説明

新規なスルホニウムボレート錯体

【課題】熱カチオン重合時にフッ素イオン生成量を減ずることができ、且つ熱カチオン重合性接着剤に低温速硬化性を実現できる新規なスルホニウムボレート錯体を提供する。
【解決手段】新規なスルホニウムボレート錯体は以下の式(1)の構造で表される。


式(1)中、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱カチオン重合開始剤として有用な新規なスルホニウムボレート錯体、その製造方法、それを含有するエポキシ樹脂組成物、及その組成物を利用した接続構造体に関する。
【背景技術】
【0002】
従来より、ICチップなどの電子部品を配線基板に実装する際に使用する接着剤の一種として、エポキシ樹脂を主成分として含有する光カチオン重合性接着剤が用いられている。このような光カチオン重合性接着剤には、光によりプロトンを発生してカチオン重合を開始させる光カチオン重合開始剤が配合されており、そのような光カチオン重合開始剤としてスルホニウムアンチモネート錯体が知られている。
【0003】
しかし、スルホニウムアンチモネート錯体は、フッ素原子が金属であるアンチモンに結合しているSbFをカウンターアニオンとして有するため、カチオン重合時にフッ素イオンを多量に発生させ、金属配線や接続パッドを腐食させるという問題があった。このため、SbFに代えて、フッ素原子が炭素原子に結合しているテトラキス(ペンタフルオロフェニル)ボレートアニオン[(C]を使用したスルホニウムボレート錯体をカチオン重合開始剤として使用することが提案されており(特許文献1)、実際、以下の式(1c)の錯体[p−ヒドロキシフェニル−ベンジル−メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート]が市販されている。
【0004】
【化1】

【0005】
ところで、電子部品を配線基板に実装する際に、接合部に光照射ができない場合も数多く生ずる。このため、特許文献1の実施例に開示されている具体的なスルホニウムボレート錯体を、熱カチオン重合性接着剤のための熱カチオン重合開始剤に転用することが試みられている。その場合、カチオン重合時にフッ素イオンの生成量を減じて熱カチオン重合性接着剤の耐電食性を向上させることだけでなく、生産性向上のために熱カチオン重合性接着剤の低温速硬化性を向上させることが求められている。
【0006】
【特許文献1】特開平9−176112号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、式(1c)の錯体を熱カチオン重合開始剤として使用した場合、熱カチオン重合時に生ずるフッ素イオンの量をある程度減ずることができたが、熱カチオン重合性接着剤等としてのエポキシ樹脂組成物の低温速硬化性が十分とは云えなかった。
【0008】
本発明は、前述の従来の技術の問題点を解決することであり、熱カチオン重合時にフッ素イオン生成量を減じ、耐電食性を向上させることができ、且つ熱カチオン重合性接着剤等としてのエポキシ樹脂組成物に低温速硬化性を実現できる新規なスルホニウムボレート錯体を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明者は、スルホニウムボレート錯体のスルホニウム残基に、特定の複数の置換基の新規な組み合わせを導入することにより、上述の目的を達成できることを見出し、本発明を完成させた。
【0010】
即ち、本発明は、式(1)で表されるスルホニウムボレート錯体である。
【0011】
【化2】

【0012】
式(1)中、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。
【0013】
また、本発明は、式(1)のスルホニウムボレート錯体の製造方法であって、
式(2)のスルホニウムアンチモネート錯体に、式(3)のナトリウムボレート塩を反応させることにより式(1)のスルホニウムボレート錯体を得る製造方法を提供する。
【0014】
【化3】

【0015】
式(1)、(2)又は(3)において、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。
【0016】
また、本発明は、エポキシ樹脂と熱カチオン重合開始剤とからなるエポキシ樹脂組成物であって、該熱カチオン重合開始剤が上述の式(1)で表されるスルホニウムボレート錯体であることを特徴とするエポキシ樹脂組成物、並びに、このエポキシ樹脂組成物の熱硬化物により、配線基板上に電子部品が接合されていることを特徴とする接続構造体を提供する。
【発明の効果】
【0017】
本発明の新規な式(1)のスルホニウムボレート錯体の複数の置換基は、新規な組み合わせとなっている。このため、この錯体を熱カチオン重合開始剤として含有する熱カチオン性接着剤等としてのエポキシ樹脂組成物の熱カチオン重合時には、フッ素イオン生成量を減少させ、耐電食性を向上させることができ、しかも低温速硬化性を実現できる。
【発明を実施するための最良の形態】
【0018】
本発明の新規な化合物は、式(1)で表されるスルホニウムボレート錯体である。
【0019】
【化4】

【0020】
式(1)中、Rのアラルキル基としては、ベンジル基、o−メチルベンジル基、(1−ナフチル)メチル基、ピリジルメチル基、アントラセニルメチル基等が挙げられる。中でも、良好な速硬化性及び入手容易性の点でo−メチルベンジル基が好ましい。
【0021】
の低級アルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。中でも、良好な速硬化性及び入手容易性の点でメチル基が好ましい。
【0022】
スルホニウム残基に結合しているフェニル基の水酸基の個数を表すnは1〜3の整数である。そのようなフェニル基としては、nが1の場合、4−低級アルコキシカルボニルオキシフェニル基、2−低級アルコキシカルボニルオキシフェニル基又は3−低級アルコキシカルボニルオキシフェニル基等が挙げられ、nが2の場合、2,4−ジ低級アルコキシカルボニルオキシフェニル基、2,6−ジ低級アルコキシカルボニルオキシフェニル基、3,5−ジ低級アルコキシカルボニルオキシフェニル基、2,3−ジ低級アルコキシカルボニルオキシフェニル基が挙げられる。nが3の場合、2,4,6−トリ低級アルコキシカルボニルオキシフェニル基、2,4,5−トリ低級アルコキシカルボニルオキシフェニル基、2,3,4−トリ低級アルコキシカルボニルオキシフェニル基等が挙げられる。中でも、良好な速硬化性及び入手容易性の点で、nが1の4−低級アルコキシカルボニルオキシフェニル基、特に4−メトキシカルボニルオキシフェニル基が好ましい。
【0023】
Xのハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子である。中でも、反応性向上の点から高い電子吸引性を有するフッ素原子が好ましい。
【0024】
本発明の新規な式(1)のスルホニウムボレート錯体は、以下の反応式に従って製造することができる。なお、式(1)、(2)又は(3)における各置換基は、既に説明したとおりのものであり、即ち、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコキシカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。
【0025】
【化5】

【0026】
即ち、式(2)のスルホニウムアンチモネート錯体(合成方法は、特開2006−96742号公報参照。具体的には式(2)の錯体からギ酸エステル残基を取り除いた化合物に相当するヒドロキシフェニルスルホニウムアンチモネート錯体に、トリエチルアミン存在下、アセトニトリル中でクロルギ酸低級アルキルエステル化合物(例えば、クロルギ酸メチルエステル)を反応させればよい。)を酢酸エチル等の有機溶媒に溶解し、その溶液に式(3)のナトリウムボレート塩(合成方法は特開平10−310587号公報参照)の水溶液を等モル量で混合し、得られた2層系混合物を20〜80℃の温度で1〜3時間、撹拌し、式(2)のスルホニウムアンチモネート錯体に式(3)のナトリウムボレート塩を反応させることにより式(1)のスルホニウムボレート錯体を得ることができる。式(1)のスルホニウムボレート錯体の単離は、有機溶媒層を分液し乾燥した後、有機溶媒を減圧蒸発除去することにより、蒸発残渣として目的物を得ることで行うことができる。
【0027】
本発明の式(1)の新規なスルホニウムボレート錯体は、熱カチオン重合性接着剤等の一般的なエポキシ樹脂用の熱カチオン重合開始剤として使用することができる。従って、エポキシ樹脂に本発明の式(1)の新規なスルホニウムボレート錯体を熱カチオン重合開始剤として配合したエポキシ樹脂組成物も本願発明の一部である。
【0028】
本発明のエポキシ樹脂組成物を構成するエポキシ樹脂としては、従来より電子材料の接合に用いられている熱硬化型エポキシ樹脂を適宜使用することができる。このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100〜4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。
【0029】
本発明のエポキシ樹脂組成物においては、エポキシ樹脂100質量部に対する式(1)のスルホニウムボレート錯体の配合量は、少なすぎると硬化が不十分であり、多すぎると保存安定性が低下するので、好ましくは0.1〜10質量部、より好ましくは0.5〜5質量部である。
【0030】
本発明のエポキシ樹脂組成物においては、上述したような熱硬化型エポキシ樹脂に加えて、発明の効果を損なわない範囲で、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等の熱硬化型樹脂や、ポリエステル樹脂やポリウレタン樹脂等の熱可塑性樹脂を併用することができる。
【0031】
本発明のエポキシ樹脂組成物には、必要に応じてシリカ、マイカなどの充填剤、顔料、帯電防止剤、シランカップリング剤などを含有させることができる。また、本発明のエポキシ樹脂組成物の形態としては、トルエン等の溶媒に溶解した溶液、ペースト、成膜したフィルムとして使用することができる。
【0032】
本発明のエポキシ樹脂組成物は、エポキシ樹脂及び熱カチオン重合開始剤と、必要に応じて添加されるシランカップリング剤、熱硬化型樹脂、充填剤等の他の添加剤とを、常法に従って均一に混合撹拌することにより製造することができる。
【0033】
このようにして得られた本発明のエポキシ樹脂組成物は、熱カチオン重合開始剤として新規なスルホニウムボレート錯体を使用しているので、熱カチオン重合時には、フッ素イオン生成量が減少して耐電食性が向上し、しかも低温速硬化性を実現できる。
【0034】
従って、本発明のエポキシ樹脂組成物は、配線基板上に電子部品を搭載する場合に好ましく適用することができる。この場合、配線基板上に電子部品がこのエポキシ樹脂組成物の熱硬化物により接合されてなる、耐電食性に優れた接続構造体が得られる。この接続構造体も本発明の一部である。
【0035】
配線基板としては、フレキシブル印刷基板、ガラスエポキシ基板、ガラス基板、テープ基板等を挙げることができる。電子部品としては、ICチップ、抵抗素子、コンデンサ素子、アンテナ素子、スイッチング素子等を挙げることができる。
【0036】
本発明のエポキシ樹脂組成物(ペースト状、フィルム形状等)の熱カチオン重合は、100〜250℃に加熱することにより行うことができる。
【実施例】
【0037】
実施例1及び比較例1〜3
式(2a)〜(2d)のスルホニウムアンチモネート錯体(合成方法は特開平10−245378号公報、特開2006−96742号公報参照)を酢酸エチルに溶解し、当該錯体の10質量%酢酸エチル溶液をそれぞれ調製した。これらとは別に式(3)のナトリウムボレート塩(合成方法は特開平10−310587号公報参照)の10質量%水溶液を調製した。
【0038】
次に、当該錯体の10質量%酢酸エチル溶液に、式(3)のナトリウムボレート塩の10質量%水溶液を、等モル量で室温下で混合し、そのまま30分間撹拌した。その後、反応混合液から酢酸エチル層を分液し、乾燥し、酢酸エチルを減圧除去した。蒸発残渣として、実施例1の式(1A)のスルホニウムボレート錯体、比較例1〜3の式(1a)〜(1c)のスルホニウムボレート錯体を得た。




【0039】
【化6】

【0040】
新規化合物である実施例1の式(1A)のスルホニウムボレート錯体、並びに比較例1及び比較例2のそれぞれ式(1a)及び(1b)のスルホニウムボレート錯体について、質量分析(測定機器:AQUITY UPLCシステム、WATERS社)、元素分析(測定機器:PHOENIX、EDAX社)、IR測定(測定機器:7000e FT−IR、VARIAN社)、H−NMR分析(測定機器:MERCURY PLUS、VARIAN社)を行った。これらのスルホニウムボレート錯体については、得られた結果から、目的化合物であることが確認できた。
【0041】
(i) 実施例1の式(1A)のスルホニウムボレート錯体[p−メトキシカルボニルオキシフェニル−ベンジル−メチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート]の分析結果
【0042】
<MS分析結果>
=289(スルホニウム残基)
=679(ボレート残基)
【0043】
<元素分析結果>
実測値が理論値に合致していた。
【0044】
<IR分析結果(cm−1)>
測定結果のIRチャートを図1に示す。実施例1の式(1A)のスルホニウムボレート錯体の結合のIR特性吸収は、図1のIRチャートにおいて観察された。
【0045】
H−NMR分析結果(δ値)>
測定結果のH−NMRチャートを図2Aに示し、対照となる溶媒のTHFのH−NMRチャートを図2Bに示す。図2AのH−NMRチャートにおいて、以下のプロトンが帰属できた。
【0046】
【化7】


【0047】
(ii)式(1a)のスルホニウムボレート錯体[4−ヒドロキシフェニル−メチル−1−ナフチルメチルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート]の分析結果
【0048】
<MS分析結果>
=281(スルホニウム残基)
=679(ボレート残基)
【0049】
<元素分析結果>
実測値 C;52.51 H;1.89
理論値 C;52.52 H;1.78
【0050】
<IR分析結果(cm−1)>
662(C−S)、776、980、1088、1276(Ar−F)、1300、1374、1464、1514、1583、1643、2881(C−H)、2981(C−H)、3107(O−H)
【0051】
H−NMR分析結果(δ値)、図3参照(THF使用)>
2.6(1H、(d))、3.3(3H、(a))、5.3(2H、(e))、6.9(2H、(c))、7.6(2H、(b))、7.2〜8.1(7H、(f),(g),(h),(i),(j),(k),(l))
【0052】
【化8】


【0053】
(iii) 式(1b)のスルホニウムボレート錯体[4−ヒドロキシフェニル−メチル−(2−メチルベンジル)スルホニウム テトラキス(ペンタフルオロフェニル)ボレート]の分析結果
【0054】
<MS分析結果>
=245(スルホニウム残基)
=679(ボレート残基)
【0055】
<元素分析結果>
実測値 C;50.39 H;1.77
理論値 C;50.60 H;1.80
【0056】
<IR分析結果(cm−1)>
662(C−S)、773、980、1088、1276(Ar−F)、1463、1514、1583、1644、2882(C−H)、2983(C−H)、3109(O−H)
【0057】
H−NMR分析結果(δ値)、図4参照(THF使用)>
2.3(3H、(j))、2.4(1H、(d))、3.3(3H、(a))、4.8(2H、(e))、7.0(2H、(c))、7.6(2H、(b))、7.0〜7.4(4H、(f),(g),(h),(i))

【0058】
【化9】


【0059】
<特性評価>
実施例1、比較例1〜3の各スルホニウムボレート錯体(1A)、(1a)、(1b)、(1c)、及び参考例1〜4としてそれらで使用したスルホニウムアンチモネート錯体(2a)〜(2d)のそれぞれについて、以下に説明するように、熱カチオン重合時の温度条件下でのフッ素イオン濃度を測定した。
【0060】
<錯体のフッ素イオン生成評価>
錯体0.2gを純水10mLに投入し、100℃で10時間加温した後、上澄み液のフッ素イオン濃度を、イオンクロマトグラフィ分析(ダイオニクス社)により測定した。得られた結果を表1に示す。実用上、10ppm未満であることが望まれる。
【0061】
【表1】

【0062】
表1の結果から、スルホニウムボレート錯体が、スルホニウムアンチモネート錯体に比べ、非常に少ないフッ素イオン生成量(10ppm未満)を示すため、その点で熱カチオン重合開始剤として有用であることがわかる。
【0063】
実施例2,3、比較例4〜9、参考例5〜12
表2の組成の成分を均一に混合することによりエポキシ樹脂組成物を調製した。更に、各エポキシ樹脂組成物について、以下に説明するように示差熱分析測定(DSC測定)を行い、また、耐電食性試験を行った。なお、使用した液状エポキシ樹脂は、ジャパンエポキシレジン社のエピコート828であり、シランカップリング剤は、γ−グリシドキシプロピルトリメトキシシラン(信越化学工業社)であり、充填材は、球状溶融シリカ(EB−6D、電気化学工業社)である。
【0064】
<DSC測定>
エポキシ樹脂組成物について、熱分析装置(DSC 5100、セイコーインスツル社)を用いて昇温速度10℃/分で示差熱分析(発熱開始温度、ピーク温度、発熱量)を行った。得られた結果を表2に示す。
【0065】
なお、発熱開始温度は、錯体からプロトンが生成され、カチオン重合を開始した温度である。発熱開始温度が低いほど低温硬化性が高まるが、保存安定性が低下する傾向が生ずるので、実用上60〜80℃が好ましい。発熱ピーク温度が低すぎると保存安定性が低下し、高すぎると硬化不良が生ずる傾向があるので、実用上100〜110℃である。発熱量は、エポキシ樹脂1gあたりの反応熱であり、少なすぎると硬化不良が生ずる傾向があるので、使用するエポキシ樹脂によって異なるが、一般的には200J/g以上が望ましい。
【0066】
<耐電食性試験(マイグレーション試験)>
ガラス基板上にAl/Cr/ITO電極もしくはMo/ITO電極とを20μmギャップで櫛歯状に設けてなるガラス配線基板に、試験すべきエポキシ樹脂組成物を20μm厚となるように塗布し、200℃で10分間加熱して硬化させ、試験片を得た。得られた試験片を、85℃、85%RHの恒温槽中に入れ、電極間に30Vの電圧を印加した状態で12時間放置した。その後、電極に変色や欠陥、断線等が発生したか否かを、ガラス配線基板の表面及び裏面から光学顕微鏡を用いて観察し、以下の基準に従って評価した。得られた結果を表2に示す。
【0067】
耐電食性評価基準
G:変色・欠陥・断線等が認められる場合
NG:変色・欠陥・断線等が認められない場合





















【0068】
【表2】

【0069】
フッ素イオン生成量(表1参照)が10ppm未満である実施例1及び2の新規な式(1A)のスルホニウムボレート錯体を使用した実施例2及び3のエポキシ樹脂組成物の場合、表2から、DSC測定における反応開始温度が70〜80℃の範囲にあり、発熱ピーク温度が100〜110℃の範囲にあり、発熱量も200J/g以上であるので、実用上満足できるものであった。
【0070】
一方、比較例1〜3のスルホニウムボレート錯体を使用した比較例4〜9のエポキシ樹脂組成物の場合、フッ素イオン生成量が10ppm未満であり且つ耐電食性にも優れていたが、反応開始温度及び発熱ピーク温度の評価項目に問題があった。
【0071】
このように、スルホニウムボレート錯体の中でも、本発明の実施例1の式(1A)のスルホニウムボレート錯体が他の錯体に比べて熱カチオン重合開始剤として優れていることがわかった。
【0072】
なお、参考例(2a)〜(2d)のスルホニウムアンチモネート錯体を使用した参考例5〜12のエポキシ樹脂組成物の場合、フッ素イオン生成量が10000ppmを超え、しかも耐電食性に問題があった。
【産業上の利用可能性】
【0073】
本発明の新規なスルホニウムボレート錯体は、この錯体を熱カチオン重合開始剤として含有する熱カチオン性接着剤等としてのエポキシ樹脂組成物の熱カチオン重合時には、フッ素イオン生成量を減少させ、耐電食性を向上させることができ、しかも低温速硬化性を実現できる。従って、エポキシ樹脂組成物の熱カチオン重合開始剤として有用である。
【図面の簡単な説明】
【0074】
【図1】実施例1のスルホニウムボレート錯体のIRチャートである。
【図2A】実施例1のスルホニウムボレート錯体のH−NMRチャートである
【図2B】THFのH−NMRチャートである。
【図3】比較例1のスルホニウムボレート錯体のH−NMRチャートである。
【図4】比較例2のスルホニウムボレート錯体のH−NMRチャートである。

【特許請求の範囲】
【請求項1】
式(1)で表されるスルホニウムボレート錯体。
【化1】

(式(1)中、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコシキカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。)
【請求項2】
がo−メチルベンジル基又は(1−ナフチル)メチル基である請求項1記載のスルホニウムボレート錯体。
【請求項3】
がメチル基である請求項1又は2記載のスルホニウムボレート錯体。
【請求項4】
nが1であり、RO基がフェニル基の4位に結合している請求項1〜3のいずれかに記載のスルホニウムボレート錯体。
【請求項5】
がメトキシカルボニル基である請求項1〜4のいずれかに記載のスルホニウムボレート錯体。
【請求項6】
Xがフッ素原子である請求項1〜5のいずれかに記載のスルホニウムボレート錯体。
【請求項7】
請求項1記載の式(1)のスルホニウムボレート錯体の製造方法であって、
式(2)のスルホニウムアンチモネート錯体に、式(3)のナトリウムボレート塩を反
応させることにより式(1)のスルホニウムボレート錯体を得る製造方法。
【化2】

(式(1)、(2)又は(3)において、Rはアラルキル基であり、Rは低級アルキル基であり、Rは低級アルコシキカルボニル基である。Xはハロゲン原子であり、nは1〜3の整数である。)
【請求項8】
エポキシ樹脂と熱カチオン重合開始剤とを含有するエポキシ樹脂組成物であって、該熱カチオン重合開始剤が、請求項1〜6のいずれかに記載のスルホニウムボレート錯体であることを特徴とするエポキシ樹脂組成物。
【請求項9】
配線基板上に電子部品が請求項8記載のエポキシ樹脂組成物の熱硬化物により接合されていることを特徴とする接続構造体。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2010−132614(P2010−132614A)
【公開日】平成22年6月17日(2010.6.17)
【国際特許分類】
【出願番号】特願2008−310827(P2008−310827)
【出願日】平成20年12月5日(2008.12.5)
【出願人】(000108410)ソニーケミカル&インフォメーションデバイス株式会社 (595)
【Fターム(参考)】