pre−applied方式とは、半導体チップ及び基板等の接続前に、半導体チップ又は基板にペースト状やフィルム状の半導体封止材料を供給した後、半導体チップと基板とを接続する方式である。これらの封止方式について、近年の半導体装置の小型化の進展に伴って、半導体チップ及び基板間等の空隙が狭くなっており、Capillary−Flow方式では注入に長時間必要で生産性が低下する場合や、注入できない場合、また、注入できても未充填部分が存在しボイドの原因となる場合がある。そのため、作業性・生産性・信頼性の観点からPre−applied方式が高機能・高集積・高速化可能なパッケージの作製方法として主流となっている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2008−294382号公報
【特許文献2】特開2001−223227号公報
【特許文献3】特開2002−283098号公報
【特許文献4】特開2005−272547号公報
【特許文献5】特開2006−169407号公報
【特許文献6】特開2006−188573号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
上述したPre−applied方式では、加熱加圧による接続と同時に、半導体チップ及び基板間等の空隙が半導体封止材料により封止されるため、半導体封止材料の含有成分は接続条件を考慮して選択する必要がある。一般に接続部同士の接続には、接続性・絶縁信頼性を十分に確保する観点から、金属接合が用いられている。金属接合は高温(例えば200℃以上)を用いた接続方式であるため、半導体封止材料中に残存する揮発成分や、半導体封止材料の含有成分の分解により新たに生じる揮発成分に起因して半導体封止材料が発泡してしまう場合がある。これにより、ボイドと呼ばれる気泡が発生し、半導体封止材料が半導体チップや基板からはく離してしまう。また、加熱加圧時・圧力開放時に、上記ボイドや半導体チップ等のスプリングバックが発生すると、接続部同士を接続する接続バンプの引きちぎれによる接続部の破壊等の接続不良が生じてしまう。これらに起因して、従来の半導体封止材料では、接続性・絶縁信頼性が低下することが懸念される。
【0012】
また、半導体封止材料が十分にフラックス活性(金属表面の酸化膜や不純物の除去効果)を有していない場合、金属表面の酸化膜や不純物を除去できず、良好な金属−金属接合が形成されず、導通が確保できない場合がある。更に、半導体封止材料の絶縁信頼性が低いと、接続部の狭ピッチ化に対応することが困難であり、絶縁不良が生じる。これらにも起因して、従来の半導体封止材料では、接続性・絶縁信頼性が低下することが懸念される。
【0013】
本発明は上記事情に鑑みてなされたものであり、接続性・絶縁信頼性を向上させることが可能な接着剤組成物及びその接着剤組成物を用いた半導体装置の製造方法、半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0014】
本発明は、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において接続部を封止する接着剤組成物であって、重量平均分子量が10000以上の高分子成分と、エポキシ樹脂と、硬化剤と、アミン系表面処理フィラーとを含有する、接着剤組成物を提供する。
【0015】
本発明の接着剤組成物では、接着剤組成物が所定の重量平均分子量の高分子成分と、エポキシ樹脂と、硬化剤とを含有した上で、更にアミン系表面処理フィラーを含有している。これにより、高温(例えば、200℃以上)での金属接合を用いるFC接続方式であっても接着剤組成物にボイドが発生することを抑制することが可能であると共に、接続部の金属表面から酸化物等の不純物を除去し、また、硬化・粘度増加を容易に行え、スプリングバック等に起因するハンダの引きちぎれを抑制することが可能であり、接続性が良好になる。また、接着剤組成物の絶縁信頼性を向上させることも可能である。これらに起因して、本発明の接着剤組成物では、接続性・絶縁信頼性を向上させることができる。
【0016】
高分子成分、エポキシ樹脂及び硬化剤から選ばれる少なくとも一つの有機成分は、25℃、大気圧(101.33kPa)において固形であることが好ましい。この場合、高温加熱時に接着剤組成物の含有成分が分解して揮発成分が発生することを抑制可能であり、接続性・絶縁信頼性を更に向上させることができる。
【0017】
高分子成分、エポキシ樹脂及び硬化剤から選ばれる少なくとも一つの有機成分の含有量が10質量%以上であり、上記含有量が10質量%以上である有機成分の250℃における熱重量減少率が10%以下であることが好ましい。この場合、高温加熱時に接着剤組成物の含有成分が分解して揮発成分が発生することを抑制可能であり、接続性・絶縁信頼性を更に向上させることができる。
【0018】
なお、「250℃における熱重量減少率」とは、昇温速度:10℃/分、空気流量:400mL/分、測定温度:35〜400℃の条件で行われる熱重量分析において、初期(35℃)の質量に対する35℃から250℃までに揮発した質量の割合により算出される質量減少率である。
【0019】
高分子成分はポリイミド樹脂であることが好ましい。この場合、耐熱性及びフィルム形成性を更に向上させることができる。更に、ポリイミド樹脂の重量平均分子量は30000以上であり、ポリイミド樹脂のガラス転移温度は100℃以下であることが好ましい。この場合、接着剤組成物の貼付性やフィルム形成性を更に向上させることができる。
【0020】
本発明の接着剤組成物の形状は、フィルム状であることが好ましい。この場合、接続性・絶縁信頼性や生産性を更に向上させることができる。
【0021】
本発明の接着剤組成物において、250℃、10秒における溶融粘度(フロー粘度)が1000Pa・s以下であることが好ましい。この場合、接続性信頼性や埋め込み性を更に向上させることができる。
【0022】
本発明では、接続部が主成分として金、銀、銅、ニッケル、スズ及び鉛からなる群より選ばれる少なくとも一種の金属を含有することが好ましい。この場合、電気伝導性、熱伝導性、接続性を良好にすることができる。
【0023】
また、本発明は、上記接着剤組成物を用いる半導体装置の製造方法を提供する。
【0024】
本発明の半導体装置の製造方法では、上記接着剤組成物を用いることにより、半導体装置の接続性・絶縁信頼性を向上させることができる。
【0025】
また、本発明は、上記半導体装置の製造方法によって得られる半導体装置を提供する。
【0026】
本発明の半導体装置では、上記半導体装置の製造方法を用いることにより、半導体装置の接続性・絶縁信頼性を向上させることができる。
【発明の効果】
【0027】
本発明によれば、接続性・絶縁信頼性を向上させることが可能な接着剤組成物及びその接着剤組成物を用いた半導体装置の製造方法、半導体装置を提供することができる。
【図面の簡単な説明】
【0028】
【図1】本発明の半導体装置の一実施形態を示す模式断面図である。
【図2】本発明の半導体装置の他の一実施形態を示す模式断面図である。
【図3】本発明の半導体装置の他の一実施形態を示す模式断面図である。
【図4】本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。
【図5】溶融粘度測定用のサンプルを示す模式断面図である。
【図6】絶縁信頼性試験用のサンプルの外観を示す模式図である。
【発明を実施するための形態】
【0029】
以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
【0030】
<接着剤組成物>
本実施形態の接着剤組成物(半導体封止用接着剤)は、半導体チップ及び配線回路基板(以下、場合により単に「基板」という。)のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において接続部を封止する接着剤組成物であって、重量平均分子量が10000以上の高分子成分(以下、場合により「(A)成分」という。)と、エポキシ樹脂(以下、場合により「(B)成分」という。)と、硬化剤(以下、場合により「(C)成分」という。)と、アミン系表面処理フィラー(以下、場合により「(D)成分」という。)とを含有する。以下、本実施形態の接着剤組成物の含有成分について説明する。
【0031】
((A)成分:重量平均分子量10000以上の高分子成分)
(A)成分としては、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられる。これらの中でも耐熱性及びフィルム形成性に優れるとの観点から、フェノキシ樹脂、ポリイミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリルゴム等が好ましく、フェノキシ樹脂、ポリイミド樹脂、アクリルゴムがより好ましく、ポリイミド樹脂が更に好ましい。これらの(A)成分は、単独又は2種以上の混合体や共重合体として使用することもできる。但し、(A)成分には、(B)成分であるエポキシ樹脂は含まれない。
【0032】
上記ポリイミド樹脂は、例えば、テトラカルボン酸二無水物とジアミンとを公知の方法で縮合反応させて得ることができる。すなわち、有機溶媒中で、テトラカルボン酸二無水物とジアミンとを等モル又はほぼ等モル用い(各成分の添加順序は任意)、反応温度を好ましくは80℃以下、より好ましくは0〜60℃として付加反応させる。なお、フィルム状接着剤の諸特性の低下を抑えるため、上記のテトラカルボン酸二無水物は無水酢酸で再結晶精製処理されていることが好ましい。
【0033】
上記付加反応が進行するにつれ反応液の粘度が徐々に上昇し、ポリイミドの前駆体であるポリアミド酸が生成する。ポリイミド樹脂は、上記反応物(ポリアミド酸)を脱水閉環させて得ることができる。脱水閉環は、加熱処理する熱閉環法や、脱水剤を使用する化学閉環法で行うことができる。上記ポリアミド酸は、50〜80℃の温度で加熱して解重合させることによって、その分子量を調整することができる。
【0034】
ポリイミド樹脂の原料として用いられるテトラカルボン酸二無水物としては、特に制限は無く、例えば、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、3,4,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、2,3,2’,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3,3’,4’−ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,2,4,5−ナフタレンテトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナンスレン−1,8,9,10−テトラカルボン酸二無水物、ピラジン−2,3,5,6−テトラカルボン酸二無水物、チオフェン−2,3,5,6−テトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物、2,3,2’,3’−ビフェニルテトラカルボン酸二無水物、ビス(3,4−ジカルボキシフェニル)ジメチルシラン二無水物、ビス(3,4−ジカルボキシフェニル)メチルフェニルシラン二無水物、ビス(3,4−ジカルボキシフェニル)ジフェニルシラン二無水物、1,4−ビス(3,4−ジカルボキシフェニルジメチルシリル)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシフェニル)−1,1,3,3−テトラメチルジシクロヘキサン二無水物、p−フェニレンビス(トリメリテート無水物)、エチレンテトラカルボン酸二無水物、1,2,3,4−ブタンテトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、シクロペンタン−1,2,3,4−テトラカルボン酸二無水物、ピロリジン−2,3,4,5−テトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビス(エキソ−ビシクロ〔2,2,1〕ヘプタン−2,3−ジカルボン酸二無水物、ビシクロ−〔2,2,2〕−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェニル)フェニル〕プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2−ビス〔4−(3,4−ジカルボキシフェニル)フェニル〕ヘキサフルオロプロパン二無水物、4,4’−ビス(3,4−ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、1,4−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、1,3−ビス(2−ヒドロキシヘキサフルオロイソプロピル)ベンゼンビス(トリメリット酸無水物)、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、テトラヒドロフラン−2,3,4,5−テトラカルボン酸二無水物、下記一般式(I)で表されるテトラカルボン酸二無水物、下記式(II)で表されるテトラカルボン酸二無水物等が挙げられる。
【0035】
【化1】


[式中、aは2〜20の整数を示す。]
【0036】
【化2】

【0037】
上記一般式(I)で表されるテトラカルボン酸二無水物としては、例えば、無水トリメリット酸モノクロライド及び対応するジオールから合成することができ、具体的には1,2−(エチレン)ビス(トリメリテート無水物)、1,3−(トリメチレン)ビス(トリメリテート無水物)、1,4−(テトラメチレン)ビス(トリメリテート無水物)、1,5−(ペンタメチレン)ビス(トリメリテート無水物)、1,6−(ヘキサメチレン)ビス(トリメリテート無水物)、1,7−(ヘプタメチレン)ビス(トリメリテート無水物)、1,8−(オクタメチレン)ビス(トリメリテート無水物)、1,9−(ノナメチレン)ビス(トリメリテート無水物)、1,10−(デカメチレン)ビス(トリメリテート無水物)、1,12−(ドデカメチレン)ビス(トリメリテート無水物)、1,16−(ヘキサデカメチレン)ビス(トリメリテート無水物)、1,18−(オクタデカメチレン)ビス(トリメリテート無水物)等が挙げられる。
【0038】
上記テトラカルボン酸二無水物としては、優れた耐湿信頼性を付与できる点で上記式(II)で表されるテトラカルボン酸二無水物が好ましい。上記テトラカルボン酸二無水物は単独で又は二種類以上を組み合わせて使用することができる。
【0039】
上記式(I)、(II)で表されるテトラカルボン酸二無水物の含有量は、全テトラカルボン酸二無水物に対して40モル%以上が好ましく、50モル%以上がより好ましく、70モル%以上が更に好ましい。含有量が40モル%未満であると、上記式(I)、(II)で表されるテトラカルボン酸二無水物を使用したことによる耐湿信頼性の効果を充分に確保することができない傾向がある。
【0040】
上記ポリイミド樹脂の原料として用いられるジアミンとしては、特に制限はなく、例えば、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、3,3’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルエーテル、3,3’−ジアミノジフェニルメタン、3,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテメタン、ビス(4−アミノ−3,5−ジメチルフェニル)メタン、ビス(4−アミノ−3,5−ジイソプロピルフェニル)メタン、3,3’−ジアミノジフェニルジフルオロメタン、3,4’−ジアミノジフェニルジフルオロメタン、4,4’−ジアミノジフェニルジフルオロメタン、3,3’−ジアミノジフェニルスルフォン、3,4’−ジアミノジフェニルスルフォン、4,4’−ジアミノジフェニルスルフォン、3,3’−ジアミノジフェニルスルフィド、3,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルケトン、3,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルケトン、2,2−ビス(3−アミノフェニル)プロパン、2,2’−(3,4’−ジアミノジフェニル)プロパン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(3−アミノフェニル)ヘキサフルオロプロパン、2,2−(3,4’−ジアミノジフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(3−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、3,3’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、3,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、4,4’−(1,4−フェニレンビス(1−メチルエチリデン))ビスアニリン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(3−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(3−アミノエノキシ)フェニル)スルフィド、ビス(4−(4−アミノエノキシ)フェニル)スルフィド、ビス(4−(3−アミノエノキシ)フェニル)スルフォン、ビス(4−(4−アミノエノキシ)フェニル)スルフォン、3,5−ジアミノ安息香酸等の芳香族ジアミン、1,3−ビス(アミノメチル)シクロヘキサン、2,2−ビス(4−アミノフェノキシフェニル)プロパン、下記一般式(III)で表される脂肪族エーテルジアミン、下記一般式(IV)で表される脂肪族ジアミン、下記一般式(V)で表されるシロキサンジアミン等が挙げられる。これらの中でも、低応力性、低温ラミネート性、低温接着性を付与できる点で下記一般式(III)又は(IV)が好ましく、低吸水性、低吸湿性を付与できる点で下記一般式(V)が好ましい。これらのジアミンは単独で又は2種以上を組み合わせて使用することができる。
【0041】
【化3】


[式中、Q、Q及びQは各々独立に炭素数1〜10のアルキレン基を示し、bは2〜80の整数を示す。]
【0042】
【化4】


[式中、cは5〜20の整数を示す。]
【0043】
【化5】


[式中、Q及びQは各々独立に炭素数1〜5のアルキレン基又は置換基を有してもよいフェニレン基を示し、Q、Q、Q、及びQは各々独立に炭素数1〜5のアルキル基、フェニル基又はフェノキシ基を示し、dは1〜5の整数を示す。]
【0044】
上記一般式(III)で表される脂肪族エーテルジアミンの含有量は、全ジアミンの1〜50モル%であることが好ましく、上記一般式(IV)で表される脂肪族ジアミンの含有量は、全ジアミンの20〜80モル%であることが好ましく、上記一般式(V)で表されるシロキサンジアミンの含有量は、全ジアミンの20〜80モル%であることが好ましい。上記含有量の範囲外であると、低温ラミネート性及び低吸水性の付与の効果が小さくなる傾向がある。
【0045】
また、上記一般式(III)で表される脂肪族エーテルジアミンとしては、具体的には下記の脂肪族エーテルジアミン等が挙げられる。これらの中でも、低温ラミネート性と有機レジスト付き基板に対する良好な接着性とを確保できる点で、下記一般式(VI)で表される脂肪族エーテルジアミンが好ましい。
【化6】

【0046】
【化7】


[式中、eは2〜80の整数を示す。]
【0047】
上記一般式(VI)で表される脂肪族エーテルジアミンとしては、具体的には、サンテクノケミカル(株)製のジェファーミンD−230,D−400,D−2000,D−4000,ED−600,ED−900,ED−2001,EDR−148や、BASF製のポリエーテルアミンD−230,D−400,D−2000等のポリオキシアルキレンジアミン等の脂肪族ジアミンが挙げられる。
【0048】
上記一般式(IV)で表される脂肪族ジアミンとしては、例えば、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,6−ジアミノヘキサン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン、1,2−ジアミノシクロヘキサン等が挙げられる。これらの中でも、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカンが好ましい。
【0049】
上記一般式(V)で表されるシロキサンジアミンとしては、例えば、一般式(V)中のpが1の場合には1,1,3,3−テトラメチル−1,3−ビス(4−アミノフェニル)ジシロキサン、1,1,3,3−テトラフェノキシ−1,3−ビス(4−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラフェニル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(2−アミノエチル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノプロピル)ジシロキサン、1,1,3,3−テトラメチル−1,3−ビス(3−アミノブチル)ジシロキサン、1,3−ジメチル−1,3−ジメトキシ−1,3−ビス(4−アミノブチル)ジシロキサン等が挙げられ、pが2の場合には1,1,3,3,5,5−ヘキサメチル−1,5−ビス(4−アミノフェニル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラフェニル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(2−アミノエチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(4−アミノブチル)トリシロキサン、1,1,5,5−テトラメチル−3,3−ジメトキシ−1,5−ビス(5−アミノペンチル)トリシロキサン、1,1,3,3,5,5−ヘキサメチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサエチル−1,5−ビス(3−アミノプロピル)トリシロキサン、1,1,3,3,5,5−ヘキサプロピル−1,5−ビス(3−アミノプロピル)トリシロキサン等が挙げられる。
【0050】
上記ポリイミド樹脂は単独又は必要に応じて2種以上を混合(ブレンド)してもよい。
【0051】
(A)成分のガラス転移温度(Tg)は、接着剤組成物の基板や半導体チップへの貼付性に優れるとの観点から、100℃以下が好ましく、75℃以下がより好ましい。Tgが100℃より高い場合には、半導体チップに形成されたバンプや、基板に形成された電極や配線パターン等の凹凸を接着剤組成物により埋め込むことができず、気泡が残存してボイドが発生し易い傾向がある。なお、上記Tgとは、DSC(パーキンエルマー社製DSC−7型)を用いて、サンプル量10mg、昇温速度5℃/min、測定雰囲気:空気、の条件で測定したときのTgである。
【0052】
(A)成分の重量平均分子量は、ポリスチレン換算で10000以上であり、単独で良好なフィルム形成性を示すために、30000以上が好ましく、50000以上がより好ましい。重量平均分子量が10000より小さい場合には、フィルム形成性が低下する。なお、上記重量平均分子量とは、高速液体クロマトグラフィー(島津製作所製C−R4A)を用いて、ポリスチレン換算で測定したときの重量平均分子量のことである。
【0053】
((B)成分:エポキシ樹脂)
(B)成分は、分子内に2個以上のエポキシ基を有するものが好ましく、例えば、ビスフェノールA型、ビスフェノールF型、ナフタレン型、アントラセン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、各種多官能エポキシ樹脂等を使用することができる。これらは単独又は2種以上の混合体として使用することができる。
【0054】
(B)成分の含有量は、特に制限されないが、フィルム状を良好に保持するため、(A)成分100質量部に対して1〜500質量部が好ましく、5〜300質量部がより好ましく、10〜200質量部が更に好ましい。含有量が1質量部より小さいと、硬化性が低下し、接着力が低下する傾向があり、500質量部より大きいと、フィルム形成性が低下する傾向がある。
【0055】
((C)成分:硬化剤)
(C)成分としては、例えば、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤及びホスフィン系硬化剤が挙げられる。(C)成分がフェノール性水酸基、酸無水物、アミン類、イミダゾール類等を含むと、接続部に酸化膜が生じることを抑制するフラックス活性を示し、接続性・絶縁信頼性を向上させることができる。以下、各硬化剤について説明する。
【0056】
(i)フェノール樹脂系硬化剤
フェノール樹脂系硬化剤としては、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノールノボラック、クレゾールノボラック、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール、各種多官能フェノール樹脂等を使用することができる。これらは単独又は2種以上の混合体として使用することができる。
【0057】
上記(B)成分に対するフェノール樹脂系硬化剤の当量比(フェノール性水酸基/エポキシ基、モル比)は、良好な硬化性、接着性、保存安定性等の観点から、0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0.5〜1.0が更に好ましい。当量比が0.3より小さいと、硬化性が低下し、接着力が低下する傾向があり、1.5を超えると、未反応のフェノール性水酸基が過剰に残存し、吸水率が高くなり、絶縁信頼性が低下する傾向がある。
【0058】
(ii)酸無水物系硬化剤
酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、エチレングリコールビスアンヒドロトリメリテート等を使用することができる。これらは単独又は2種以上の混合体として使用することができる。
【0059】
上記(B)成分に対する酸無水物系硬化剤の当量比(酸無水物基/エポキシ基、モル比)は、良好な硬化性、接着性、保存安定性等の観点から、0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0.5〜1.0が更に好ましい。当量比が0.3より小さいと、硬化性が低下し、接着力が低下する傾向があり、1.5を超えると、未反応の酸無水物が過剰に残存し、吸水率が高くなり、絶縁信頼性が低下する傾向がある。
【0060】
(iii)アミン系硬化剤
アミン系硬化剤としては、例えば、ジシアンジアミド等を使用することができる。
【0061】
上記(B)成分に対するアミン系硬化剤の当量比(アミン/エポキシ基、モル比)は、良好な硬化性、接着性、保存安定性等の観点から0.3〜1.5が好ましく、0.4〜1.0がより好ましく、0,5〜1.0が更に好ましい。当量比が0.3より小さいと、硬化性が低下し、接着力が低下する傾向があり、1.5を超えると、未反応のアミンが過剰に残存し、絶縁信頼性が低下する傾向がある。
【0062】
(iv)イミダゾール系硬化剤
イミダゾール系硬化剤としては、例えば、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノ−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾールトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−ウンデシルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加体、2−フェニルイミダゾールイソシアヌル酸付加体、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、エポキシ樹脂とイミダゾール類の付加体等が挙げられる。これらの中でも、優れた硬化性、保存安定性、接続性・絶縁信頼性の観点から、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノ−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾールトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−エチル−4’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加体、2−フェニルイミダゾールイソシアヌル酸付加体、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールが好ましい。これらは単独又は2種以上を併用してもよい。また、これらをマイクロカプセル化した潜在性硬化剤としてもよい。
【0063】
イミダゾール系硬化剤の含有量は、(B)成分100質量部に対して、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。含有量が0.1質量部より小さい場合には、硬化性が低下する傾向があり、10質量部を超える場合には、金属接合が形成される前に接着剤組成物が硬化してしまい、接続不良が発生し易い傾向がある。
【0064】
(v)ホスフィン系硬化剤
ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4−メチルフェニル)ボレート、テトラフェニルホスホニウム(4−フルオロフェニル)ボレート等が挙げられる。
【0065】
ホスフィン系硬化剤の含有量は、(B)成分100質量部に対して、0.1〜10質量部が好ましく、0.1〜5質量部がより好ましい。含有量が0.1質量部より小さい場合には、硬化性が低下する傾向があり、10質量部を超える場合には、金属接合が形成される前に接着剤組成物が硬化してしまい、接続不良が発生し易い傾向がある。
【0066】
フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤は、1種を単独で又は2種以上の混合体として使用することができる。イミダゾール系硬化剤及びホスフィン系硬化剤は、単独で用いてもよいが、硬化促進剤としてフェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤と共に用いてもよい。
【0067】
(A)成分、(B)成分及び(C)成分は、本実施形態の接着剤組成物における有機成分に含まれる。上記有機成分の含有量は、接着剤組成物全体に対して10質量%以上が好ましく、50質量%以上がより好ましく、70質量%以上が更に好ましい。有機成分の含有量が10質量%未満であると、無機成分(例えば、フィラー)の量が多くなる傾向があり、接着剤組成物がもろく壊れやすく、また、接着剤組成物のフロー量が低下し接続性が低下する傾向がある。
【0068】
(A)成分100質量部に対する(B)成分及び(C)成分の含有量の合計は、特に制限されないが、フィルム状を良好に保持するため、1〜400質量部が好ましく、10〜400質量部がより好ましく、10〜300質量部が更に好ましい。この含有量が1質量部より小さいと、フィルム状接着剤の硬化性が低下し、接着力が低下する傾向があり、400質量部より大きいと、フィルム形成性が低下する傾向がある。
【0069】
(A)成分、(B)成分及び(C)成分の250℃における熱重量減少率は、それぞれ10%以下が好ましく、9%以下がより好ましく、8%以下が更に好ましい。(A)成分、(B)成分及び(C)成分から選ばれる少なくとも一つの有機成分の含有量が10質量%以上である場合には、含有量が10質量%以上である当該有機成分の250℃における熱重量減少率が10%以下であることが特に好ましい。
【0070】
また、高温加熱時に分解して揮発成分が発生し易い傾向があることから、接続時の接続部の温度が250℃程度となる場合には、(B)成分の250℃における熱重量減少率は、10%以下が好ましく、5%以下がより好ましく、接続部の温度が300℃程度となる場合には、(B)成分の300℃における熱重量減少率は、10%以下が好ましく、5%以下がより好ましい。
【0071】
(A)成分、(B)成分及び(C)成分は、室温(25℃)、大気圧で液状であると(例えば(C)成分における液状フェノール、液状酸無水物、液状アミン)、高温加熱時に分解して揮発成分が発生し易い傾向がある。そのため、室温(25℃)、大気圧において、(A)成分、(B)成分及び(C)成分から選ばれる少なくとも一つの有機成分は固形であることが好ましく、(A)成分、(B)成分及び(C)成分の全てが固形であることがより好ましい。特に、(B)成分については、ビスフェノールA型やビスフェノールF型の液状エポキシ樹脂は、1%熱重量減少温度が250℃以下であるため、高温加熱時に分解して揮発成分が発生し易い傾向があることから、室温(25℃)、大気圧で固形のエポキシ樹脂を用いることが好ましい。
【0072】
((D)成分:アミン系表面処理フィラー)
(D)成分は、アミン化合物により予め表面処理されたフィラーである。好適に用いることができるアミン化合物としては、例えば、フィラーがシリカフィラーである場合にはアミノシランが挙げられる。
【0073】
アミン系表面処理が施されるフィラーとしては、絶縁性無機フィラーやウィスカー、樹脂フィラーを用いることができる。絶縁性無機フィラーとしては、例えば、ガラス、シリカ、アルミナ、酸化チタン、カーボンブラック、マイカ、窒化ホウ素等が挙げられる。これらの中でも、シリカ、アルミナ、酸化チタン、窒化ホウ素が好ましく、シリカ、アルミナ、窒化ホウ素がより好ましい。ウィスカーとしては、例えば、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、硫酸マグネシウム、窒化ホウ素等が挙げられる。樹脂フィラーとしては、例えば、ポリウレタン、ポリイミド等を用いることができる。これらのフィラー、ウィスカー及び樹脂フィラーは1種を単独で又は2種以上の混合体として使用することができる。
【0074】
(D)成分の含有量は、(A)成分100質量部に対して、5〜50質量部が好ましく、5〜30質量部がより好ましく、5〜20質量部が更に好ましい。含有量が5質量部より小さいと、(D)成分の添加効果が発現しにくい傾向があり、50質量部を超えると、接着剤組成物のフロー粘度が低下し、接続性が低下する傾向がある。
【0075】
(D)成分の形状としては、球状、フレーク状のものを特に制限なく適用できる。(D)成分の平均粒径は、特に制限されるものではないが0.1〜2μm程度である。なお、(D)成分として平均粒径の異なるフィラーを混合して用いてもよい。
【0076】
ところで、従来から用いられているフィラーは、吸湿率及び熱膨張率の低下、高温弾性率の向上等により接続性・絶縁信頼性を向上させるためには効果的であるが、フィラー自体のフラックス活性は通常乏しいものである。ここで、例えばシランカップリング剤等をシリカフィラーと共に樹脂中に含有させると、フィラーの表面がシランカップリング処理されてシランカップリング剤の置換基によって様々な表面状態のシリカフィラーを合成することができる。しかし、シランカップリング剤の揮発性は高く、高温接続を必要とする金属接合ではボイドが発生する原因となる。同様に、従来から用いられているフィラーを表面処理する場合、メタノール等の揮発性の高い有機物が発生する場合があり、ボイドが発生する原因となる。
【0077】
一方、本実施形態の接着剤組成物では、予め表面処理されたアミン系表面処理フィラーを用いることで、揮発性の高い物質の発生を抑制することができると共に、アミン系化合物は塩基性を示すためフラックス活性を付与することができる。また、アミン系化合物は、エポキシ樹脂との反応性が良好であることから、エポキシ樹脂及びフィラー間に良好なネットワークが形成され、実装圧着中の接着剤組成物の粘度も高くなる。そのため、接続バンプの引きちぎれ等の接続部の破壊が抑制され、接続性・絶縁信頼性が向上する。
【0078】
本実施形態の接着剤組成物には、粘度や硬化物の物性を制御するため、及び、半導体チップ及び基板等を接続した際のボイドの発生や吸湿率の上昇を抑制するために、(D)成分の他にフィラーを配合してもよい。
【0079】
フィラーとしては、絶縁性無機フィラー、ウィスカー、樹脂フィラーを用いることができる。絶縁性無機フィラー、ウィスカー、樹脂フィラーとしては、上記(D)成分と同様の物質を使用することができる。これらのフィラー、ウィスカー及び樹脂フィラーは1種を単独で又は2種以上の混合体として使用することもできる。フィラーの形状、平均粒径、及び含有量については、特に制限されない。
【0080】
更に、本実施形態の接着剤組成物には、酸化防止剤、シランカップリング剤、チタンカップリング剤、レベリング剤、イオントラップ剤等の添加剤を配合してもよい。これらは1種を単独で用いてもよいし、2種以上組み合わせて用いてもよい。これらの含有量については、各添加剤の効果が発現するように適宜調整すればよい。
【0081】
本実施形態の接着剤組成物の250℃、10秒における溶融粘度は、1000Pa・s以下が好ましく、900Pa・s以下がより好ましく、800Pa・s以下が更に好ましい。溶融粘度が1000Pa・sを超えると、接続性が低下する傾向がある。なお、溶融粘度は、加熱加圧に伴う接着剤組成物の体積変化を画像解析により算出し、平行板プラストメータ法により算出することができる。なお、平行板プラストメータ法については、例えば、1946年度のJournal of Applied Physics 第17巻、458〜471頁に記載されている。
【0082】
本実施形態の接着剤組成物は、Pre−applied方式に適用される場合、ペースト状やフィルム状として用いることができる。これらの中でも、半導体チップの薄型化の傾向が強まるにつれ、圧着接続時の半導体チップ上への接着剤組成物の這い上がりや、樹脂成分の飛び散りによる実装装置の劣化、生産性の低下が懸念されるため、フィルム状であることが好ましい。なお、本実施形態の接着剤組成物は、(A)成分、(B)成分及び(C)成分の少なくとも一つが液状であればCapillary−Flow方式に適用することもできる。
【0083】
後述する半導体装置の製造方法では、フィルム状の接着剤組成物を半導体チップが複数連結した半導体ウェハ(個片化した際に、一つ一つのチップ上に同様にバンプや配線が配置・形成されるように設計された半導体ウェハ)に貼り付けた後に個片化する方法における個片化する位置や、半導体チップと基板との接続時や半導体チップ同士の接続時の相対位置について、位置合わせを行う場合がある。この場合、基板や半導体チップに形成された位置合わせマーク(アライメントマーク)やダイシングするライン(スクライブライン:個片化する位置・ライン)を、フィルム状接着剤を通して認識する必要がある。そのため、フィルム状の接着剤組成物の波長550nmの光に対する透過率は、5%以上が好ましく、10%以上がより好ましく、15%以上が更に好ましい。実装装置の認識装置によって位置合わせマークの認識精度は異なるため、認識装置によって適宜認識できる透過率に設定すればよい。フィルム状の接着剤組成物が(D)成分の他に無機フィラーを含有している場合、無機フィラーと樹脂成分との屈折率をほぼ同一にすることによって、前述の透過率を達成することができる。このような無機フィラーとしては、エポキシ樹脂との屈折率が類似しており、含有する不純物が少なく耐HAST性が良好であることから、シリカフィラーが好ましい。
【0084】
本実施形態の接着剤組成物を用いたフィルム状接着剤の作製方法を以下に示す。まず、(A)成分、(B)成分、(C)成分、(D)成分及び添加剤を有機溶媒中に加え、攪拌混合、混錬等により、溶解又は分散させて、樹脂ワニスを調製する。その後、離型処理を施した基材フィルム上に、樹脂ワニスをナイフコーター、ロールコーターやアプリケーターを用いて塗布した後、加熱により有機溶媒を除去することにより、基材フィルム上にフィルム状接着剤が得られる。なお、(A)成分を合成後に単離することなく、合成後に得られるワニス中に各成分を加えて上記樹脂ワニスを調製してもよい。
【0085】
樹脂ワニスの調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましく、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、酢酸エチル等が挙げられる。これらの有機溶媒は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス調製の際の攪拌混合や混錬等は、攪拌機、らいかい機、3本ロール、ボールミル、ホモディスパー等を用いて行うことができる。
【0086】
基材フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が例示できる。基材フィルムは、これらのフィルムからなる単層のものに限られず、2種以上の材料からなる多層フィルムであってもよい。
【0087】
基材フィルムへ塗布した樹脂ワニスから有機溶媒を揮発させる際の乾燥条件は、有機溶媒が十分に揮発する条件とすることが好ましく、具体的には、50〜200℃、0.1〜90分間の加熱を行うことが好ましい。
【0088】
<半導体装置>
本実施形態の半導体装置について、図1,2を用いて以下説明する。図1は、本発明の半導体装置の一実施形態を示す模式断面図である。図1(a)に示すように、半導体装置100は、互いに対向する半導体チップ10及び基板(回路配線基板)20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置された配線15と、半導体チップ10及び基板20の配線15を互いに接続する接続バンプ30と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤組成物40とを有している。半導体チップ10及び基板20は、配線15及び接続バンプ30によりフリップチップ接続されている。配線15及び接続バンプ30は、接着剤組成物40により封止されており外部環境から遮断されている。
【0089】
図1(b)に示すように、半導体装置200は、互いに対向する半導体チップ10及び基板20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置されたバンプ32と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤組成物40とを有している。半導体チップ10及び基板20は、対向するバンプ32が互いに接続されることによりフリップチップ接続されている。バンプ32は、接着剤組成物40により封止されており外部環境から遮断されている。
【0090】
図2は、本発明の半導体装置の他の一実施形態を示す模式断面図である。図2(a)に示すように、半導体装置300は、2つの半導体チップ10が配線15及び接続バンプ30によりフリップチップ接続されている点を除き、半導体装置100と同様である。図2(b)に示すように、半導体装置400は、2つの半導体チップ10がバンプ32によりフリップチップ接続されている点を除き、半導体装置200と同様である。
【0091】
半導体チップ10としては、特に限定はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体等、各種半導体を用いることができる。
【0092】
基板20としては、回路基板であれば特に制限はなく、主な成分として、ガラスエポキシ、ポリイミド、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン、ポリイミド等を主な成分とする絶縁基板の表面に、金属膜の不要な個所をエッチング除去して形成された配線(配線パターン)15を有する回路基板、上記絶縁基板の表面に金属めっき等によって配線15が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線15が形成された回路基板等を用いることができる。
【0093】
配線15やバンプ32等の接続部は、主成分として金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、ニッケル、スズ、鉛等を含有しており、複数の金属を含有していてもよい。
【0094】
上記金属の中でも、接続部の電気伝導性・熱伝導性に優れたパッケージとする観点から、金、銀及び銅が好ましく、銀及び銅がより好ましく、銀が更に好ましい。コストが低減されたパッケージ(接合部)とする観点から、安価であることに基づき銀、銅及びハンダが好ましく、銅及びハンダがより好ましく、ハンダが更に好ましい。室温において金属の表面に酸化膜が形成すると生産性が低下する場合やコストが増加する場合があるため、酸化膜の形成を抑制する観点から、金、銀、銅及びハンダが好ましく、金、銀、ハンダがより好ましく、金、銀が更に好ましい。
【0095】
上記配線15及びバンプ32の表面には、金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、スズ、ニッケル等を主な成分とする金属層が例えばメッキにより形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、上記金属層は、単層又は複数の金属層が積層された構造をしていてもよい。
【0096】
また、本実施形態の半導体装置は、半導体装置100〜400に示すような構造(パッケージ)が複数積層されていてもよい。この場合、半導体装置100〜400は、金、銀、銅、ハンダ(主成分は、例えばスズ−銀、スズ−鉛、スズ−ビスマス、スズ−銅)、スズ、ニッケル等を含むバンプや配線で互いに電気的に接続されていてもよい。
【0097】
半導体装置を複数積層する手法としては、図3に示すように、例えばTSV(Through-Silicon Via)技術が挙げられる。図3は、本発明の半導体装置の他の一実施形態を示す模式断面図であり、TSV技術を用いた半導体装置である。図3に示す半導体装置500では、インターポーザ50上に形成された配線15が半導体チップ10の配線15と接続バンプ30を介して接続されることにより、半導体チップ10とインターポーザ50とはフリップチップ接続されている。半導体チップ10とインターポーザ50との間の空隙には接着剤組成物40が隙間なく充填されている。上記半導体チップ10におけるインターポーザ50と反対側の表面上には、配線15、接続バンプ30及び接着剤組成物40を介して半導体チップ10が繰り返し積層されている。半導体チップ10の表裏におけるパターン面の配線15は、半導体チップ10の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。なお、貫通電極34の材質としては、銅、アルミニウム等を用いることができる。
【0098】
このようなTSV技術により、通常は使用されない半導体チップの裏面からも信号を取得することが可能となる。更には、半導体チップ10内に貫通電極34を垂直に通すため、対向する半導体チップ10間や半導体チップ10及びインターポーザ50間の距離を短くし、柔軟な接続が可能である。本実施形態の接着剤組成物は、このようなTSV技術において、対向する半導体チップ10間や、半導体チップ10及びインターポーザ50間の封止材料として適用することができる。
【0099】
また、エリヤバンプチップ技術等の自由度の高いバンプ形成方法では、インターポーザを介さないでそのまま半導体チップをマザーボードに直接実装できる。本実施形態の接着剤組成物は、このような半導体チップをマザーボードに直接実装する場合にも適用することができる。なお、本実施形態の接着剤組成物は、2つの配線回路基板を積層する場合に、基板間の空隙を封止する際にも適用することができる。
【0100】
<半導体装置の製造方法>
本実施形態の半導体装置の製造方法について、図4を用いて以下説明する。図4は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。
【0101】
まず、図4(a)に示すように、配線(例えば、金バンプ)15を有する基板20上に、接続バンプ30を形成する位置に開口を有するソルダーレジスト60を形成する。このソルダーレジスト60は必ずしも設ける必要はない。しかしながら、基板20上にソルダーレジストを設けることにより、配線15間のブリッジの発生を抑制し、接続性・絶縁信頼性を向上させることができる。ソルダーレジスト60は、例えば、市販のパッケージ用ソルダーレジスト用インキを用いて形成することができる。市販のパッケージ用ソルダーレジスト用インキとしては、具体的には、SRシリーズ(日立化成工業株式会社製、商品名)及びPSR4000−AUSシリーズ(太陽インキ製造(株)製、商品名)等が挙げられる。
【0102】
次に、図4(a)に示すように、ソルダーレジスト60の開口に接続バンプ(例えば、はんだバンプ)30を形成する。そして、図4(b)に示すように、接続バンプ30及びソルダーレジスト60が形成された基板20上に、フィルム状の接着剤組成物(以下、「フィルム状接着剤」とする。)40を貼付する。フィルム状接着剤40の貼付は、加熱プレス、ロールラミネート、真空ラミネート等によって行うことができる。フィルム状接着剤40の供給面積や厚みは、半導体チップ10及び基板20のサイズや、接続バンプ30の高さ等によって適宜設定される。
【0103】
上述のとおりフィルム状接着剤40を基板20に貼り付けた後、半導体チップ10の配線15と接続バンプ30とをフリップチップボンダー等の接続装置を用いて、位置合わせする。続いて、半導体チップ10と基板20とを接続バンプ30の融点以上の温度で加熱しながら押し付けて、図4(c)に示すように、半導体チップ10と基板20とを接続すると共に、フィルム状接着剤40によって半導体チップ10及び基板20間の空隙を封止充填する。以上により、半導体装置600が得られる。
【0104】
本実施形態の半導体装置の製造方法では、位置合わせをした後に仮固定し、リフロー炉で加熱処理することによって、接続バンプ30を溶融させて半導体チップ10と基板20とを接続してもよい。仮固定の段階では、金属接合を形成することが必ずしも必要ではないため、上述の本圧着に比べて低荷重、短時間、低温度による圧着でよく、生産性が向上すると共に接続部の劣化を抑制することができる。
【0105】
また、半導体チップ10と基板20とを接続した後、オーブン等で加熱処理を行って、更に接続性・絶縁信頼性を高めてもよい。加熱温度は、フィルム状接着剤の硬化が進行する温度が好ましく、完全に硬化する温度がより好ましい。加熱温度、加熱時間は適宜設定される。
【0106】
本実施形態の半導体装置の製造方法では、フィルム状接着剤40を半導体チップ10に貼付した後に基板20を接続してもよい。また、半導体チップ10及び基板20を配線15及び接続バンプ30により接続した後、半導体チップ10及び基板20間の空隙にペースト状の接着剤組成物を充填してもよい。
【0107】
生産性が向上する観点から、複数の半導体チップ10が連結した半導体ウェハに接着剤組成物を供給した後、ダイシングして個片化することによって、半導体チップ10上に接着剤組成物が供給された構造体を得てもよい。また、接着剤組成物がペースト状の場合は、特に制限されるものではないが、スピンコート等の塗布方法により、半導体チップ10上の配線やバンプを埋め込み、厚みを均一化させればよい。この場合、樹脂の供給量が一定となるため生産性が向上すると共に、埋め込み不足によるボイドの発生及びダイシング性の低下を抑制することができる。一方、接着剤組成物がフィルム状の場合は、特に制限されるものではないが、ラミネート等の貼付方式により半導体チップ10上の配線やバンプを埋め込むようにフィルム状の樹脂組成物を供給すればよい。この場合、樹脂の供給量が一定となるため生産性が向上し、埋め込み不足によるボイドの発生及びダイシング性の低下を抑制することができる。
【0108】
接続荷重は、接続バンプ30の数や高さのばらつき、加圧による接続バンプ30、又は接続部のバンプをうける配線の変形量を考慮して設定される。接続温度は、接続部の温度が接続バンプ30の融点以上であることが好ましいが、それぞれの接続部金属(バンプや配線)の金属接合が形成される温度であればよい。接続バンプ30がはんだバンプである場合は、約240℃以上であればよい。
【0109】
接続時の接続時間は、接続部の構成金属により異なるが、生産性が向上する観点から短時間であるほど好ましい。接続バンプ30がはんだバンプである場合、接続時間は20秒以下が好ましく、10秒以下がより好ましく、5秒以下が更に好ましい。銅−銅、銅−金等の金属接続の場合は、接続時間は60秒以下が好ましい。
【実施例】
【0110】
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0111】
(ポリイミドの合成)
温度計、攪拌機及び塩化カルシウム管を備えた300mlフラスコに、ジアミンとして1,12−ジアミノドデカン2.10g(0.035モル)、ポリエーテルジアミン(BASF製、商品名:ED2000、重量平均分子量:1923)17.31g(0.03モル)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(信越化学社製、商品名:LP−7100)2.61g(0.035モル)、及び、N−メチル−2−ピロリドン(関東化学製)150gを仕込み攪拌した。上記ジアミンの溶解後、フラスコを氷浴中で冷却しながら、無水酢酸で再結晶精製した4,4’−(4,4’−イソプロピリデンジフェノキシ)ビス(フタル酸二無水物)(ALDRICH社製、商品名:BPADA)15.62g(0.10モル)を少量ずつ添加した。室温で8時間反応させた後、キシレン100gを加え、窒素ガスを吹き込みながら180℃で加熱し、水と共にキシレンを共沸除去し、SP値が10.2のポリイミド樹脂(以下、「ポリイミドA」とする。)を得た。
【0112】
ポリイミドAのTgをDSC(パーキンエルマー社製:DSC−7型)を用いて、サンプル量10mg、昇温速度5℃/min、測定雰囲気:空気、の条件で測定した。ポリイミドAのTgは25℃付近であった。
【0113】
ポリイミドAの重量平均分子量を高速液体クロマトグラフィー(島津製作所製:C−R4A)を用いて、ポリスチレン換算で測定した。溶離液としてはDMF・リン酸・臭化リチウム混合液を使用した。ポリイミドAの重量平均分子量は、約80000であった。
【0114】
各実施例及び比較例で使用した化合物を以下に示す。
(i)分子量10000以上の高分子成分
上述の通り合成したポリイミドA(250℃における熱重量減少率:0.5%)
(ii)エポキシ樹脂
トリフェノールメタン骨格含有多官能固形エポキシ(ジャパンエポキシレジン株式会社製、商品名:EP1032H60、250℃における熱重量減少率:0.22%、以下「EP1032」とする。)
(iii)硬化剤
1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト(四国化成株式会社製、商品名:2PZ−CNS)
(iv)シリカフィラー
・アミノシラン処理シリカフィラー(株式会社アドマテックス社製、商品名:SE5050−SXJ、平均粒径1.5μm、以下「SXJシリカ」とする。)
・(未処理)シリカフィラー(株式会社アドマテックス社製、商品名:SE5050、平均粒径1.5μm、以下「未処理シリカ」とする。)
・フェニルシラン処理シリカフィラー(株式会社アドマテックス社製、商品名:SE5050−SPJ、平均粒径1.5μm、以下「SPJシリカ」とする。)
・エポキシシラン処理シリカフィラー(株式会社アドマテックス社製、商品名:SE5050−SEJ、平均粒径1.5μm、以下「SEJシリカ」とする。)
【0115】
なお、ポリイミドA及びEP1032の250℃における熱重量減少率は、以下のようにして測定した。すなわち、サンプルをPtパンに入れ、400ml/分の空気気流中、昇温速度10℃/分で35℃から400℃までの熱重量減少をTG/DTA測定装置(セイコーインスツル株式会社、商品名:EXSTAR6000)で測定した。
【0116】
[実施例1、比較例1〜3]
(フィルム状接着剤の作製方法)
N−メチル−2−ピロリドン(関東化学製)溶媒を仕込んだガラス製スクリュー管20mlに、下記表1に示す比率(単位:質量部)でポリイミドA、エポキシ樹脂、硬化剤、フィラーを固形分が40%になるように仕込んだ後、撹拌・脱泡装置AR−250(株式会社シンキー製)を用いて撹拌・脱泡した。脱泡後、得られた接着剤組成物を、基材フィルム(帝人デュポンフィルム株式会社製、商品名:ピューレックスA53)に、塗工機「PI1210FILMCOATER」(テスター産業株式会社製、商品名)で塗工し、クリーンオーブン(エスペツク株式会社製)で乾燥(80℃で30分間の後、120℃で20分間乾燥)して、フィルム状接着剤(厚み:30μm)を作製した。
【0117】
以下に、実施例及び比較例のフィルム状接着剤の評価方法を示す。
【0118】
(1)フィルム状接着剤の溶融粘度測定方法
作製したフィルム状接着剤を切り抜き(円形、直径Φ:6mm、厚み:約0.03mm)、ガラスチップ(縦15mm×横15mm×高さ0.7mm)上に貼付した後、シリコンチップ(縦10mm×横10mm×高さ0.55mm)を積載して、図5に示すようにガラス基板70上にフィルム状接着剤40、シリコンチップ80が順に積層されたサンプルAを作製した。サンプルAにおけるフィルム状接着剤の圧着前の厚み及び面積を測定し、フィルム状接着剤の体積を算出した。次に、サンプルAを熱圧着装置で圧着し(圧着条件:圧着時のヘッド温度278℃、ステージ温度40℃、フィルム状接着剤の到達温度250℃、10秒間、0.5MPa)、フィルム状接着剤の圧着後の面積を測定した。更に、フィルム状接着剤は圧着前後において体積が変化しないものと仮定し、予め算出したフィルム状接着剤の体積を圧着後の上記面積で除して、圧着後のフィルム状接着剤の厚みを算出した。なお、面積は、スキャナGT−9300UF(EPSON社製)でフィルム状接着剤の画像を取り込み、画像処理ソフトAdobe Photoshopを用いて、色調補正、二階調化によりフィルム部分を識別し、ヒストグラムによりフィルム部分面積の占める割合を算出して測定した。
【0119】
溶融粘度は、平行板プラストメータ法に基づく下記式(1)より、上記体積変化を用いて算出した。
(平行板プラストメータ法の溶融粘度の算出式)
μ=8πFtZ/3V(Z−Z) (1)
μ:溶融粘度(Pa・s)
F:荷重(N)
t:加圧時間(s)
:接着剤の初期厚み(m)
Z:加圧後の接着剤の厚み(m)
V:接着剤の体積(m
【0120】
(2)初期導通性(接続性)、ボイド発生率及びぬれ性の評価
作製したフィルム状接着剤を所定のサイズ(縦11mm×横11mm×高さ0.03mm)に切り抜いて、ガラスエポキシ基板(ガラスエポキシ基材:400μm厚、銅配線:15μm厚、ハンダボール高さ:28μm厚、ソルダーレジスト付き、日立化成工業株式会社製)上に貼付し、金バンプ付き半導体チップ(チップサイズ:縦10mm×横10mm×高さ0.4mm、バンプ高さ約25μm、バンプ数186、日立化成工業株式会社製)をフリップチップ実装装置FCB3(パナソニック社製、商品名)で実装した(実装条件:フィルム状接着剤の到達温度250℃、10秒間、0.5MPa)。これにより、図4と同様の半導体装置を得た。
【0121】
上記ガラスエポキシ基板と、金バンプ付きチップとをデイジーチェーン接続した後、マルチメータ(ADVANTEST社製)により測定される接続抵抗値に基づき、実装後の初期導通の可否(導通性)を評価した。接続抵抗値が5〜20Ωの場合を「A」とし、それ以外の接続抵抗値の場合を「B」とし、一部分でも完全な接続不良が生じていることにより接続抵抗値が表示されなかった場合を「C」として評価した。
【0122】
また、実装後のサンプルを超音波探査映像装置(HITACHI社製、商品名:HYE-FOCUS)により観察し、画像処理ソフトAdobe Photoshopを用いて、色調補正、二階調化によりフィルム部分とフィルム上のボイド部分とを識別し、ヒストグラムにより、フィルム部分の面積に対するフィルム上のボイド部分の占める面積の割合を下記式(2)を用いて「ボイド発生率」として算出した。ボイド発生率が20%以下のサンプルを「A」とし、20%より大きいサンプルを「B」として評価した。
ボイド発生率=(ボイド部分の面積)/(フィルム部分の面積)×100 (2)
【0123】
また、実装後のサンプルの接続部の断面を金属顕微鏡BX60(OLMPUS社製)で観察し、ハンダボールの金バンプ上への広がり度合いに基づき、ぬれ性を評価した。金バンプ上に広がるハンダの面積が80%以上のサンプルを「A」とし、20%以上80%未満のサンプルを「B」とし、20%より少ないサンプルを「C」として評価した。
【0124】
(3)絶縁信頼性試験(HAST試験:Highly Accelerated Storage Test)
作製したフィルム状接着剤(厚み:30μm)を、くし型電極TEG(新藤電子社製、商品名:perflex−S、配線ピッチ:30μm、配線材料:スズめっき銅、基板材料:ポリイミド)にボイドを発生させることなく貼付し、図6に示すように、くし型電極90が形成された基板20上にフィルム状接着剤40が積層されたサンプルBを4つ作製した。なお、図6では、便宜上フィルム状接着剤の図示を省略した。続いて、各サンプルBをクリーンオーブン(ESPEC社製)中、185℃で1時間保持して硬化した。硬化後、各サンプルBを取り出し、加速寿命試験装置(HIRAYAMA社製、商品名:PL−422R8、条件:110℃/85%RH/100時間)に設置し、絶縁抵抗を測定した。100時間を通して、4つのサンプルのうち1つ以上のサンプルの絶縁抵抗が10Ω以上である場合を「A」とし、10Ω超10Ω未満である場合を「B」として、10Ω以下である場合を「C」として評価した。
【0125】
実施例及び比較例の配合物の含有量(単位:質量部)と、各試験の結果とを表1に示す。
【0126】
【表1】

【0127】
アミノシラン表面処理シリカフィラーを用いた実施例1は、初期導通性、ボイド発生率、ぬれ性及び耐HAST性のいずれの特性も優れており、アミノ系表面処理が施されていないフィラーを用いた比較例1〜3に比べて優れた特性を有することが確認された。
【符号の説明】
【0128】
10…半導体チップ、15…配線(接続部)、20…基板(配線回路基板)、32…バンプ(接続部)、40…接着剤組成物、100,200,300,400,500,600…半導体装置。

【特許請求の範囲】
【請求項1】
半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において前記接続部を封止する接着剤組成物であって、
重量平均分子量が10000以上の高分子成分と、エポキシ樹脂と、硬化剤と、アミン系表面処理フィラーとを含有する、接着剤組成物。
【請求項2】
前記高分子成分、前記エポキシ樹脂及び前記硬化剤から選ばれる少なくとも一つの有機成分が25℃、大気圧において固形である、請求項1に記載の接着剤組成物。
【請求項3】
前記高分子成分、前記エポキシ樹脂及び前記硬化剤から選ばれる少なくとも一つの有機成分の含有量が10質量%以上であり、
前記含有量が10質量%以上である前記有機成分の250℃における熱重量減少率が10%以下である、請求項1又は2に記載の接着剤組成物。
【請求項4】
前記高分子成分がポリイミド樹脂である、請求項1〜3のいずれか一項に記載の接着剤組成物。
【請求項5】
前記ポリイミド樹脂の重量平均分子量が30000以上であり、前記ポリイミド樹脂のガラス転移温度が100℃以下である、請求項4に記載の接着剤組成物。
【請求項6】
形状がフィルム状である、請求項1〜5のいずれか一項に記載の接着剤組成物。
【請求項7】
250℃、10秒における溶融粘度が1000Pa・s以下である、請求項1〜6のいずれか一項に記載の接着剤組成物。
【請求項8】
前記接続部が主成分として金、銀、銅、ニッケル、スズ及び鉛からなる群より選ばれる少なくとも一種の金属を含有する、請求項1〜7のいずれか一項に記載の接着剤組成物。
【請求項9】
請求項1〜8のいずれか一項に記載の接着剤組成物を用いる、半導体装置の製造方法。
【請求項10】
請求項9に記載の製造方法によって得られる、半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2011−29232(P2011−29232A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2009−170447(P2009−170447)
【出願日】平成21年7月21日(2009.7.21)
【出願人】(000004455)日立化成工業株式会社 (4,649)
【Fターム(参考)】