説明

新規な菌株保存技術を用いた高度不飽和脂肪酸の製造方法

【課題】微生物の新規な保存方法の提供。
【解決手段】微生物による高度不飽和脂肪酸または高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物を産生する事が出来る微生物の保存方法であって、(a)無機塩類と糖類とから成る栄養源を含むpH4〜7の胞子形成培地で胞子を形成せしめ;(b)前記(a)で得た胞子を、滅菌水、あるいは界面活性剤及び/又は無機塩類を含む滅菌水に懸濁して胞子懸濁液を調製し、凍結保存剤を5〜15%となるように添加して凍結保存胞子懸濁液を調製し;そして(c)前記(b)で得た凍結保存懸濁液を、−100℃〜−20℃で保存する;ことを含んで成る方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物を産生する微生物を含む微生物バイオマス、バイオマスより抽出して得られる粗油及び/又は粗リン脂質、及び粗油及び/又は粗リン脂質を精製して得られる精製油脂及び/又は精製リン脂質の製造方法、さらには該バイオマスならびに該油脂(粗油および/又は精製油脂)及び/又は該リン脂質(粗リン脂質及び/又は精製リン脂質)を配合してなる飲食物、治療用栄養食品、飼料及び医薬品に関するものである。
【背景技術】
【0002】
ヒトの高度不飽和脂肪酸(以下「PUFA」を称する)の生合成には、代表的な二つの系列、ω3系とω6系があり(ωとは、脂肪酸のメチル基末端から数えて最初の二重結合がある炭素数までの数を示している)、例えばω6系の場合は、リノール酸(18:2 ω6)から、不飽和化と炭素鎖長延長が繰り返されて、γ-リノレン酸(18:3 ω6)、ジホモ-γ-リノレン酸(20:3 ω6)、アラキドン酸(20:4 ω6)及び4,7,10,13,16-ドコサペンタエン酸(22:5 ω6)へと変換される。
【0003】
同様にω3系の場合は、α-リノレン酸(18:3 ω3)から、不飽和化と炭素鎖長延長が繰り返されて、エイコサペンタエン酸(20:5 ω3)、7,10,13,16,19-ドコサペンタエン酸(22:5 ω3)及び4,7,10,13,16,19-ドコサヘキサエン酸(22:6 ω3)へと変換される。ω3系のPUFAとして、エイコサペンタエン酸(以下「EPA」と称する)、ドコサヘキサエン酸(以下「DHA」と称する)は、特に、動脈硬化症、血栓症などの成人病の予防効果や抗ガン作用、学習能の増強作用などで多くの生理機能を有していることが知られ、医薬品、特定保健用食品への利用で様々な試みがなされている。しかし、最近ではω3系以外のPUFA(ω6系及びω9系)の生理機能にも注目が集っている。
【0004】
アラキドン酸は、血液や肝臓などの重要な器官を構成する脂肪酸の約10%程度を占めており(例えば、ヒト血液のリン脂質中の脂肪酸組成比では、アラキドン酸は11%、エイコサペンタエン酸は1%、ドコサヘキサエン酸は3%)、細胞膜の主要構成成分として膜の流動性の調節に関与し、体内の代謝で様々な機能を示す一方、プロスタグランジン類の直接の前駆体として重要な役割を果たす。特に最近は、乳幼児栄養としてのアラキドン酸の役割、神経活性作用を示す内因性カンナビノイド(2-アラキドノイルモノグリセロール、アナンダミド)の構成脂肪酸として注目されている。通常はリノール酸を富む食品を摂取すればアラキドン酸に変換されるが、成人病患者やその予備軍、乳児、老人では生合成に関与する酵素の働きが低下し、これらアラキドン酸は不足しがちとなるため、油脂(トリグリセリド)の構成脂肪酸として、直接に摂取することが望まれる。
【0005】
ω3系のPUFAであるEPAやDHAには、魚油という豊富な供給源が存在するが、ω6系のPUFAであるγ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸及び4,7,10,13,16-ドコサペンタエン酸(22:5 ω6)は、従来の油脂供給源から殆ど得ることができず、現在では微生物を発酵して得たPUFAを構成脂肪酸として含んで成る油脂(以下「PUFA含有油脂」と称する)が一般に使用されている。例えば、アラキドン酸を構成脂肪酸として含んで成る油脂(以下「アラキドン酸含有油脂」と称する)を産生することのできる種々の微生物を培養して、アラキドン酸含有油脂を得る方法が提案されている。
【0006】
この中でも、特にモルティエレラ属の微生物を用いることによって、構成脂肪酸に占めるアラキドン酸の割合の高い油脂(以下「アラキドン酸高含有油脂」と称する)が得られることが知られている(特開昭63-44891、特開昭63-12290)。近年、アラキドン酸が必須の用途として、例えば、乳幼児栄養の分野、具体的には調製乳に発酵で得たアラキドン酸含有油脂が使われ始めてきている。さらに、アラキドン酸含有油脂の新たな効果(特開2003-48831:脳機能の低下に起因する症状あるいは疾患の予防又は改善作用を有する組成物)も明らかとなってきており、今後、多大な需要が期待されている。
【0007】
モルティエレラ属の微生物を培養して得られる油脂は、その大部分がトリグリセリド(約70重量%以上)及びリン脂質である。食用油脂の形態はトリグリセリドであり、該用途を目的とする場合には、微生物を培養して得られた菌体バイオマスから、菌によって生成されたオリジナルの油脂(菌体から抽出操作によって得た油脂であって、「粗油」と称する)を抽出し、次いでこの粗油を食用油脂の精製工程(脱ガム、脱酸、脱臭、脱色)を経ることで、リン脂質を取り除いた精製油脂を得ることができる。
【0008】
モルティエレラ属の微生物を培養して得られるPUFA含有油脂は、菌糸内に蓄積されるため、該油脂生産の経済化を図るためには、より高濃度の培養を行ない、培養液あたりのPUFA含有油脂の収量を高める必要がある。培養液あたりのPUFA含有油脂収量は、菌体濃度と、菌体当たりPUFA含有油脂の含量の積算になることから、菌体濃度と菌体当たりPUFA含有油脂含量の両方を高める必要がある。菌体濃度を高めるためには、一般的には菌体成分へと変換される培地窒素源濃度を高めることによって可能になる。
【0009】
菌体当たりPUFA含有油脂含量を高めるためには、菌形態を良好な状態に制御し、かつ十分な酸素供給を行なうことが必要である。菌形態制御の方法としては培地塩類組成の最適化などの方法が報告されており(再公表特許98/029558)、また酸素供給の方法については加圧培養法や酸素富化空気通気法などの方法が報告されている(特開平06-153970)。しかし、これらの方法をもってしても、培養条件の微妙な違いによって影響を受けるために、培養の再現性を確保するのは容易ではなく、結果として、製造においても安定な生産を達成することはできなかった。
【0010】
【特許文献1】特開昭63-44891号公報
【特許文献2】特開昭63-12290号公報
【特許文献3】特開2003-48831号公報
【特許文献4】再公表特許98/029558号
【特許文献5】特開平06-153970号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
したがって、微生物によるPUFA含有油脂の安定な生産を確保するために、培養の再現性を確保する方法の開発が強く望まれている。
【課題を解決するための手段】
【0012】
本発明者等は、微生物培養によるPUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質の生産において、培養菌体増殖期におよぼす培養開始段階の条件について鋭意研究した結果、前工程からの菌糸あるいは胞子の移植条件を改善することによって、培養の再現性が高まるとともに、安定なPUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質の生産を達成することを見出した。
従って本発明は、前工程からの菌糸あるいは胞子の移植条件を改善することを特徴とする、培養の再現性の改善並びに安定なPUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質の生産による、PUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質、及び/又はPUFA含有菌体の製造方法を提供しようとするものである。
【0013】
本発明は、具体的には、微生物による高度不飽和脂肪酸または高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物を産生する事が出来る微生物の保存方法であって、
(a)無機塩類と糖類とから成る栄養源を含むpH4〜7の胞子形成培地で胞子を形成せしめ;
(b)前記(a)で得た胞子を、滅菌水、あるいは界面活性剤及び/又は無機塩類を含む滅菌水に懸濁して胞子懸濁液を調製し、凍結保存剤を5〜15%となるように添加して凍結保存胞子懸濁液を調製し;そして
(c)前記(b)で得た凍結保存胞子懸濁液を、−100℃〜−20℃で保存する;
ことを含んで成る方法を提供する。
【0014】
上記の方法において、前記無機塩類は、好ましくは、硝酸ナトリウム、リン酸一水素二カリウム、硫酸マグネシウム、塩化カリウム及び硫酸第一鉄から成る群から選択される少なくとも1種の無機塩類であり、前記胞子形成培地は、好ましくは、pHを4〜7に調整したCzapek寒天培地又はCzapek-dox寒天培地である。
上記の方法において、凍結保存剤は、好ましくはグリセリンである。
【0015】
前記高度不飽和脂肪酸または高度不飽和脂肪酸を構成脂肪酸として含んでなる化合物は、例えば、高度不飽和脂肪酸を構成脂肪酸とるすトリグリセリド、又は高度不飽和脂肪酸を構成脂肪酸とするリン脂質であり、前記高度不飽和脂肪酸は、好ましくは、がオメガ6系不飽和脂肪酸、オメガ3系高度不飽和脂肪酸もしくはオメガ9系高度不飽和脂肪酸、またはこれらの組合せである。
【0016】
前記オメガ6系不飽和脂肪酸は、好ましくは、9,12-オクタデカジエン酸(リノール酸)18:2ω6、6,9,12-オクタデカトリエン酸(γ-リノレン酸)18:3ω6、8,11,14-エイコサトリエン酸(ジホモ-γ-リノレン酸)20:3ω6、5,8,11,14-エイコサテトラエン酸(アラキドン酸)20:4ω6、7,10,13,16-ドコサテトラエン酸22:4ω6又は4,7,10,13,16-ドコサペンタエン酸22:5ω6である。
【0017】
前記オメガ3系不飽和脂肪酸は、好ましくは、9,12,15-オクタデカトリエン酸(α-リノレン酸)18:3ω3、6,9,12,15-オクタデカテトラエン酸(ステアリドン酸)18:4ω3、11, 14, 17- エイコサトリエン酸 (ジホモ- α- リノレン酸) 20:3ω3、8,11,14,17-エイコサテトラエン酸20:4ω3、5,8,11,14,17-エイコサペンタエン酸20:5ω3、7,10,13,16,19-ドコサペンタエン酸22:5ω3又は4,7,10,13,16,19-ドコサヘキサエン酸22:6ω3である。
前記オメガ9系不飽和脂肪酸は、好ましくは、6,9-オクタデカジエン酸 18:2ω9、8,11-エイコサジエン酸 20:2ω9又は5,8,11-エイコサトリエン酸(ミード酸) 20:3ω9である。
【0018】
前記の方法において、前記微生物は、好ましくはモルティエレラ(Mortierella)属に属し、例えは、モルティエレラ・アルピナ(Motierella alpina)である。
【0019】
本発明はまた、上記の記載の方法により保存された微生物を使用することを特徴とする高度不飽和脂肪酸又は高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物の製造方法に関する。
【発明を実施するための最良の形態】
【0020】
より詳細には、液体培養におけるモルティエレラ属糸状菌の経時変化の特徴としては、まず菌体増殖によって細胞質の増加が起こる(菌体増殖期)。そして、細胞質の増加が殆ど止まった頃から、PUFA含有油脂の菌体内蓄積が活発になり(油脂蓄積期)、最終的に多量のPUFA含有油脂が細胞内に蓄積される。本発明者は、菌体増殖期は約2日間程度であり、次いで油脂蓄積期として6日間の培養を報告している(J. Biosci. Bioeng., 87:489-494 (1999))。
【0021】
そして、菌体増殖期に菌形態はほぼ決まることも報告しており、培養初期の条件設定と管理は非常に重要と考えられる。培養初期の条件設定と管理の重要性が示唆されているにも関わらず、培養開始時の条件設定、特に菌糸あるいは胞子の移植条件に関する報告は成されていない。本発明者はこの点に着目し、鋭意検討を重ねた結果、移植方法が培養結果に大きく影響を及ぼすこと、そして移植方法の改善がPUFA含有油脂の生産性向上に大きな貢献をすることを見出した。
【0022】
微生物の液体培養によって、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物(PUFA含有油脂及び/又はPUFA含有リン脂質)を得るためには、保存菌株をまず少量の培養液に接種し、増殖せしめることから開始する(種培養第一段階)。次いで、大容積の培地へと順次接種を行いながらスケールアップを図るが、本培養とはPUFA含有油脂油脂を得るために微生物バイオマスを回収する最終ステップの培養を意味する。また、種培養とは順次継代しながら行なうスケールアップ途上の各段階の培養を意味する。
【0023】
菌株の保存方法としては、寒天斜面培地(スラント)で培養した菌を5℃冷蔵庫または-20℃冷凍庫で保存する方法、糸状菌胞子懸濁液を5℃冷蔵庫で保存する方法、凍結保護剤を添加して液体窒素冷凍庫あるいは液体窒素で得られる-150℃〜-196℃の超低温にて保存する方法、土壌培養して乾燥させる方法、菌を凍結乾燥して冷蔵保存する方法などが知られている(「発酵工学の基礎(1988)、石崎文彬訳、学会出版センター」)。
【0024】
また、「Maintaining Cultures for Biotechnology and Industry(1996), edited by J.C. Hunter-Cevera & A. Belt, Academic Press」では、スラントでの-20℃保存、液体窒素中保存、および凍結乾燥保存を採用した場合の比較として、生存率と生産性維持率への影響についてまとめられており、該報告によれば、-20℃でのスラント保存法が、生存率および生産性維持率が最も良好に維持されている(同書、P.25)。
【0025】
また、糸状菌の場合は、菌を生きた状態で純粋に安定的に維持することは困難であり、全ての糸状菌に広く適用できる方法は無いが、液体窒素中での保存が理想的と考えられる旨が述べられている(同書、P.105)。さらに、様々な凍結保護剤の使用例が一覧で示されており、何れも液体窒素保存あるいは凍結乾燥法との組合わせが従来技術として示されている(同書、P.118、Table 4)。液体窒素の一気圧下での沸点は-195.8℃であるので、液体窒素保管中の温度は約-196℃に保たれる。
【0026】
モルティエレラ属糸状菌の場合、保存方法および種培養への接種方法としては、本発明者らの報告(J. Am. Oil Chem. Soc., 75:1501-1505 (1998))では、Czapek寒天培地によるスラントの冷蔵保存法が採用されている。Parkらの報告(Biotechnol. Bioprocess Eng., 6:161-166(2001))では、寒天培地スラントより103spores/mLの胞子懸濁液を調製してこれを培地に接種する方法が採用されている。
【0027】
本発明者は、培養初期の条件設定と管理は非常に重要と考えられることから、培養初期に影響を与えると考えられる菌株保存の重要性に着目し、鋭意検討を重ねた。その結果、従来報告されているようなスラント保存、液体窒素保存あるいは凍結乾燥などの何れにも属さない新たな方法として、凍結保護剤を添加して-100℃〜-20℃にて保存する方法の有効性を見出し、かつ、優れた胞子懸濁液の調製方法も見出した。
従って本発明は、新規な保存菌株調製法および保存方法によって保存された菌株を接種して培養を行なうことを特徴とする、培養の再現性の改善並びに安定なPUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質の生産による、PUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質、及び/又はPUFA含有菌体の製造方法を提供しようとするものである。
【0028】
本発明は、新規な保存菌株調製法および保存方法によって保存された菌株を接種して培養を行うことにより、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物(油脂(トリグリセリド)及び/又はリン脂質)の生産及び該化合物(油脂(トリグリセリド)及び/又はリン脂質)を産生する菌体の製造方法に関するものである。
従って、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物(油脂(トリグリセリド)及び/又はリン脂質)を産生しうる微生物を培養することが必須である。ここでいう微生物としては、炭素数が18以上で二重結合は3以上のω6系高度不飽和脂肪酸、炭素数が18以上で二重結合が2以上のω9系高度不飽和脂肪酸、及び炭素数が18以上で二重結合が3以上のω3系高度不飽和脂肪酸の少なくとも1種の高度不飽和脂肪酸を主にトリグリセリド及び/又はリン脂質の構成脂肪酸として産生する微生物が望ましい。
【0029】
そして、炭素数が18以上で二重結合は3以上のω6系高度不飽和脂肪酸としては、γ-リノレン酸(6,9,12-オクタデカトリエン酸)、ジホモ-γ-リノレン酸(8,11,14-エイコサトリエン酸)、アラキドン酸(5,8,11,14-エイコサテトラエン酸)、7,10,13,16-ドコサテトラエン酸(22:4 ω6)及びDPAω6(4,7,10,13,16-ドコサペンタエン酸)を、炭素数が18以上で二重結合が2以上のω9系高度不飽和脂肪酸としては、6,9-オクタデカジエン酸、8,11-エイコサジエン酸及びミード酸(5,8,11-エイコサトリエン酸)を、炭素数が18以上で二重結合が3以上のω3系高度不飽和脂肪酸として、α-リノレン酸(9,12,15-オクタデカトリエン酸)、6,9,12,15-オクタデカテトラエン酸(18:4ω3)、8,11,14,17-エイコサテトラエン酸(20:4ω3)、EPA(5,8,11,14,17-エイコサペンタエン酸)、DPAω3(7,10,13,16,19-ドコサペンタエン酸)、及びDHA(4,7,10,13,16,19-ドコサヘキサエン酸)を挙げることができる。
【0030】
したがって、本発明においては、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物(油脂(トリグリセリド)及び/又はリン脂質)を産生しうる微生物であればすべて使用することができる。例えば、アラキドン酸を構成脂肪酸として成る油脂(トリグリセリド)の生産能を有する微生物としては、モルティエレラ(Mortierella)属、コニディオボラス(Conidiobolus)属、フィチウム(Pythium)属、フィトフトラ(Phytophthora)属、ペニシリューム(Penicillium)属、クラドスポリューム(Cladosporium)属、ムコール(Mucor)属、フザリューム(Fusarium)属、アスペルギルス(Aspergillus)属、ロードトルラ(Rhodotorula)属、エントモフトラ(Entomophthora)属、エキノスポランジウム(Echinosporangium)属、サプロレグニア(Saprolegnia)属に属する微生物を挙げることができる。
【0031】
モルティエレラ(Mortierella)属モルティエレラ(Mortierella)亜属に属する微生物では、例えばモルティエレラ・エロンガタ(Mortierella elongata)、モルティエレラ・エキシグア(Mortierella exigua)、モルティエレラ・フィグロフィラ(Mortierella hygrophila)、モルティエレラ・アルピナ(Mortierella alpina)等を挙げることができる。具体的にはモルティエレラ・エロンガタ(Mortierella elongata)IFO8570、モルティエレラ・エキシグア(Mortierella exigua)IFO8571、モルティエレラ・フィグロフィラ(Mortierella hygrophila)IFO5941、モルティエレラ・アルピナ(Mortierella alpina)IFO8568、ATCC16266、ATCC32221、ATCC42430、CBS219.35、CBS224.37、CBS250.53、CBS343.66、CBS527.72、CBS529.72、CBS608.70、CBS754.68等の菌株を挙げることができる。
【0032】
例えば、DHAを産生しうる微生物として、クリプテコデニウム(Crypthecodenium)属、スラウトキトリウム(Thrautochytrium)属、シゾキトリウム(Schizochytrium)属、ウルケニア(Ulkenia)属、ジャポノキトリウム(Japonochytrium)属又はハリフォトリス(Haliphthoros)属に属する微生物を挙げることもできる。
【0033】
これらの菌株はいずれも、大阪市の財団法人醗酵研究所(IFO)、及び米国のアメリカン・タイプ・カルチャー・コレクション(American Type Culture Collection, ATCC)及び、Centrralbureau voor Schimmelcultures(CBS)からなんら制限なく入手することができる。また本発明の研究グループが土壌から分離した菌株モルティエレラ・アルピナ1S−4株、菌株モルティエレラ・エロンガタSAM0219(微工研菌寄第8703号)(微工研条寄第1239号)を使用することもできる。
【0034】
本発明に使用される菌株を培養する為には、まず入手した菌の保存菌株を調製する必要がある。保存菌株の調製法として、まずは、胞子形成培地を作成する。胞子形成培地は、硝酸ナトリウム、リン酸一水素二カリウム、硫酸マグネシウム、塩化カリウム、硫酸第一鉄および糖類の全てあるいは一部成分から成る培地を調製し、pHを4〜7の範囲、好ましくは5〜6.5の範囲に調製する。この調製培地に、寒天を加えて加熱滅菌した後、冷却し固化させたものを胞子形成培地として用いる。胞子形成培地は、菌糸増殖および胞子形成が成されれば特に制限は無いが、pHを胞子形成に適した範囲である4〜7に調製することを特徴とする。
【0035】
具体的な例としては、Czapek寒天培地(硝酸カリウム 2g/L、リン酸一水素二カリウム 1g/L、硫酸マグネシウム・七水和物 0.5g/L、塩化カリウム 0.5g/L、硫酸第一鉄・七水和物 0.01g/L、サッカロース 30g/L、寒天 13g/L)に塩酸又は硫酸を加えてpH6.0に調製した培地が挙げられる。もう一つの例としては、Czapek-dox寒天培地(硝酸カリウム 2g/L、リン酸一水素二カリウム 1g/L、硫酸マグネシウム・七水和物 0.5g/L、塩化カリウム 0.5g/L、硫酸第一鉄・七水和物 0.01g/L、グルコース 30g/L、寒天 13g/L)に塩酸又は硫酸を加えてpH6.0に調製した培地が挙げられる。
【0036】
このような方法で試験管内に斜面培地(スラント培地)あるいはシャーレに平板培地(プレート培地)を作成し、この培地に菌糸あるいは胞子を接種して、好気条件下で固体培養する。培養温度は0〜40℃、好ましくは10〜35℃、より好ましくは15〜30℃に維持して増殖と胞子形成を図る。培養温度は、途中で変更してもよく、例えば、25℃にて増殖させた後、5℃にて培養する方法ができる。
【0037】
胞子形成を確認した後、固体培養菌糸に滅菌水を添加し、常法にて攪拌して胞子懸濁液を得る。添加する滅菌水への添加物には特に制限無く、純水のままでもよいが、界面活性剤、無機塩類などを添加することもでき、また予め調製した生理食塩水を用いても良い。攪拌の方法としては、外部から固体培養容器に力を加えても良いし、予め滅菌したブラシなどで菌糸に直接力を与えても良い。
【0038】
このようにして得られた胞子懸濁液、または胞子と菌糸の懸濁液を、保存用の原液として用いる。この保存用原液を、滅菌した水、あるいは界面活性剤あるいは無機塩類を含んだ水溶液で希釈して保存用原液にしても良い。次いで、この保存用原液に、凍結保護剤を添加する。凍結保護剤としては、一般に用いられているものであれば特に制限は無く、寒天粉、牛血清、DMSO、グリセリン、イノシトール、ポリビニルアルコール、スキムミルクなどから選ばれた一つあるいは複数のものを添加することができる。具体的な例としては、保存液のグリセリン濃度が10%になるようにグリセリンを凍結保護剤として添加する。
【0039】
凍結保護剤を添加した後、この保存液を保存用容器に分注する。容器としては、滅菌済みのプラスチック製チューブなどを適宜用いる。具体例としては、容積1.2mLのセラムチューブなどに保存液を無菌操作にて分注する。次いで、この保存容器を超低温フリーザーに保管する。超低温フリーザーの庫内温度は、-100℃〜-20℃の範囲に、好ましくは-90℃〜-30℃の範囲に、より好ましくは-85℃〜-50℃に制御する。
このようにして、超低温フリーザーにて保管した菌株は長期間に渡って安定的に保存することが可能である。
【0040】
保存菌株を培養に使用するためには、保存液をまず解凍する。解凍はできるだけ素早く行なうほうが良く、好ましくは40℃以下の温度にて30分以内に解凍、より好ましくは30℃以下の温度にて30分以内に解凍、さらにより好ましくは30℃以下の温度にて10分以内に解凍するのが好ましい。
【0041】
このようにして解凍した保存液を液体培地に接種して培養する。培地の炭素源としてはグルコース、フラクトース、キシロース、サッカロース、マルトース、可溶性デンプン、糖蜜、グリセロール、マンニトール、糖化澱粉等の一般的に使用されているものが、いずれも使用できるが、これらに限られるものではない。
【0042】
窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、カザミノ酸、コーンスティープリカー、大豆タンパク、脱脂ダイズ、綿実カス等の天然窒素源の他に、尿素等の有機窒素源、ならびに硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム等の無機窒素源を用いることができるが、特に大豆から得られる窒素源、具体的には大豆、脱脂大豆、大豆フレーク、食用大豆タンパク、おから、豆乳、きな粉等が挙げられるが、特に、脱脂大豆に熱変性を施したもの、より好ましくは脱脂大豆を約70〜90℃で熱処理し、さらにエタノール可溶成分を除去したものを単独または複数で、あるいは前記窒素源と組み合わせて使用することができる。
【0043】
この他必要に応じて、リン酸イオン、カリウムイオン、ナトリウムイオン、マグネシウムイオン、カルシウムイオン以外に、鉄、銅、亜鉛、マンガン、ニッケル、コバルト等の金属イオンやビタミン等を微量栄養源として使用できる。これらの培地成分は微生物の生育を害しない濃度であれば特に制限はない。実用上、一般に炭素源の総添加量は0.1〜40重量%、好ましくは1〜25重量%、窒素源の総添加量は2〜15重量%、好ましくは2〜10重量%とするのが望ましく、より好ましくは初発の炭素源添加量を1〜5重量%、初発の窒素源添加量を3〜8重量%として、培養途中に炭素源及び窒素源を、さらにより好ましくは炭素源のみを流加して培養する。
【0044】
また、PUFA含有油脂の収量を増加せしめるために、不飽和脂肪酸の前駆体として、例えば、ヘキサデカン若しくはオクタデカンのごとき炭化水素;オレイン酸若しくはリノール酸のごとき脂肪酸又はその塩、復は脂肪酸エステル、例えばエチルエステル、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル;又はオリーブ油、大豆油、なたね油、綿実油若しくはヤシ油のごとき油脂類を単独で、又は組み合わせて使用できる。基質の添加量は培地に対して0.001〜10%、好ましくは0.5〜10%である。またこれらの基質を唯一の炭素源として培養してもよい。
【0045】
PUFA含有油脂を産生する微生物の培養温度は使用する微生物によりことなるが、5〜40℃、好ましくは20〜30℃とし、また20〜30℃にて培養して菌体を増殖せしめた後5〜20℃にて培養を続けてPUFA含有油脂を生産せしめることもできる。このような温度管理によっても、PUFA含有油脂の構成脂肪酸中のPUFAの割合を上昇せしめることができる。種培養では通気攪拌培養、振盪培養、又は静置液体培養を、本培養では通気攪拌培養を行う。本培養開始時(種培養液接種時)の培地pHは5〜7、好ましくは5.5〜6.5に調製する。種培養の各段階における培養期間は通常1〜10日間、好ましくは1〜5日間、より好ましくは1〜3日間行なう。本培養の培養期間は、通常2〜30日間、好ましくは5〜20日間、より好ましくは5〜15日間行う。
【0046】
モルティエレラ属モルティエレラ亜属に属する微生物は、アラキドン酸を主たる構成脂肪酸として含んで成る化合物(油脂(アラキドン酸含有トリグリセリド)及び/又はアラキドン酸含有リン脂質)を産生しうる微生物として知られているが、本発明者らは、上記菌株に変異処理を施すことによって、ジホモ-γ-リノレン酸を主たる構成脂肪酸として含んで成る油脂を産生しうる微生物(特開平5-91887)や、ω9系高度不飽和脂肪酸を主たる構成脂肪酸として含んで成る油脂を産生しうる微生物を(特開平5-91888)得ている。
【0047】
さらに、高濃度の炭素源に耐性を有する微生物(特開平5-9188、特開平10−57085、特開平5-91886)を得ており、これら微生物は、モルティエレラ属モルティエレラ亜属の微生物であり、本発明の培養法、具体的には新規な保存菌株調製法および保管法による保管を経た保存菌株を用いて培養することによって、PUFA含有油脂(トリグリセリド)及び/又はPUFA含有リン脂質を生産することができる。しかし、本発明はモルティエレラ属モルティエレラ亜属に属する微生物に限定しているわけではなく、高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物(油脂(トリグリセリド)及び/又はリン脂質)を産生しうる微生物に、本発明の培養法を適用して、目的とする微生物バイオマス、粗油及び/又は粗リン脂質、及び粗油及び/又は粗リン脂質を精製して得られる精製油脂及び/又は精製リン脂質を得ることができる。
【0048】
油脂を菌体内に蓄積した微生物から、粗油及び/又は粗リン脂質を得る方法として、培養終了後、培養液をそのままかあるいは殺菌、濃縮、酸性化などの処理を施した後、自然沈降、遠心分離および/又は濾過などの常用の固液分離手段により培養菌体を得る。固液分離を助けるために、凝集剤や濾過助剤を添加してもよい。凝集剤としては、例えば、塩化アルミニウム、塩化カルシウム、アルギン、キトサンなどを使用できる。濾過助剤としては、例えば、珪藻土を使用できる。培養菌体は好ましくは、水洗、破砕、乾燥する。乾燥は、凍結乾燥、風乾、流動層乾燥、凍結乾燥などによって行うことができる。
【0049】
乾燥菌体から粗油及び/又は粗リン脂質を得る手段としては、有機溶剤による抽出法や圧搾法を用いることができるが、好ましくは窒素気流下で有機溶剤によって抽出する。有機溶剤としてはエタノール、ヘキサン、メタノール、エタノール、クロロホルム、ジクロロメタン、石油エーテル、アセトン等を用いることができ、またメタノールと石油エーテルの交互抽出やクロロホルム−メタノール−水の一層系の溶媒も用いることができる。しかしながら、粗油及び/又は粗リン脂質の取得に用いる抽出法を上記の方法に限定しているわけではなく、菌体内の油脂(トリグリセリド)及び/又はリン脂質を効率的に抽出する手法はすべて使用することができる。例えば、超臨界CO2流体による抽出法なども有効な手段として使用することができる。
【0050】
有機溶剤や超臨界流体で抽出された抽出物から減圧下などの条件下で有機溶剤や超臨界流体成分を除去することにより、目的とする粗油及び/又は粗リン脂質を得ることができる。また、上記の方法に代えて湿菌体を用いて抽出を行うことができる。この場合にも、乾燥菌体と同様の方法で粗油及び/又は粗リン脂質を抽出できるが、メタノール、エタノール、アセトン等の水に対して相溶性の溶媒、又はこれらと水及び/又は他の溶媒とからなる水に対して相溶性の混合溶媒を使用するほうが抽出効率が上がる場合もある。
【0051】
本発明で得た高度不飽和脂肪酸を構成脂肪酸として含んで成る微生物バイオマスあるいは粗油及び/又は粗リン脂質は、動物飼料に配合して直接使用することができる。しかし、食品への適応を考えた場合、一般の油脂精製工程に供して使用することが望ましい。油脂精製工程として、脱ガム、脱酸、脱臭、脱色、カラム処理、分子蒸留、ウィンタリングなどの常法の工程を用いることができる。
本発明の微生物バイオマス、粗油、精製油脂(トリグリセリド)、粗リン脂質、精製リン脂質などの用途に関しては無限の可能性があり、食品、飲料、化粧品、医薬品の原料並びに添加物として使用することがでる。そして、その使用目的、使用量に関して何ら制限を受けるものではない。
【0052】
例えば、食品組成物としては、一般食品の他、機能性食品、栄養補助食品、未熟児用調製乳、成熟児用調製乳、乳児用調製乳、乳児用食品、妊産婦食品又は老人用食品等を挙げることができる。油脂を含む食品例として、肉、魚、またはナッツ等の本来油脂を含む天然食品、スープ等の調理時に油脂を加える食品、ドーナッツ等の熱媒体として油脂を用いる食品、バター等の油脂食品、クッキー等の加工時に油脂を加える加工食品、あるいはハードビスケット等の加工仕上げ時に油脂を噴霧または塗布する食品等が挙げられる。さらに、油脂を含まない、農産食品、醗酵食品、畜産食品、水産食品、または飲料に添加することができる。さらに、機能性食品・医薬品の形態であっても構わなく、例えば、経腸栄養剤、粉末、顆粒、トローチ、内服液、懸濁液、乳濁液、シロップ等の加工形態であってもよい。
【実施例】
【0053】
次に、実施例により、本発明をさらに具体的に説明する。しかし、本発明は、実施例に限定されない。
実施例1. 胞子懸濁液の凍結保存方法
アラキドン酸生産菌としてMortierella alpina 1S-4株を用いた。試験管に調製したCzapek寒天培地(pH6.0に調整し滅菌した)のスラントで、25℃にて静置培養を7日間行ない、菌糸増殖を確認した後、試験管を冷蔵庫(4℃)にて10日間保管した。
【0054】
試験管に滅菌水を加えてよく攪拌し、胞子懸濁液を調製した。胞子懸濁液を適宜希釈してポテトデキストロース寒天培地プレート培地に塗布して、コロニー数を数える方法を用いて、胞子懸濁液中の胞子数を数えたところ、1×106spores/mLであった。次いで、この胞子懸濁液を、滅菌水にて100倍希釈した。そして、この希釈済み胞子懸濁液、グリセリン、水の3者(水とグリセリンは、予め混合して滅菌)を、「希釈済み胞子懸濁液:グリセリン:水=1:1:8」の割合(体積割合)で混合した。この混合液を、1.2mL容の滅菌セラムチューブに1mL入れて、-80℃の超低温フリーザーにて凍結保存した。
M. alpina 1S-4株を液体培養に用いる場合は、凍結保存菌株を25℃恒温機内で素早く解凍して、液体培地に接種した。
【0055】
比較例1. 胞子懸濁液の調製方法
アラキドン酸生産菌としてMortierella alpina 1S-4株を用いた。試験管に調製したCzapek寒天培地(pH6.0に調整し滅菌した)のスラントで、25℃にて静置培養を7日間行ない、菌糸増殖を確認した後、試験管を冷蔵庫にて保管した。
M. alpina 1S-4株を液体培養に用いる場合は、試験管に滅菌水を加えてよく攪拌し、胞子懸濁液を調製した。この胞子懸濁液を液体培地に接種した。
【0056】
実施例2. 培養実験、保存方法による再現性の違い
M. alpina 1S-4株を用いて、実施例1および比較例1の方法で調製した種菌から培養した。
保存菌株を、酵母エキス1.0%、グルコース2.0%、pH6.3の培地に0.1vol.%接種し、往復振盪100rpm、温度28℃の条件にて種培養を開始し、3日間培養した。
次に、脱脂大豆粉5.0%、KH2PO4 0.3%、Na2SO4 0.1%、CaCl2・2H2O 0.05%、MgCl2・6H2O 0.05%、グルコース1.8%、大豆油0.1%、pH6.3の培地25Lを50L容通気攪拌培養槽に調製し、これに種培養液を100mL接種して、攪拌回転数92rpm、温度26℃、槽内圧200kPa、通気量12.5L/minの条件にて培養を開始した。培養途中で、グルコースを表1の濃度で流加し、10日間の培養を行なった。
【0057】
【表1】

【0058】
種菌保存を開始してから、異なる保存日数において同等の方法で複数回の培養を行なった。各培養において、培養10日目で得られたアラキドン酸生成量を表2に示す。
実施例1の方法で調製し保存した種菌の場合は、各培養におけるアラキドン酸生成量の再現性は良好であった。しかし、比較例1の方法で種菌を調製、保存した場合は、培養ごとの再現性が劣る結果であった。
【0059】
【表2】

【0060】
実施例3. 培養実験、長期保存における生産性の変化
M. alpina 1S-4株を用いて、実施例1および比較例1の方法で調製した種菌から培養した。
保存菌株を、酵母エキス1.0%、グルコース2.0%、pH6.3の培地に0.1vol.%接種し、往復振盪100rpm、温度28℃の条件にて種培養を開始し、3日間培養した。
次に、酵母エキス1.0%、グルコース1.8%、大豆油0.1%、pH6.3の培地25Lを50L容通気攪拌培養槽に調製し、これに種培養液を100mL接種して、攪拌回転数200rpm、温度28℃、槽内圧150kPa、通気量25L/minの条件にて培養を開始した。培養途中で、グルコースを表3の濃度で流加し、7日間の培養を行なった。
【0061】
【表3】

【0062】
種菌保存を開始してから、異なる保存日数において同等の方法で複数回の培養を行なった。各培養において、培養7日目で得られたアラキドン酸生成量を表4に示す。
実施例1の方法で調製し保存した種菌の場合は、長期間の保存を経ても良好にアラキドン酸生産性が再現された。しかし、比較例1の方法で種菌を調製、保存した場合は、長期間の保管中に、アラキドン酸生産性が低下する傾向が確認された。
【0063】
【表4】

【0064】
実施例4. 胞子形成培地のpHの影響
アラキドン酸生産菌としてM. alpina 1S-4株を用いた。pHの異なる2種類の表5の組成のCzapek寒天培地を試験管に調製した。pH無調整のCzapek培地のpHを実測したところ、pH8.5であった。
【0065】
【表5】

【0066】
pHの異なる2種類の寒天培地に、菌糸を一白金時接種して25℃にて静置培養を7日間行ない、菌糸増殖を確認した後、試験管を冷蔵庫(4℃)にて10日間保管した。
試験管に滅菌水を加えてよく攪拌し、胞子懸濁液を調製した。胞子懸濁液を適宜希釈してポテトデキストロース寒天培地プレート培地に塗布して、コロニー数を数える方法を用いて、胞子懸濁液中の胞子数を数えたところ、pH6.0の寒天培地で得られた胞子数は1×106spores/mL、pH無調整(実測pH8.5)の培地で得られた胞子数は5×104spores/mLであった。
これら両方法で調製した胞子懸濁液を用いて、実施例3の方法で培養し、アラキドン酸生成量を比較した。その結果、pH6.0調製培地の胞子懸濁液からは、3.5g/Lのアラキドン酸生成量が、pH無調整(実測pH8.5)培地からは2.9g/Lのアラキドン酸生成量が得られた。
【0067】
実施例5. 凍結保存方式
実施例1で、1.2mL容セラムチューブに調製した胞子懸濁保存液を、条件(5-1)では-20℃冷凍庫に、条件(5-2)では-80℃超低温フリーザーに、条件(5-3)では液体窒素中(約-196℃)に保管した。3条件にて30日保管の後、実施例2と同様に培養を行なった。その結果、胞子生存率およびアラキドン酸生産性ともに、-80℃超低温フリーザー保管条件でもっとも優れた結果が得られた。
【0068】
【表6】

【0069】
実施例6. 大型タンク培養での凍結菌株の培養再現性の実証
M. alpina 1S-4株を用いて、実施例1の方法で調製した種菌から培養した。
保存菌株を、酵母エキス1.0%、グルコース2.0%、pH6.3の培地に0.1vol.%接種し、往復振盪100rpm、温度28℃の条件にて種培養(第一段階)を開始し、3日間培養した。
次に、酵母エキス1%、グルコース2%、大豆油0.1%、pH6.3の培地30Lを50L容通気攪拌培養槽に調製し、これに種培養(第一段階)液を接種して、攪拌回転数200rpm、温度28℃、槽内圧150kPa及び通気量12.5L/分の条件にて、種培養(第二段階)を開始し、2日間培養した。
【0070】
次に、4500Lの培地(培地A:大豆粉336kg、KH2PO4 16.8kg、MgCl2・6H2O 2.8kg、CaCl2・2H2O 2.8kg、大豆油 5.6kg)をpHを4.5に調製して、121℃、20分の条件で滅菌した。別培地として、1000Lの培地(培地B:含水グルコース112kg)を140℃、40秒の条件で滅菌して先の培地Aに加えて培地Cを調製した。培地CをpH6.3に調整した後、容量28Lの種培養液(第二段階)を接種して、計5600Lの初発培養液量(培養槽容積10kL)に合わせた。
【0071】
種培養液(第二段階)を本培養培地に接種する際は、種培養槽と本培養槽を結ぶ配管に蒸気を流して殺菌(121〜126℃にて30分以上)した後、配管に除菌空気を流して冷却し、配管表面温度60℃以下まで冷却した。冷却の後、種培養液(第二段階)を通液して本培養槽へ所定量送液した。種培養液の本培養培地への接種を終え、温度26℃、通気量49Nm3/hr、内圧200kPaで培養を開始した。培養途中で次表に示すように培地流加を行ない、306時間の本培養を行なった。培養終了時は、培地流加による増加分と蒸発による減少分の影響で、7750Lの培養液量となった。培養終了時の培養液当たりアラキドン酸生成量は18.2 g/L、であった。
【0072】
本培養時間 流加培地
19時間後 含水グルコース280kg/460L
43時間後 含水グルコース280kg/450L
67時間後 含水グルコース252kg/390L
91時間後 含水グルコース252kg/410L
120時間後 含水グルコース224kg/370L
140時間後 含水グルコース168kg/280L
163時間後 含水グルコース168kg/270L
【0073】
培養終了後、120℃、20分の条件で殺菌した後、連続式脱水機で湿菌体を回収し、振動流動層乾燥機で水分含量1wt%まで乾燥し、空気輸送機を用いて充填場所に乾燥菌体を輸送した。得られた乾燥菌体を、容積約1m3のアルミパウチ製コンテナバッグに窒素ガスとともに充填し、バッグ口部をヒートシールシールした後、10℃以下の冷蔵室で保管した。
コンテナバッグより取り出した乾燥菌体に、ヘキサン抽出を施し、ヘキサン溶液を濾過して含有固形分を除去した後、減圧下で加熱することによってヘキサンを除去し、アラキドン酸を構成脂肪酸として成る粗油を得た。
同様の培養を3回繰り返した。培養終了時のアラキドン酸生成量をまとめた結果を表7に示す。保存菌株の再現性は良好であり、より安定したアラキドン酸生産性が得られることが確認された。
【0074】
【表7】

【0075】
実施例7. ジホモ−γ−リノレン酸生産菌での凍結菌株の培養再現性の実証
ジホモγリノレン酸生産菌としてMortierella alpina SAM1860株を用いた。試験管に調製したCzapek寒天培地(pH6.0に調整し滅菌した)のスラントで、25℃にて静置培養を12日間行ない、菌糸増殖を確認した後、試験管を冷蔵庫(4℃)にて20日間保管した。
試験管に滅菌水を加えてよく攪拌し、胞子懸濁液を調製した。胞子懸濁液を適宜希釈してポテトデキストロース寒天培地プレート培地に塗布して、コロニー数を数える方法を用いて、胞子懸濁液中の胞子数を数えたところ、5×106spores/mLであった。
【0076】
次いで、この胞子懸濁液を、滅菌水にて100倍希釈した。そして、この希釈済み胞子懸濁液、グリセリン、滅菌水の3者を、「希釈済み胞子懸濁液:グリセリン:滅菌水=1:1:8」の割合(体積割合)で混合した。この混合液を、1.2mL容の滅菌セラムチューブに1mL入れて、-80℃の超低温フリーザーにて1ヶ月間凍結保存した。
また比較例として、同様の方法で調製した胞子懸濁液を冷蔵庫(5℃)にて1ヶ月間保管した。
1ヶ月の保管期間を経た2種類の保存菌株を用いて、実施例3と同じ方法にて培養を行なった。その結果、表8のDGLA生成量が得られ、凍結保存法の有効性が示された。
【0077】
【表8】

【0078】
実施例8. 他のアラキドン酸生産菌での凍結菌株の培養再現性の実証
アラキドン酸生産菌としてMortierella elongata IFO8570株、およびMortierella alpina CBS754.68株を用いた。
試験管に調製したCzapek寒天培地(pH6.0に調整し滅菌した)のスラントで、25℃にて静置培養を10日間行ない、菌糸増殖を確認した後、試験管を冷蔵庫(4℃)にて20日間保管した。
【0079】
試験管に滅菌水を加えてよく攪拌し、胞子懸濁液を調製した。次いで、この胞子懸濁液を、滅菌水にて10倍希釈した。そして、この希釈済み胞子懸濁液、グリセリン、滅菌水の3者を、「希釈済み胞子懸濁液:グリセリン:滅菌水=1:1.5:7.5」の割合(体積割合)で混合した。この混合液を、1.2mL容の滅菌セラムチューブに1mL入れて、-80℃の超低温フリーザーにて1ヶ月間凍結保存した。
また比較例として、同様の方法で調製した胞子懸濁液を冷蔵庫(5℃)にて1ヶ月間保管した。
1ヶ月の保管期間を経た4種類の保存菌株(菌種2種×保存方法2種)を、それぞれ、酵母エキス1%、グルコース2%、pH6.3の培地に接種し、往復振盪100rpm、温度28℃の条件にて種培養を3日間行なった。
【0080】
次に、25Lの培地(グルコース500g、脱脂大豆粉775g、KH2PO4 50g、MgCl2・6H2O 7.5g/L、CaCl2・2H2O 7.5g/L、大豆油 25g、pH6.0)を50L容通気攪拌培養槽に調製し、これに種培養液を接種して、攪拌回転数200rpm、温度26℃、槽内圧150kPaの条件にて本培養を開始した。グルコース濃度が1〜2%程度になるように、約24時間ごとに50%グルコース溶液を添加しながら、186時間培養を行なった。その結果、表9に示すようなアラキドン酸生成量が得られ、凍結保存法の有効性が示された。
【0081】
【表9】

【0082】
実施例9. 9年保管品によるL乾燥法と凍結保存法の比較
実施例1の要領で胞子懸濁液を調整し、従来法として知られているL乾燥法(“Maintaining cultures for biotechnology and industry (1996)”edited by J.C. Hunter-Cevera & A. Belt, Academic Press, p.115)にて胞子乾燥アンプルを作成、保存した。作成後、9年間の保管を経た後、6本のL乾燥アンプルを開封、復元し、寒天培地に塗布して生存胞子数を計測した。また、これと並行して、実施例1の手法にて作成した1.2mL容セラムチューブ(9年間凍結保存品)を6本解凍し、生存胞子数を計測した。
その結果、下表に示すように、実施例1記載の保存方法のほうが、従来法であるL乾燥法よりも生存率が著しく優れていることが確認された。本発明の方法は、長期間の菌株保存に、非常に有効な方法であると考えられた。
【0083】
【表10】


【特許請求の範囲】
【請求項1】
微生物による高度不飽和脂肪酸または高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物を産生する事が出来る微生物の保存方法であって、
(a)無機塩類と糖類とから成る栄養源を含むpH4〜7の胞子形成培地で胞子を形成せしめ;
(b)前記(a)で得た胞子を、滅菌水、あるいは界面活性剤及び/又は無機塩類を含む滅菌水に懸濁して胞子懸濁液を調製し、凍結保護剤を5〜15%となるように添加して凍結保存胞子懸濁液を調製し;そして
(c)前記(b)で得た凍結保存胞子懸濁液を、−100℃〜−20℃で保存する;
ことを含んで成る方法。
【請求項2】
前記無機塩類が、硝酸ナトリウム、リン酸一水素二カリウム、硫酸マグネシウム、塩化カリウム及び硫酸第一鉄から成る群から選択される少なくとも1種の無機塩類である、請求項1に記載の方法。
【請求項3】
前記胞子形成培地が、pHを4〜7に調整したCzapek寒天培地又はCzapek-dox寒天培地であることを特徴とする請求項1又は2に記載方法。
【請求項4】
前記凍結保護剤が、グリセリンであることを特徴とする請求項1〜3のいずれか1項に記載の方法。
【請求項5】
前記高度不飽和脂肪酸または高度不飽和脂肪酸を構成脂肪酸として含んでなる化合物が、高度不飽和脂肪酸を構成脂肪酸とるすトリグリセリド、又は高度不飽和脂肪酸を構成脂肪酸とするリン脂質であることを特徴とする請求項1〜4のいずれか1項に記載の微生物の保存方法。
【請求項6】
前記高度不飽和脂肪酸がオメガ6系不飽和脂肪酸、オメガ3系高度不飽和脂肪酸もしくはオメガ9系高度不飽和脂肪酸、またはこれらの組合せであることを特徴とする請求項1〜5のいずれか1項に記載の微生物の保存方法。
【請求項7】
前記オメガ6系不飽和脂肪酸が、9,12-オクタデカジエン酸(リノール酸)18:2ω6、6,9,12-オクタデカトリエン酸(γ-リノレン酸)18:3ω6、8,11,14-エイコサトリエン酸(ジホモ-γ-リノレン酸)20:3ω6、5,8,11,14-エイコサテトラエン酸(アラキドン酸)20:4ω6、7,10,13,16-ドコサテトラエン酸22:4ω6又は4,7,10,13,16-ドコサペンタエン酸22:5ω6であることを特徴とする請求項1〜6のいずれか1項に記載の微生物の保存方法。
【請求項8】
前記オメガ3系不飽和脂肪酸が、9,12,15-オクタデカトリエン酸(α-リノレン酸)18:3ω3、6,9,12,15-オクタデカテトラエン酸(ステアリドン酸)18:4ω3、11, 14, 17- エイコサトリエン酸 (ジホモ- α- リノレン酸) 20:3ω3、8,11,14,17-エイコサテトラエン酸20:4ω3、5,8,11,14,17-エイコサペンタエン酸20:5ω3、7,10,13,16,19-ドコサペンタエン酸22:5ω3又は4,7,10,13,16,19-ドコサヘキサエン酸22:6ω3であることを特徴とする請求項1〜6のいずれか1項に記載の微生物の保存方法。
【請求項9】
前記オメガ9系不飽和脂肪酸が、6,9-オクタデカジエン酸 18:2ω9、8,11-エイコサジエン酸 20:2ω9又は5,8,11-エイコサトリエン酸(ミード酸) 20:3ω9であることを特徴とする請求項1〜6のいずれか1項に記載の微生物の保存方法。
【請求項10】
前記微生物が、モルティエレラ(Mortierella)属に属することを特徴とする請求項1〜9のいずれか1項に記載の微生物の保存方法。
【請求項11】
前記モルティエレラ(Mortierella)属に属する微生物がモルティエレラ・アルピナ(Mortierella alpina)であることを特徴とする請求項1〜10のいずれか1項に記載の微生物の保存方法。
【請求項12】
請求項1〜11のいずれか1項に記載の方法により保存された微生物を使用することを特徴とする高度不飽和脂肪酸又は高度不飽和脂肪酸を構成脂肪酸として含んで成る化合物の製造方法。

【公表番号】特表2008−509660(P2008−509660A)
【公表日】平成20年4月3日(2008.4.3)
【国際特許分類】
【出願番号】特願2007−525500(P2007−525500)
【出願日】平成17年8月10日(2005.8.10)
【国際出願番号】PCT/JP2005/014960
【国際公開番号】WO2006/016702
【国際公開日】平成18年2月16日(2006.2.16)
【出願人】(000001904)サントリー株式会社 (319)
【Fターム(参考)】