説明

新規ポリマーおよびそれを用いた高分子発光素子

【課題】発光材料や電荷輸送材料等として有用な新規なポリマーの原料となる化合物を提供する。
【解決手段】式(11)で示される化合物。


(式中、A1は、特定の式で表される2価の基である。R1、R2、R3、R4、R5およびR6は、水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アリ−ル基及びアルキル、アリ−ル置換のオキシ基、チオ基、アミノ基、アリールアルキル基、及びアリールアルキル置換のオキシ基、チオ基、アミノ基、及び置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表す。X1およびX2はそれぞれ独立に縮合重合可能な置換基を表す。)

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光材料や電荷輸送材料等として有用な新規なポリマーとその製造方法、該ポリマーを用いた高分子発光素子(以下、高分子LEDということがある。)に関する。
【背景技術】
【0002】
高分子量の発光材料や電荷輸送材料は低分子量のそれとは異なり溶媒に可溶で塗布法により発光素子における発光層や電荷輸層を形成できることから種々検討されており、その例としては、ポリフルオレン誘導体が知られている(特許文献1)。
【0003】
【特許文献1】国際公開第99/54385号パンフレット
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明の目的は、発光材料や電荷輸送材料等として有用な新規なポリマーを提供することにある。
【課題を解決するための手段】
【0005】
本発明者等は、上記課題を解決すべく鋭意検討した結果、繰り返し単位中に、ベンゼン環を2個有し、これらのベンゼン環が、置換基を有していてもよい原子1個または2個からなる結合(A1)及び直接結合の2つの結合で結合され、A1のα位の炭素(C2)とA1との結合距離の、A1のβ位の炭素とC2との結合距離に対する比が、特定の値以上であるという新規なポリマーが、発光材料、電荷輸送材料等として有用であることを見出し本発明を完成した。
【0006】
すなわち本発明は、 下記式(1)で示される繰り返し単位を含み、ポリスチレン換算の数平均分子量が103〜108であるポリマーに係るものである。



〔式中、A1は、-Z-または-Z-Z-を表す。ここに、Zは置換基を有していてもよい原子である。また、A1に対してα位の炭素をC2、A1に対してβ位の炭素をC1としたとき、(C2−A1の結合距離)/(C2−C1の結合距離)で定義される結合距離比は1.10以上である。R1、R2、R3、R4、R5およびR6は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表し、R2とR3、およびR4とR5は互いに結合して環を形成していてもよい。〕
【発明の効果】
【0007】
本発明のポリマーは発光材料や電荷輸送材料等として有用である。
【発明を実施するための最良の形態】
【0008】
式(1)中、A1は、-Z-または-Z-Z-を表す。ここに、Zは置換基を有していてもよい原子である。また、A1に対してα位の炭素をC2、A1に対してβ位の炭素をC1としたとき、(C2−A1の結合距離)/(C2−C1の結合距離)で定義される結合距離比は1.10以上である。
Zに含まれる原子としては、ヘテロ原子が好ましく、ヘテロ原子としては、Si,P、S、Ge、Sn、SeまたはTeが挙げられる。
【0009】
置換基を有している原子としては、


〔式中、Rは、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を示す〕等が挙げられる。
【0010】
なお上記式(1)における結合距離比は、量子化学計算を用いて、化合物の分子構造の最適化を行うことによって算出することができる。
結合距離比の計算には、通常は、上記式(1)の繰り返し単位の2つの結合手に水素原子を結合させた化合物で近似して用いることができる。
また、上記式(1)におけるR1、R2、R3、R4、R5およびR6が、炭化水素鎖を有する基の場合には、該炭化水素鎖を、より炭素数が短いものに置き換えた化合物で近似して計算を行ってもよい。
【0011】
量子化学計算手法として、半経験的および非経験的分子軌道法、密度汎関数法等を用いることができる。例えば、量子化学計算プログラムGaussian 98 に組み込まれている密度汎関数法により、基底関数を6-31g* 、密度汎関数近似としてb3lypを用いて、化合物の構造最適化計算を行って該結合距離比を求めることができる〔参考文献、J. Chem. Phys., 98, 5648(1993) 〕。
【0012】
上記式(1)におけるR1、R2、R3、R4、R5およびR6は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表し、R2とR3、およびR4とR5は互いに結合して環を形成していてもよい。
中でも、R2およびR5がそれぞれ独立にアルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキルオキシ基、アリールアルキルチオ基またはアリールアルキルアミノ基であることが好ましく、R2およびR5がそれぞれ独立にアルキルオキシ基、アリールオキシ基またはアリールアルキルオキシ基であることがより好ましい。
【0013】
ここにハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が例示される。
【0014】
アルキル基としては、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常1〜20程度であり、具体的には、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、 i−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基などが挙げられ、ペンチル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、3,7−ジメチルオクチル基が好ましい。
【0015】
アルケニル基としては、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常2〜20程度であり、具体的には、エテニル基、プロペニル基、2−プロペニル基、1−メチルプロペニル基、2−メチルプロペニル基、1,2−ジメチルプロペニル基、ブテニル基、2−メチルブテニル基、1,3−ブタヂエニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基、オクテニル基、2−エチルヘキセニル基、トリフルオロエテニル基、パーフルオロブテニル基、パーフルオロヘキセニル基、パーフルオロオクテニル基などが挙げられる。
【0016】
アルキニル基としては直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常2〜20程度であり、具体的には、エチニル基、プロピニル基、2−プロピニル基、2−メチルプロピニル基、ブチニル基、2−メチルブチニル基、1,3−ブタンジイル基、ペンチニル基、ヘキチニル基、シクロヘキチニル基、ヘプチニル基、オクチニル基、2−エチルヘキチニル基、フルオロエチニル基、パーフルオロブチニル基、パーフルオロヘキチニル基、パーフルオロオクチニル基などが挙げられる。
【0017】
アルキルオキシ基は、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常1〜20程度であり、具体的には、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、 i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基などが挙げられ、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が好ましい。
【0018】
アルキルチオ基は、直鎖、分岐または環状のいずれでもよく、置換基を有していてもよい。炭素数は通常1〜20程度であり、具体的には、メチルチオ基、エチルチオ基、プロピルチオ基、 i−プロピルチオ基、ブチルチオ基、 i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基などが挙げられ、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基が好ましい。
【0019】
アルキルアミノ基は、直鎖、分岐または環状のいずれでもよく、モノアルキルアミノ基でもジアルキルアミノ基でもよく、炭素数は通常1〜40程度であり、具体的には、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、i−プロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、i−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基などが挙げられ、ペンチルアミノ基、ヘキシルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基が好ましい。
【0020】
アリール基は、置換基を有していてもよく、炭素数は通常6〜60程度であり、具体的には、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、ペンタフルオロフェニル基などが例示され、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。
【0021】
アリールオキシ基としては、芳香環上に置換基を有していてもよく、炭素数は通常6〜60程度であり、具体的には、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基、ピリジルオキシ基、ピリダジニルオキシ基、ピリミジルオキシ基、ピラジルオキシ基、トリアジニルオキシ基などが例示され、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。
【0022】
アリールチオ基としては、芳香環上に置換基を有していてもよく、炭素数は通常6〜60程度であり、具体的には、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基、ピリジルチオ基、ピリダジニルチオ基、ピリミジルチオ基、ピラジルチオ基、トリアジニルチオ基などが例示され、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基が好ましい。
【0023】
アリールアミノ基としては、芳香環上に置換基を有していてもよく、炭素数は通常6〜60程度であり、フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジニルアミノ基などが例示され、C1〜C12アルキルフェニルアミノ基、ジ(C1〜C12アルキルフェニル)アミノ基が好ましい。
【0024】
アリールアルキル基は、置換基を有していてもよく、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基が好ましい。
【0025】
アリールアルキルオキシ基は、置換基を有していてもよく、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルキルオキシ基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルオキシ基、C1〜C12アルキルフェニル−C1〜C12アルキルオキシ基、1−ナフチル−C1〜C12アルキルオキシ基、2−ナフチル−C1〜C12アルキルオキシ基などが例示され、C1〜C12アルキルオキシフェニル−C1〜C12アルキルオキシ基、C1〜C12アルキルフェニル−C1〜C12アルキルオキシ基が好ましい。
【0026】
アリールアルキルチオ基としては、置換基を有していてもよく、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルキルチオ基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基などが例示され、C1〜C12アルキルオキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基が好ましい。
【0027】
アリールアルキルアミノ基としては、炭素数は通常7〜60程度であり、具体的には、フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基などが例示され、などが例示され、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基が好ましい。
【0028】
置換シリル基として具体的には、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピリシリル基、ジエチル−i−プロピルシリル基、t−ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基等のトリアルキルシリル基;、トリフェニルシリル基、トリ−p−キシリルシリル基等のトリアリールシリル基;、トリベンジルシリル基等のトリ(アリールアルキル)シリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基等の(アルキル)(アリール)シリル基、フェニル−C1〜C12アルキルシリル基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基、1−ナフチル−C1〜C12アルキルシリル基、2−ナフチル−C1〜C12アルキルシリル基などのモノ(アリールアルキル)シリル基、フェニル−C1〜C12アルキルジメチルシリル基などのモノ(アリールアルキル)ジアルキルシリル基などが例示され、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチルジメチルシリル基、C1〜C12アルキルオキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基が好ましい。
【0029】
アシル基は、炭素数は通常2〜20程度であり、具体的には、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基などが例示される。
【0030】
アシルオキシ基は、炭素数は通常2〜20程度であり、具体的には、アセチルオキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基などが例示される。
【0031】
イミノ基は、炭素数2〜20程度であり、具体的には、以下の構造式で示される基などが例示される。

【0032】
アミド基は、炭素数は通常2〜20程度であり、具体的には、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基、スクシンイミド基、フタル酸イミド基などが例示される。
【0033】
アリールアルケニル基としては、炭素数は通常7〜60程度であり、具体的には、フェニル−C2〜C12アルケニル基、C1〜C12アルキルオキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基などが例示され、C1〜C12アルキルオキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基が好ましい。
【0034】
アリールアルキニル基としては、炭素数は通常7〜60程度であり、具体的には、フェニル−C2〜C12アルキニル基、C1〜C12アルキルオキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基などが例示され、C1〜C12アルキルオキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。
【0035】
1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいい、炭素数は通常4〜60程度であり、具体的には、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基などが例示され、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基が好ましい。
【0036】
これらの中で、上記式(1)におけるA1が下記式(4)、(5)または(6)で示される2価の基が好ましい。
【0037】


〔式中、R7はアルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシル基、アシルオキシ基、アミド基または1価の複素環基を示す。〕
【0038】


【0039】


〔式中、A2はSi、GeまたはSnを表し、R8およびR9はそれぞれ独立にアルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシルオキシ基、アミド基または1価の複素環基を表す。lは1または2を表す。〕
【0040】
中でも、上記式(1)においてA1が上記式(4)で表される2価の基であるポリマー、A1が上記式(5)で表される2価の基であるポリマー、A1が上記(6)式で表される2価の基であり、A2がSiでかつlが1であるポリマー、A1が(6)式で表される2価の基であり、A2がSiでかつlが2であるポリマーがより好ましい。
【0041】
1が上記式(4)で表される2価の基の具体例としては以下のものがあげられる。
【0042】

【0043】

【0044】

【0045】
1が上記式(5)で表される2価の基の具体例としては以下のものがあげられる。
【0046】

【0047】

【0048】
1が上記(6)式で表される2価の基であり、A2がSiでかつlが1である基の具体例としては、以下のものがあげられる。
【0049】

【0050】

【0051】

【0052】
1が(6)式で表される2価の基であり、A2がSiでかつlが2である基の具体例を以下に示す。
【0053】


【0054】

【0055】

【0056】
上記式中、Meはメチル基を、Phはフェニル基を、Bnはベンジル基を、Acはアセチル基を示す。
【0057】
本発明のポリマーは上記式(1)で示される繰り返し単位を2種以上含んでいてもよい。
上記式(1)示される繰り返し単位の量は本発明のポリマーの有する全繰り返し単位のモル数の合計に対して、通常1〜100モル%であり、好ましくは40〜90モル%であり、より好ましくは70〜85モル%である。
【0058】
本発明のポリマーは上記式(1)で示される繰り返し単位以外の繰り返し単位を含むことができる。該繰返し単位としては下記式(7)
【0059】
−Ar6−(CR17=CR18n− (7)
〔式中、Ar6は、アリーレン基または2価の複素環基を表し、R17、R18は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を表す。nは0または1を表す。〕の繰り返し単位、後記式(8)で示される繰返し単位などが例示され、素子の寿命の観点から、後記式(8)で示される繰返し単位が好ましい。
【0060】
該Ar6は、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、イミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基、シアノ基等の置換基を有していてもよい。これらの置換基の具体例については前記のとおりである。Ar6が複数の置換基を有する場合、それらは同一であってもよいし、異なっていてもよい。
【0061】
本発明におけるアリーレン基としては、ベンゼン環、縮合環を持つもの、独立したベンゼン環または縮合環が2個直接またはビニレン等の基を介して結合したものが含まれ、通常炭素数6〜60、好ましくは6〜20であり、フェニレン基(例えば、下記式(26))、ナフタレンジイル基(下記式(27))、アントラセニレン基(下記式(28))、ビフェニレン基(下記式(29))、トリフェニレン基(下記式(30))、縮合環化合物基(下記式(31))などが例示される。
【0062】

【0063】

【0064】

【0065】


【0066】

【0067】

【0068】
本発明において、2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原子団をいい、炭素数は、通常4〜60、好ましくは4〜20である。なお複素環基上に置換基を有していてもよく、複素環基の炭素数には、置換基の炭素数は含まれない。
【0069】
ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素などのヘテロ原子を環内に含むものをいう。
【0070】
2価の複素環基としては、例えば以下のものが例示される。
ヘテロ原子として、窒素を含む2価の複素環基;ピリジンジイル基(下記式(32))、ジアザフェニレン基(下記式(33))、キノリンジイル基(下記式(34))、キノキサリンジイル基(下記式(35))、アクリジンジイル基(下記式(36))、ビピリジルジイル基(下記式(37))、フェナントロリンジイル基(下記式(38))、など。
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含みフルオレン構造を有する基(下記式(39))。
【0071】
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基:(下記式(40))が例示される。
【0072】
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環縮合複素環基:(下記式(41))、ベンゾチアジアゾール-4,7-ジイル基やベンゾオキサジアゾール-4,7-ジイル基などが例示される。
【0073】
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基:(下記式(42))が例示される。
【0074】
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基:(下記式(43))が例示される。
【0075】


【0076】

【0077】

【0078】

【0079】

【0080】

【0081】

【0082】

【0083】

【0084】

【0085】

【0086】

【0087】
上記式中、R'はそれぞれ独立に水素原子、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシルオキシ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を示す。R''はそれぞれ独立に水素原子、アルキル基、アリール基、アリールアルキル基、シリル基、アシル基、または1価の複素環基を示す。
【0088】
さらに、2価の複素環基としては、たとえば、三重項発光錯体から誘導される基なども含まれ、その例として、以下の2価の金属錯体基が例示される。
【0089】

【0090】

【0091】

【0092】

【0093】

【0094】

【0095】

【0096】
アリーレン基または2価の複素環基の例としては、従来からEL発光性材料として利用されてきた材料に含まれるアリーレン基または2価の複素環基も挙げられる。これらの材料は例えば、WO99/12989、 WO00/55927、WO01/49769A1、WO01/49768A2、WO98/06773、US5,777,070、WO99/54385、WO00/46321、US6,169,163B1に開示されている。
【0097】
上記式(1)で示される繰り返し単位以外の繰り返し単位としては、素子の寿命の観点から下記式(8)で示される繰り返し単位を含むことが望ましい。


〔式中、Ar1およびAr2はそれぞれ独立にアリーレン基または2価の複素環基を表す。また、R11は、アルキル基、アリール基、1価の複素環基、下記式(9)または(10)で示される基を表す。mは1〜4の整数を表す。Ar2およびR11がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。


(式中、Ar3はアリーレン基または2価の複素環基を表す。R12は、水素原子、アルキル基、アリール基、1価の複素環基または下記式(10)で示される基を表す。Y1は、 −CR13=CR14−または−C≡C−を表す。R13およびR14はそれぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基またはシアノ基を表す。pは0〜2の整数を表す。Y1が複数存在する場合、それらは同一でも異なっていてもよい。)


(式中、Ar4およびAr5はそれぞれ独立にアリーレン基または2価の複素環基を表す。また、R15はアルキル基、アリール基または1価の複素環基を表す。R16は水素原子、アルキル基、アリール基または1価の複素環基を表す。qは1〜4の整数を表す。Ar5およびR15がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。)
【0098】
上記式(8)、(9)および(10)におけるAr1〜Ar5のアリーレン基または2価の複素環基の具体例は前記の通りである。また、R11〜R16のアルキル基、アリール基または1価の複素環基の具体例も前記の通りである。
【0099】
上記式(8)で示される繰り返し単位の好ましい具体例としては、下図のものが例示される。なおベンゼン環上または複素環基上に置換基を有していてもよい。置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシル基、アシルオキシ基、アミド基、イミノ基、シリル基、シリルオキシ基、シリルチオ基、シリルアミノ基、1価の複素環基、アリールアルケニル基、アリールエチニル基またはシアノ基が例示される。
【0100】

【0101】

【0102】
本発明のポリマーが含む繰り返し単位は、非共役の単位で連結されていてもよいし、繰り返し単位にそれらの非共役部分が含まれていてもよい。
非共役の単位としては、以下に示すもの、以下に示すものとビニレン基を組み合わせたもの、および以下に示すもののうち2つ以上を組み合わせたものなどが例示される。ここで、Rは水素原子、炭素数1〜20のアルキル基、炭素数6〜60のアリール基および炭素数4〜60の複素環基からなる群から選ばれる基であり、Arは炭素数6〜60個の炭化水素基を示す。
【0103】

【0104】
本発明のポリマーは、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光の量子収率の高い高分子蛍光体を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。
【0105】
本発明のポリマーの末端基は、重合活性基がそのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていても良い。主鎖の共役構造と連続した共役結合を有しているものが好ましく、例えば、炭素―炭素結合を介してアリール基または複素環基と結合している構造が例示される。具体的には、特開平9−45478号公報の化10に記載の置換基等が例示される。
【0106】
本発明のポリマーは、数平均分子量がポリスチレン換算で103〜108である。繰り返し構造の合計数は、繰り返し構造やその割合によっても変わるが成膜性の点から一般には繰り返し構造の合計数が、好ましくは20〜10000、さらに好ましくは30〜10000、特に好ましくは50〜5000である。
【0107】
本発明のポリマーに対する良溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n−ブチルベンゼンなどが例示される。ポリマーの構造や分子量にもよるが、通常はこれらの溶媒に0.1重量%以上溶解させることができる。
【0108】
本発明のポリマーは、例えば、下記式(11)で示される化合物を原料の一つとして用いて縮合重合することにより製造することができる。


(式中、R1、R2、R3、R4、R5、R6およびA1は上記式(1)と同じ意味を表す。X1およびX2はそれぞれ独立に縮合重合可能な置換基を表す。)
【0109】
縮合重合可能な置換基としては、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、ホウ酸基、ホルミル基、シアノ基、ビニル基等があげられ、好ましくはハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基である。
【0110】
ここでアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基などが例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基などが例示され、アリールスルホネート基としては、ベンジルスルホネート基などが例示される。
【0111】
ホウ酸エステル基としては、下記式で示される基が例示される。


式中、Meはメチル基を、Etはエチル基を示す。
【0112】
スルホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Me2-、−CH2+Ph2
(Xはハロゲン原子を示し、Phはフェニル基を示す。)
【0113】
ホスホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Ph3- (Xはハロゲン原子を示す。)
【0114】
ホスホネートメチル基としては、下記式で示される基が例示される。
−CH2PO(OR’)2 (R’はアルキル基、アリール基、アリールアルキル基を示す。)
【0115】
モノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
【0116】
例えば、上記式(11)においてA1が上記(4)式で表される2価の基である化合物を用いることにより、上記式(1)においてA1が上記(4)式で表される2価の基であるポリマーを製造することができる。
また、上記式(11)においてA1が上記(5)式で表される2価の基である化合物を用いることにより、上記式(1)においてA1が上記(5)式で表される2価の基であるであるポリマーを製造することができる。
また、上記式(11)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが1である化合物を用いるとにより、上記式(1)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが1であるポリマーを製造することができる。
また上記式(11)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが2である化合物上記式(1)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが2であるポリマーを製造することができる。
【0117】
また、本発明のポリマーが、式(1)の繰り返し単位以外の繰り返し単位を有する場合には、該式(1)の繰り返し単位以外の繰り返し単位となる単量体を共存させて縮合重合させればよい。
【0118】
式(1)の繰り返し単位以外の繰り返し単位となる単量体としては、下記式(7−2)、(8−2)の化合物が例示され、好ましくは下記式(8−2)である。
【0119】

1−Ar6−(CR17=CR18n−X2 (7−2)
(式中、Ar6、R17、R18は上記式(7)と、X1、X2は上記式(11)と同じである。nは0〜1の整数を表す。)
【0120】


(式中、Ar1、Ar2、R11は上記式(8)と、X1、X2は上記式(11)と同じである。mは0〜4の整数を表す。)
【0121】
本発明のポリマーの製造方法において、原料である上記式(11)で表される化合物および必要に応じて該式(1)の繰り返し単位以外の繰り返し単位となる単量体を縮合重合させる方法としては、各単量体が有する縮合重合可能な置換基の種類に応じて、既知の縮合反応を用いることにより製造できる。
【0122】
本発明のポリマーが主鎖にビニレン基を有する場合には、例えば特開平5−202355号公報に記載の方法が挙げられる。すなわち、ホルミル基を有する化合物とホスホニウムメチル基を有する化合物との、もしくはホルミル基とホスホニウムメチル基とを有する化合物のWittig反応による重合、ビニル基を有する化合物とハロゲン原子を有する化合物とのHeck反応による重合、モノハロゲン化メチル基を2つあるいは2つ以上有する化合物の脱ハロゲン化水素法による重縮合、スルホニウムメチル基を2つあるいは2つ以上有する化合物のスルホニウム塩分解法による重縮合、ホルミル基を有する化合物とシアノ基を有する化合物とのKnoevenagel反応による重合などの方法、ホルミル基を2つあるいは2つ以上有する化合物のMcMurry反応による重合などの方法が例示される。
本発明のポリマーが主鎖に三重結合を有する場合には、例えば、Heck反応が利用できる。
【0123】
また、主鎖にビニレン基や三重結合を有しない場合には、例えば該当するモノマーからSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは適当な脱離基を有する中間体高分子の分解による方法などが例示される。
【0124】
これらのうち、 Wittig反応による重合、Heck反応による重合、Knoevenagel反応による重合、およびSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)触媒により重合する方法が、構造制御がしやすいので好ましい。
【0125】
さらに本発明のポリマーの製造方法の中で、モノマーとして上記式(11)の化合物のうち、X1およびX2がそれぞれ独立にハロゲン原子、アルキルスルホ
ネート基、アリールスルホネート基またはアリールアルキルスルホネート基、好ましくは、ハロゲン原子である化合物を、パラジウム触媒またはニッケル触媒を用いて縮合重合することが特に好ましい。
【0126】
本発明の製造方法においては、原料モノマーとなる、上記式(11)の化合物と、必要に応じ上記式(7−2)、式(8−2)等の単量体を、必要に応じ、有機溶媒に溶解し、例えばアルカリや適当な触媒を用い、有機溶媒の融点以上沸点以下で、反応させることができる。例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、“オルガニック リアクションズ(Organic Reactions)”,第27巻,345−390頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1982年、“オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407−411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、ジャーナル オブ プラクティカル ケミストリー(J.Prakt.Chem.),第336巻,247頁(1994年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Makromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)などに記載の公知の方法を用いることができる。
【0127】
有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために、用いる溶媒は十分に脱酸素処理を施し、不活性雰囲気化で反応を進行させることが好ましい。また、同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。
【0128】
反応させるために適宜アルカリや適当な触媒を添加する。これらは用いる反応に応じて選択すればよい。該アルカリまたは触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリまたは触媒を混合する方法としては、反応液をアルゴンや窒素などの不活性雰囲気下で攪拌しながらゆっくりとアルカリまたは触媒の溶液を添加するか、逆にアルカリまたは触媒の溶液に反応液をゆっくりと添加する方法が例示される。
【0129】
本発明のポリマーを高分子LEDに用いる場合、その純度が発光特性等の素子の性能に影響を与えるため、重合前のモノマーを蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましい。また重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
【0130】
上記式(11)においてA1が上記(4)式で表される2価の基である化合物である下記式(12)

で示される化合物は、 下記式(13)



〔式中、R1、R2、R3、R4、R5、R6、X1およびX2は前記と同じ意味を表す。〕
で示される化合物の2つのヨウ素原子を選択的にメタル化した後に下記式(14)



〔式中、R7は前記と同じ意味を表す。X5およびX6はそれぞれ独立に塩素原子、臭素原子またはヨウ素原子を示す。〕
で示されるジハロゲン化リン化合物と反応させることにより製造することができる。
【0131】
反応は窒素、アルゴンなどの不活性雰囲気下、溶媒の存在下に実施することができる。反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、キシレン、エチルベンゼンなどの不飽和炭化水素、ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、ジ−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル類、トリメチルアミン、トリエチルアミン、N,N,N',N’−テトラメチルエチレンジアミン、ピリジンなどのアミン類が例示され、単一溶媒、またはこれらの混合物でもよい。
【0132】
メタル化剤としては、メチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、t−ブチルリチウム、フェニルリチウムなどが例示される。反応温度は通常−30℃以下であり、選択的によう素をメタル化するためには、−80℃以下であることが望ましい。
【0133】
また、上記の方法でメタル化された化合物のメタルを交換した後に上記式(14)で示されるジハロゲン化リン化合物を反応させてもよい。
【0134】
メタル交換させる金属試薬としては、塩化マグネシウム、臭化マグネシウムなどのマグネシウム塩、塩化銅(I)、塩化銅(II)、臭化銅(I)、臭化銅(II)、ヨウ化銅(I)などの銅塩、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛などの亜鉛塩が例示されるが、収率の面でマグネシウム塩が好ましい。
【0135】
上記式(14)で示されるジハロゲン化リン化合物との反応は、−100℃〜溶媒の沸点でおこなうことが好ましい。
【0136】
反応後は、例えば、水でクエンチした後に有機溶媒で抽出し、溶媒を留去するなど、通常の後処理で得ることができる。水に不安定な生成物の場合は、ろ過により無機塩を除いた後、溶媒を留去する方法などにより得ることができる。
生成物の単離及び精製はクロマトグラフィーによる分取や再結晶、蒸留などの方法によっておこなうことができる。
【0137】
また、上記式(11)においてA1が上記(5)式で表される2価の基である下記式(15)


で示される化合物は、上記式(13)で示される化合物の2つのヨウ素原子を選択的にメタル化した後に硫黄と反応させることにより製造することができる。
【0138】
反応の方法については、上記式(12)で示される化合物の合成法と同様である。硫黄との反応については、個体のまま加えてもよいし、溶媒に溶解または懸濁させた状態で加えてもよい。反応の温度は−100℃から30℃程度であり、好ましくは−80℃から0℃である。反応の後処理、精製法についても、上記式(12)で示される化合物と同様である。
【0139】
また上記式(11)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが2である下記式(20)



で示される化合物は 上記式(13)で示される化合物の2つのヨウ素原子を選択的にメタル化した後に下記式(22)


〔式中、R8およびR9は前記と同じ意味を表す。X11およびX12はそれぞれ独立に塩素原子、臭素原子またはヨウ素原子を示す。〕

で示される1,2−ジハロゲン化ジシリル化合物と反応させることにより製造することができる。
【0140】
反応の方法、後処理、精製法については、上記式(12)で示される化合物と同様である。
【0141】
また、上記式(12)で示される化合物と同様に、下記式(3−2)で示される化合物は、上記式(13)で示される化合物の2つのヨウ素原子を選択的にメタル化した後に対応するジハロゲン化物と反応させることにより製造することができる。反応の方法、後処理、精製法については、上記式(12)で示される化合物と同様である。


(式中、R1、R2、R3、R4、R5、R6、X1およびX2は上記式(11
)と同じである。A3


から選択される2価の基を表す。式中、Rは前記と同じ意味を表す。)
反応の方法、後処理、精製法については、上記式(12)で示される化合物と同様である。
【0142】
上記式(11)においてA1が上記(6)式で表される2価の基であり、A2がSiでかつlが1である化合物下記式(18)で示されるジベンゾシロール誘導体


は下記式(19)


(式中、R1、R2、R3、R4、R5、R6、R8およびR9は上記式(11)と同じである。)で示される化合物(ジベンゾシロール誘導体)とハロゲン化試剤、好ましくはN−ハロゲノ化合物とを反応させることにより製造することができる。
【0143】
上記式(19)においてR1、R3、R4およびR6がいずれも水素原子であることが好ましい。
【0144】
反応は、窒素、アルゴンなどの不活性雰囲気下、溶媒の存在下に実施することができる。反応の温度は、−80℃から溶媒の沸点が望ましい。
【0145】
また、反応は、式(19)で示される化合物と塩基を反応させた後に、ハロゲン化試剤を反応させる方法によっても製造することができる。
【0146】
N−ハロゲノ化合物としては、N−クロロスクシンイミド、N−クロロフタル酸イミド、N−クロロジエチルアミン、N−クロロジブチルアミン、N−クロロシクロへキシルアミン、N−ブロモスクシンイミド、N−ブロモフタル酸イミドN−ブロモジトリフルオロメチルアミン、N−ヨウドスクシンイミド、N−ヨウドフタル酸イミドなどが例示され、その他のハロゲン化試剤としては、フッ素、フルオロキシトリフルオロメタン、二フッ化酸素、フッ化パークロリル、フッ化コバルト(III)、フッ化銀(II)、フッ化セレン(IV)、フッ化マンガン(III)、塩素、ヨウドトリクロライド、三塩化アルミ、塩化テルル(IV)、塩化モリブデン、塩化アンチモン、塩化鉄(III)、四塩化チタン、五塩化リン、塩化チオニル、臭素、1,2−ジブロモエタン、三臭化ホウ素、臭化銅、臭化銀、臭化−t−ブチル、酸化臭素、ヨウ素、ヨウドモノクロライドなどが例示される。
【0147】
反応に用いられる溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサンなどのハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブチルアルコールなどのアルコール類、蟻酸、酢酸、プロピオン酸などのカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル類、トリメチルアミン、トリエチルアミン、N,N, N‘,N’−テトラメチルエチレンジアミン、ピリジンなどのアミン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシド、N−メチル−2−ピロリドンなどのアミド類などが例示され、単一溶媒、またはこれらの混合溶媒を用いてもよい。
【0148】
反応に用いられる塩基としては、リチウムヒドリド、ナトリウムヒドリド、カリウムヒドリド、メチルリチウム、n−ブチルリチウム、t−ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド、ナトリウムヘキサメチルジシラジド、カリウムヘキサメチルジシラジドなどが例示される。
【0149】
反応後は、例えば、水でクエンチした後に有機溶媒で抽出した後に、溶媒を留去するなど、通常の後処理で得ることができる。
生成物の単離及び精製はクロマトグラフィーによる分取や再結晶などの方法によっておこなうことができる。
【0150】
次に本発明のポリマーの用途について説明する。
本発明のポリマーは、強い蛍光を有し、高分子蛍光体として用いることができる。 また、薄膜からの発光を利用するので該高分子蛍光体は、固体状態で蛍光を有するものが好適に用いられる。また、該ポリマーは優れた電子輸送能を有しており、高分子LED用材料や電荷輸送材料として好適に用いることができる。
また、本発明のポリマーは電子素子用の材料としても用いることができ、レーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、伝導性薄膜用材料としても用いることができる。
【0151】
次に、本発明の高分子LEDについて説明する。本発明の高分子LEDは陽極および陰極からなる電極間に、発光層を有し、該発光層が本発明のポリマーを含むことを特徴とする。
【0152】
また、本発明の高分子LEDとしては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。
【0153】
また、本発明の高分子LEDとしては、少なくとも一方の電極と発光層との間に該電極に隣接して導電性高分子を含む層を設けた素子;少なくとも一方の電極と発光層との間に該電極に隣接して膜厚2nm以下の絶縁層を設けた素子があげられる。
【0154】
例えば、具体的には、以下のa)〜d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
【0155】
ここで、発光層とは、発光する機能を有する層であり、正孔輸送層とは、正孔を輸送する機能を有する層であり、電子輸送層とは、電子を輸送する機能を有する層である。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。
発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。
【0156】
また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。
【0157】
さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
【0158】
本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。
例えば、具体的には、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電子輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
【0159】
電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層などが例示される。
【0160】
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102以下がより好ましく、10-5S/cm以上101以下がさらに好ましい。
【0161】
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102S/cm以下がより好ましく、10-5S/cm以上101S/cm以下がさらに好ましい。
通常は該導電性高分子の電気伝導度を10-5S/cm以上103以下とするために、該導電性高分子に適量のイオンをドープする。
【0162】
ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが例示される。
電荷注入層の膜厚としては、例えば1nm〜100nmであり、2nm〜50nmが好ましい。
【0163】
電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。
【0164】
膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LED、陽極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。
【0165】
具体的には、例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
s)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
v)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
ab)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
【0166】
高分子LED作成の際に、これらの有機溶媒可溶性の高分子蛍光体を用いることにより、溶液から成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用でき、製造上非常に有利である。溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0167】
発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0168】
本発明の高分子LEDにおいては、発光層に上記ポリマー以外に発光材料を混合して使用してもよい。また、本発明の高分子LEDにおいては、上記高分子蛍光体以外の発光材料を含む発光層が、上記高分子蛍光体を含む発光層と積層されていてもよい。
該発光材料としては、公知のものが使用できる。低分子化合物では、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。
具体的には、例えば特開昭57−51781号、同59−194393号公報に記載されているもの等、公知のものが使用可能である。
【0169】
本発明の高分子LEDが正孔輸送層を有する場合、使用される正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体などが例示される。
【0170】
具体的には、該正孔輸送材料として、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
【0171】
これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
【0172】
ポリビニルカルバゾールもしくはその誘導体は、例えばビニルモノマーからカチオン重合またはラジカル重合によって得られる。
【0173】
ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。
【0174】
ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖または主鎖に有するものが例示される。
【0175】
正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。
【0176】
溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
【0177】
溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0178】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。
【0179】
正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0180】
本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。
【0181】
具体的には、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
【0182】
これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
【0183】
電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、高分子バインダーを併用してもよい。
【0184】
溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
【0185】
溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
【0186】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また、可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリ(N−ビニルカルバゾール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、ポリ(2,5−チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、またはポリシロキサンなどが例示される。
【0187】
電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0188】
本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。
【0189】
本発明において、通常は、陽極または陰極の少なくとも一方が透明または半透明であり、陽極側が透明または半透明であることが好ましい。該陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。
【0190】
本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、およびそれらのうち2つ以上の合金、あるいはそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。陰極を2層以上の積層構造としてもよい。
陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
【0191】
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよく、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。
【0192】
該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
【0193】
本発明の高分子LEDは、面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置のバックライトとして用いることができる。
【0194】
本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子蛍光体を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。
【0195】
さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
【実施例】
【0196】
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
ここで、数平均分子量、重量平均分子量については、クロロホルムを溶媒として、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算の数平均分子量、重量平均分子量を求めた。
【0197】
合成例1
<2、2’−ジブロモ−5,5’−ジオクチルオキシ−1,1’−ビフェニルの合成>


【0198】
原料である3、3’−ジオクチルオキシ−1,1’ −ビフェニルは3−ブロモフェノールをエタノール中でジオクチル化した後、山本カップリングを用いて合成した。
上記3、3’−ジオクチルオキシ−1,1’ビフェニル133gを乾燥N,N−ジメチルホルムアミド1820mlに溶解した。0℃(ドライアイス−メタノール浴)でN−ブロモスクシンイミド117.5g/N,N−ジメチルホルムアミド910ml溶液を滴下した。60分かけて滴下した。滴下終了後、室温に戻して一夜攪拌した。
反応液を水にあけてn−ヘキサンで抽出した後、溶媒を留去し粗生成物179gを得た。2−プロパノールで再結晶を繰り返し、2,2’−ジブロモ−5,5’−ジオクチルオキシ−1,1’ビフェニル122gを得た。
1H−NMR(300MHz/CDCl3):
δ(ppm) = 0.88〔t、6H〕、1.2〜1.8〔m、24H〕、3.95〔t、4H〕、6.7〜6.8〔m、4H〕、7.52〔d、2H〕
【0199】
合成例2
<2、2’−ジヨード−5、5’−ジオクチルオキシ−1,1’ −ビフェニルの合成>



窒素雰囲気下で500mlの3つ口フラスコに削りマグネシウム4.05gを仕込んだ。別のフラスコに上記2,2’−ジブロモ−5,5’−ジオクチルオキシ−1,1’−ビフェニル45gのテトラヒドロフラン200ml溶液を調整し、そのうち20mlをマグネシウムの入ったフラスコに加えた。開始剤として1,2−ジブロモエタンを5滴加えて加熱した。発熱反応が始まったら上記の残りの溶液を30分かけて滴下した。滴下終了後、還流下で1時間反応させた。その後0℃に冷却して、ヨウ素44.2gのテトラヒドロフラン150ml溶液を滴下した。滴下終了後、室温で一夜攪拌した。
反応液を水にあけてクロロホルムで抽出した後、チオ硫酸ナトリウム水溶液および飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去して粗生成物53gを得た。2−プロパノールで再結晶し、2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’−ビフェニル43gを得た。
1H−NMR(200MHz/CDCl3):
δ(ppm) = 0.90〔t、6H〕、1.2〜1.8〔m、24H〕、3.93〔t、4H〕、6.6〜6.8〔m、4H〕、7.74〔d、2H〕
MS(APCI(+)):M+ 662
【0200】
合成例3
<4,4’−ジブロモ−2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’ −ビフェニルの合成>


窒素雰囲気下で1Lフラスコに上記に2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’ −ビフェニル37gを仕込み、リン酸トリメチル800mlを加えて溶解した。さらにヨウ素10.6gを加えた後、臭素19gのリン酸トリメチル70mlを滴下した。4時間攪拌した後、臭素9.5gのリン酸トリメチル35mlを滴下した。滴下終了後一夜攪拌した。反応液を水にあけてクロロホルムで抽出した後、チオ硫酸ナトリウムおよび飽和食塩水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去して粗生成物46gを得た。シリカゲルクロマトグラフィ(シクロヘキサン:トルエン=20:1)で精製し、4,4’−ジブロモ−2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’ −ビフェニル20.5gを得た。
1H−NMR(200MHz/CDCl3):
δ(ppm) = 0.88〔t、6H〕、1.2〜1.9〔m、24H〕、3.99〔m、4H〕、6.70〔s、2H〕、8.03〔s、2H〕
MS(APCI(+)):M+ 820
【0201】
合成例4
化合物Aの合成


化合物A

フレームドライ、アルゴン置換した100ml 3口フラスコに上記の4,4’−ジブロモ−2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’−ビフェニル 1.00g(見掛モル数1.22mmol)を取り、脱水ジエチルエーテル 10mlに溶解した。この溶液をメタノール/液体窒素で-90℃に冷却し、1.7mlのn-BuLi(1.6M n-ヘキサン溶液、2.7mmol)を滴下した。1時間保温した後、ジクロロフェニルホスフィン(0.22g、1.22mmol)のジエチルエーテル溶液(5ml)を滴下した。
室温に昇温して15時間攪拌した後に、0℃に冷却し、5%NaHCO3水溶液を滴下した。水相をトルエンで抽出し、有機層を合わせ、水、飽和食塩水の順に洗浄した。
溶媒を留去し、1.11gの粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製(展開溶媒 ヘキサン:酢酸エチル=100:1(0.1%トリエチルアミン))し、0.52g(p.96.1%、y.68.5%)の化合物Aを得た。
1H-NMR(CDCl3、300MHz):
δ7.77(d, 2H)、7.31-7.13(m, 7H)、4.198t, 4H)、1.96-1.87(m, 4H)、1.69-1.52(m, 4H)、1.35-1.26(m, 16H)、0.90(t, 6H)
【0202】
合成例5
化合物Bの合成

化合物B
フレームドライ、アルゴン置換した300ml 3口フラスコに上記の4,4’−ジブロモ−2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’ −ビフェニル5.00g(見掛モル数6.1mmol)を取り、脱水ジエチルエーテル 50mlに溶解した。この溶液をメタノール/液体窒素で-90℃に冷却し、8.4mlのn-BuLi(1.6M n-ヘキサン溶液、13.4mmol)を滴下した。1時間保温した後、0.20gの硫黄(6.1mmol)を加えた。室温に昇温して3.5時間攪拌した後に、2.00gの硫黄(61mmol)を加え、さらに4時間攪拌した。0℃に冷却し、1N塩酸15mlを滴下した。水相をジエチルエーテルで抽出し、有機層を合わせ、水、飽和食塩水の順に洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、6.26gの粗生成物を得た。シリカゲルカラムクロマトグラフィーで精製(展開溶媒 ヘキサン:トルエン=20:1)し、0.91g(p.87.3%、y.20.7%)の化合物Bを得た。
1H-NMR(CDCl3、300MHz):
δ7.69(s, 2H)、7.08(s, 2H)、4.09(t, 4H)、1.92-1.81(m, 4H)、1.58-1.26(m, 20H)、0.88(t, 6H)
【0203】
合成例6
化合物Cの合成

化合物C
窒素雰囲気下で100mlフラスコに上記の4,4’−ジブロモ−2,2’−ジヨード−5,5’−ジオクチルオキシ−1,1’ −ビフェニル5.0gを仕込み、テトラヒドロフラン50mlを加えて溶解した。−90℃に冷却しn−ブチルリチウム/1.6M―ヘキサン溶液8.4mlを滴下した。1.5時間攪拌後、臭化マグネシウム3.38gのテトラヒドフラン61g溶液を加えて、室温まで昇温し1.5時間攪拌した。再度−90℃に冷却して1,2−ジクロロテトラメチルジシラン1.60gを加えた後、昇温し還流下で8.5時間反応させた。
溶媒を留去してトルエン100mlを仕込み撹拌し、不溶解物をろ過した後、再度溶媒を留去し、粗製物を得た。シリカゲルクロマトグラフィ(展開溶媒 ヘキサン:トリエチルアミントルエン=800:5)で粗製物を精製し、化合物Cを0.24gを得た。
1H−NMR(300MHz/CDCl3):
δ(ppm) = 0.20〔s、12H〕、 0.89〔t、6H〕、1.1〜1.6〔m、20H〕、1.89〔m、4H〕、4.08〔t、4H〕、6.92〔s、2H〕、7.57〔s、2H〕
【0204】
合成例7
化合物Dの合成


化合物D
不活性雰囲気下3−ブロモフェノール90gをエタノール600mlに溶解した。さらに水酸化カリウム39gを加えて70℃に昇温して溶解した。滴下ロートから1−ブロモ−3,7−ジメチルオクタン126gを15分で滴下した。滴下終了後、84℃に昇温して約22時間加熱攪拌した。加熱終了後室温まで放冷却した。
反応液を2分割し、それぞれ水500mlに加えてた後、エバポレータにてエタノールを留去した。エタノールを留去後の溶液を合わせて3分割し、それぞれ酢酸エチル300mlを加えて分液し、有機層を水200mlで2回洗浄した。有機層を合わせてエバポレータで溶媒を留去した後、ロータリーポンプを用いて減圧下、90℃で5時間加熱乾燥した。オイル状の生成物として3−(3,7−ジメチルオクチルオキシ)−ブロモベンゼン約150gを得た。
不活性雰囲気下、3つ口フラスコに乾燥テトラヒドロフラン100mlにマグネシウム7.5g、ヨウ素少量を仕込んだ。滴下ロートを用いて上記3−(3,7−ジメチルオクチルオキシ)−ブロモベンゼン90gを50分かけて滴下した。滴下終了後、乾燥テトラヒドフラン200mlを加えて還流下2時間加熱攪拌しGrignard試薬を調整した。加熱終了後、室温まで放冷した。
上記とは別の3つ口フラスコにホウ酸トリメチル38gと乾燥テトラヒドロフラン300mlを仕込み、フラスコをドライアイス−アセトン浴で冷却した。滴下ロートを用いて上記Grignard試薬溶液を35分かけて滴下した。滴下終了後反応液を室温まで昇温した。
反応液を希硫酸(12ml硫酸/水360ml)に加えて攪拌した後2分割して、それぞれ酢酸エチル150ml、100mlで抽出した。有機層を合わせたものを3分割して、それぞれ水100mlで洗浄した。洗浄後の有機層を合わせてエバポレータ−にて溶媒を留去した後、ヘキサン100mlを加えて固形分を懸濁させた状態でろ過した。さらに100mlのヘキサンで洗浄した。白色の固体の3−(3,7−ジメチルオクチルオキシ)−フェニルホウ酸63gを得た。
不活性雰囲気下3つ口フラスコに上記3−(3,7−ジメチルオクチルオキシ)−ブロモベンゼン60g、トルエン250ml、水250ml、炭酸カリウム62gとテトラキス(トリフェニルホスフィン)パラジウム錯体1.2gを仕込んだ。20分アルゴンで溶液をバブリングし酸素を脱気した後、上記3−(3,7−ジメチルオクチルオキシ)−フェニルホウ酸63gを加えて90℃に昇温し、そのまま8時間加熱攪拌した。加熱終了後室温まで放冷した。トルエン層を分液した後、シリカゲルクロマトグラフィーにて着色成分を除いた。溶媒を留去してオイル状の生成物として化合物Dを98g得た。

1H−NMR(200MHz/CDCl3):
δ(ppm) = 0.87〔d、12H〕、0.94〔d、6H〕、1.1〜1.8〔m、20H〕、4.04〔t、4H〕、6.88〔d、2H〕、7.1〜7.3〔m、4H〕、7.32〔t、2H〕
【0205】
合成例8
化合物Eの合成



化合物E
上記化合物D 20gを乾燥N,N−ジメチルホルムアミド400mlに溶解した。氷冷下でN−ブロモスクシンイミド15.5g/N,N−ジメチルホルムアミド300ml溶液を滴下した。90分かけて滴下した。滴下終了後、氷浴を外して一夜攪拌した。
溶媒を留去した後トルエン200mlに溶解し、水200mlで3回洗浄した後溶媒を留去し、オイル状生成物26gを得た。LC−MSスペクトルの測定結果より、ブロモの置換位置の異なる異性体も生成しており化合物Eの純度は約65%(LC面百)であった。
1H−NMR(200MHz/CDCl3):
δ(ppm) = 0.86〔d、12H〕、0.93〔d、6H〕、1.1〜1.8〔m、20H〕、3.97〔t、4H〕、6.79〔d、2H〕、6.82〔d、2H〕、7.52〔d、2H〕
MS(APCI(+)):M+ 624
【0206】
合成例9
化合物Fの合成



化合物F
200ml 4口フラスコをアルゴン置換し、化合物E 5.00g(8.0mmol)を80mlの脱水エーテルに溶解し、-78℃に冷却した。この溶液にn-ブチルリチウム11ml(17.6mmol、1.6Mへキサン溶液)を滴下し、3.5時間攪拌した。この溶液を-78℃に冷却した四塩化ケイ素25.8g(152mmol)のエーテル溶液500mlに滴下した。1時間攪拌した後、室温まで昇温し、15時間攪拌した。反応液をアルゴン下でろ過し、ろ液を濃縮したところ、4.52gの粗生成物を得た。
上記で得られた粗生成物をアルゴン置換した500ml 3口フラスコに取り、90mlの脱水エーテルに溶解し、-78℃に冷却した。この溶液にフェニルリチウム23ml(24mmol、1.06Mシクロペンタン/エーテル溶液)を滴下した。20分間攪拌後、室温に昇温し、4時間攪拌した。水を加え、分液し、水層をジエチルエーテルで抽出した。有機層を合わせ、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄した。硫酸水素ナトリウムで乾燥し、溶媒を留去したところ、化合物Fの粗生成物を6.66g得た。
1H−NMR(300MHz/CDCl3):
δ0.86(d、12H)、0.97(d、6H)、1.16〜1.90(m、20H)、4.09(br、4H)、6.84〜6.88(m、2H)、7.29〜7.66(m、28H)
MS(APCI(+)):M+ 647.4
【0207】
合成例10
化合物Gの合成



化合物G
アルゴン置換した300ml三口フラスコに化合物F 5.00g(純度85.1%、6.6mmol)を取り、脱水DMF65mlに溶解した。この溶液にN−ブロモスクシンイミド 2.45g(13.8mmol)を仕込んだ。室温にて5時間攪拌した後、グローブボックス中で80ml×5のヘキサンで抽出した。溶媒を留去したところ、14.02g(LC面百19.9%、DMF含む)の粗生成物を得た。逆相シリカゲルカラムクロマトグラフィー(アセトニトリル:トルエン=20:1)で分離後、フラクションをヘキサンで抽出し(アセトニトリル中の微量の酢酸を除くため)、5%炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を留去したところ、0.30g(LC面百58%、収率3.3%)の化合物Gを得た。
1H−NMR(300MHz/アセトン−d6):
δ0.86(d、12H)、0.99(d、6H)、1.17〜1.95(m、20H)、4.31(br、4H)、7.37〜7.50(m、2H)、7.68〜7.71(m、28H)、7.81(s、2H)、8.00(s、2H)MS(APCI(+)):M+ 804.9
【0208】
合成例11
化合物Hの合成)



化合物H
アルゴン置換した200ml三口フラスコに化合物F 3.91g(純度85.1%、5.1mmol)を取り、脱水DMF50mlに溶解した。この溶液にNCS 1.47g(10.8mmol)を仕込んだ。LCで反応を追跡しながらNCSを追加した。(total2.62g)室温にて60時間攪拌した後、グローブボックス中で100ml×5のヘキサンで抽出した。溶媒を留去したところ、12.73g(LC面百34.1%、DMF含む)の粗生成物を得た。逆相シリカゲルカラムクロマトグラフィー(アセトニトリル:トルエン=20:1)で分離後、フラクションをヘキサンで抽出し(アセトニトリル中の微量の酢酸を除くため)、5%炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥後、溶媒を留去したところ、0.18g(LC面百82.5%、収率3.6%)の化合物Hを得た。
1H−NMR(300MHz/アセトン−d6):
δ0.87(d、12H)、0.99(d、6H)、1.10〜1.94(m、20H)、4.28(br、4H)、7.30〜7.71(m、10H)、7.83(br、4H)
MS(APCI(+)):M+ 715.3
【0209】
実施例1(化合物Aの縮合重合)
<ポリマー1の合成>
化合物A 0.59gとN、N‘−ビス(4−ブロモフェニル)−N、N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン0.26gと2,2’―ビピリジル0.48gとを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)35mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.85g加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をエタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン30mLに溶解し、1N塩酸30mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水30mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール200mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン30mLに溶解させた。その後、アルミナカラム(アルミナ量20g)を通して精製を行い、回収したトルエン溶液をメタノール250mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られたポリマーの収量は0.06gを得た。このポリマーをポリマー1と呼ぶ。このポリマー1のポリスチレン換算数平均分子量は、5.0x102であり、ポリスチレン換算重量平均分子量は、6.2x103であった。
【0210】
実施例2(化合物Bの縮合重合)
<ポリマー2の合成>
化合物B 0.35gとN、N‘−ビス(4−ブロモフェニル)−N、N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン0.16gと2,2’―ビピリジル0.37gとを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)28mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.70g加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をエタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン30mLに溶解し、1N塩酸30mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水30mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール200mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン30mLに溶解させた。その後、アルミナカラム(アルミナ量20g)を通して精製を行い、回収したトルエン溶液をメタノール250mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られたポリマーの収量は0.13gを得た。このポリマーをポリマー2と呼ぶ。このポリマー2のポリスチレン換算数平均分子量は、6.2x103であり、ポリスチレン換算重量平均分子量は、5.1x104であった。

実施例3(化合物Cの縮合重合)
<ポリマー3の合成>
化合物C 0.30gとN、N‘−ビス(4−ブロモフェニル)−N、N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン0.13gと2,2’―ビピリジル0.30gとを反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)20mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.52g加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をエタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン30mLに溶解し、1N塩酸30mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水30mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール200mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン30mLに溶解させた。その後、アルミナカラム(アルミナ量20g)を通して精製を行い、回収したトルエン溶液をメタノール250mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られたポリマーの収量は0.11gを得た。このポリマーをポリマー3と呼ぶ。このポリマー3のポリスチレン換算数平均分子量は、1.4x104であり、ポリスチレン換算重量平均分子量は、4.9x104であった。
【0211】
実施例4(化合物Gの縮合重合)
<ポリマー4の合成>
化合物G 0.20gとN、N‘−ビス(4−ブロモフェニル)−N、N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン0.07gと2,2’―ビピリジル0.17gとを反応容器に仕込んだ後、反応系内をアルゴンガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)20mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.3g加え、室温で10分間攪拌した後、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。
反応後、この溶液を冷却した後、メタノール100ml/イオン交換水200ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を濾過し、回収した。この沈殿を乾燥した後、クロロホルムに溶解した。次に、この溶液を濾過し、不溶物を除去した後、この溶液からクロロホルムを留去し、固形物を得た。この固形物をメタノールで洗浄した後、減圧乾燥して、ポリマー0.08gを得た。このポリマーをポリマー4と呼ぶ。このポリマー4のポリスチレン換算数平均分子量は、1.5x103であり、ポリスチレン換算重量平均分子量は、5.0x103であった。
【0212】
実施例5(化合物Hの重合)
<ポリマー5の合成>
化合物H 0.21gとN、N‘−ビス(4−ブロモフェニル)−N、N’−ビス(4−n−ブチルフェニル)−1,4−フェニレンジアミン0.10gと2,2’―ビピリジル0.27gとを反応容器に仕込んだ後、反応系内をアルゴンガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)20mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.5g加え、室温で10分間攪拌した後、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。
反応後、この溶液を冷却した後、メタノール100ml/イオン交換水200ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を濾過し、回収した。この沈殿を乾燥した後、トルエンに溶解した。次に、この溶液を濾過し、不溶物を除去した後、この溶液からトルエンを留去し、固形物を得た。この固形物をエタノールで洗浄した後、減圧乾燥して、ポリマー0.09gを得た。この重合体をポリマー5と呼ぶ。このポリマー5のポリスチレン換算数平均分子量は、1.6x103であり、ポリスチレン換算重量平均分子量は、5.4x103であった。
【0213】
実施例5
<蛍光特性>
ポリマー1から5のそれぞれの0.2wt%クロロホルム溶液を石英上にスピンコートして高分子蛍光体の薄膜をそれぞれ作成した。これらの薄膜の蛍光スペクトルとを、蛍光分光光度計(日立製作所850)を用いて測定した。いずれも強い蛍光を有しており、それぞれ以下の表1に示す蛍光ピーク波長を示した。
【0214】
【表1】

【0215】
計算例
以下に結合距離比の計算例を示す。計算はGaussian98(b3lyp/6−31g*)を用いておこなった。
【0216】
参考計算例1
単量体と3量体との比較
重合の結合位が水素原子である単量体と3量体との結合距離比の比較をおこなった。


【0217】
【表2】

両者の間で実質的に同じであり、ポリマーにおける結合距離比は、重合の結合位が水素原子である単量体で近似できることが示された。
【0218】
参考計算例2
側鎖の比較
側鎖のアルキルオキシ基がメトキシ基、n−オクチルオキシ基であるものとの結合距離比の比較をおこなった。


【0219】
【表3】


両者の間で差は見られず、n−オクチルオキシ基における結合距離比は、メトキシ基で近似できることが示された。
【0220】
計算例1
実施例のポリマー1〜5の結合距離比の計算
ポリマー1、2、3、4、5の結合距離比を、それぞれ、以下の計算化合物6、8、7、5、5を用いて求めた。



式中、Phはフェニル基を表す。
【0221】
【表4】


【特許請求の範囲】
【請求項1】
式(11)で示される化合物。

(式中、A1は、下記式(4)で表される2価の基である。R1、R2、R3、R4、R5およびR6は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表し、R2とR3、およびR4とR5は互いに結合して環を形成していてもよい。X1およびX2はそれぞれ独立に縮合重合可能な置換基を表す。

〔式中、R7はアルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシル基、アシルオキシ基、アミド基または1価の複素環基を示す。〕)
【請求項2】
式(11)で示される化合物。

(式中、A1は、下記式(6)で表される2価の基である。R1、R2、R3、R4、R5およびR6は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表し、R2とR3、およびR4とR5は互いに結合して環を形成していてもよい。X1およびX2はそれぞれ独立に縮合重合可能な置換基を表す。

〔式中、A2はSiを表し、R8およびR9はそれぞれ独立にアルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシルオキシ基、アミド基または1価の複素環基を表す。lは1を表す。〕
【請求項3】
上記式(11)においてR2およびR5がそれぞれ独立にアルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキルオキシ基、アリールアルキルチオ基またはアリールアルキルアミノ基であることを特徴とする請求項1または2に記載の化合物。
【請求項4】
上記式(11)の化合物において、X1およびX2がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基である請求項1〜3のいずれかに記載の化合物。
【請求項5】
下記式(13)で示される化合物の2つのヨウ素原子を選択的にメタル化した後に下記式(14)で示されるジハロゲン化リン化合物と反応させることを特徴とする請求項1、3または4に記載の化合物の製造方法。



〔式中、R1、R2、R3、R4、R5、R6、X1およびX2は前記と同じ意味を表す。〕



〔式中、R7は前記と同じ意味を表す。X5およびX6はそれぞれ独立に塩素原子、臭素原子またはヨウ素原子を示す。〕
【請求項6】
下記式(19)で示される化合物とハロゲン化試剤とを反応させることを特徴とする請求項2に記載の化合物の製造方法。



(式中、R1、R2、R3、R4、R5、R6、R8およびR9は前記と同じ意味を表す。)
【請求項7】
ハロゲン化試剤としてN−ハロゲノ化合物を用いることを特徴とする請求項6に記載のジベンゾシロール誘導体の製造方法。
【請求項8】
式(19)で示されるジベンゾシロール誘導体。

(式中、R1、R2、R3、R4、R5およびR6は、それぞれ独立に水素原子、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、置換シリル基、アシル基、アシルオキシ基、イミノ基、アミド基、アリールアルケニル基、アリールアルキニル基、1価の複素環基またはシアノ基を表し、R2とR3、およびR4とR5は互いに結合して環を形成していてもよい。R8およびR9はそれぞれ独立にアルキル基、アルキルオキシ基、アルキルチオ基、アルキルアミノ基、アリール基、アリールオキシ基、アリールチオ基、アリールアミノ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アリールアルキルアミノ基、アシルオキシ基、アミド基または1価の複素環基を表す。)

【公開番号】特開2009−1804(P2009−1804A)
【公開日】平成21年1月8日(2009.1.8)
【国際特許分類】
【出願番号】特願2008−174340(P2008−174340)
【出願日】平成20年7月3日(2008.7.3)
【分割の表示】特願2002−347573(P2002−347573)の分割
【原出願日】平成14年11月29日(2002.11.29)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】