説明

有機エレクトロルミネッセンス素子、照明装置および表示装置

【課題】低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れる有機エレクトロルミネッセンス素子を提供する。
【解決手段】陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子において、前記有機層の少なくとも1層には、一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が含有されている。
【化1】

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス素子、照明装置および表示装置に関し、更に詳しくは、有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンス素子に好ましく用いることのできる化合物に関する。
【背景技術】
【0002】
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子および正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0003】
実用化に向けた有機EL素子の開発としては、例えば、プリンストン大より、M.A.Baldo et al.,nature、395巻、151〜154ページ(1998年)に記載のように、励起三重項からのリン光発光を用いる有機EL素子の報告がされ、以来、米国特許第6,097,147号明細書、M.A.Baldo et al.,nature、403巻、17号、750〜753頁(2000年)などに記載のように、室温でリン光を示す材料の研究が活発になってきている。
【0004】
リン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。
発光素子の層構成の材料として、イリジウム錯体系等重金属錯体を中心に多くの化合物の合成検討がなされており、例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)には、それらの金属錯体を有機エレクトロルミネッセンス素子(有機EL素子ともいう)の発光層に使用することが記載されている。
【0005】
このように、リン光発光方式は大変ポテンシャルの高い方式であるが、リン光発光を利用する有機ELデバイスにおいては、発光中心の位置をコントロールする方法、とりわけ発光層の内部で再結合を行い、いかに発光を安定に行わせることができるかと共に、リン光発光材料自身の発光性を如何に向上させるかが、素子の効率・寿命の面から、重要な技術的な課題となっている。
【0006】
有機EL素子に使用される青色リン光用の発光材料として、フェニルピラゾール系、イミダゾフェナンスリジン系、フェニルイミダゾール系等の配位子を有するイリジウム錯体が知られているが、発光性、短波長発光、高耐久性の全てを同時に満足させることは非常に困難である。
【0007】
単純なフェニルピラゾールのイリジウム錯体は室温では全く発光せず、置換基としてベンゼン環のようなバンドギャップを小さくするような基を導入してはじめて発光するようになることが知られている(例えば、特許文献1参照)。
【0008】
また、配位子としてイミダゾフェナンスリジンを有する金属錯体は発光波長が短波な発光材料であることが開示されている(例えば、特許文献2、3参照)。
【0009】
また、フェニルイミダゾールの金属錯体は発光波長が比較的短波な発光材料であることが開示されている(例えば、特許文献4、5、6参照)。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】国際公開第2004/085450号
【特許文献2】国際公開第2007/095118号
【特許文献3】国際公開第2008/156879号
【特許文献4】国際公開第2006/046980号
【特許文献5】米国特許公報第2006/0251923号明細書
【特許文献6】米国特許公報第2011/0057559号明細書
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、特許文献1に記載の技術にあっては、発光性と発光寿命を同時に改善するためにはπ共役系を拡張して発光波長を長波化する必要があり、青色リン光ドーパントの要件を満たすことができない。また、特許文献2及び3に記載の技術にあっては、発光効率が低く、消費電力の低減と発光寿命の長寿命化とを同時に達成することができない。また、特許文献4、5及び6に記載の技術にあっては、発光寿命を十分に長寿命化することができない。
【0012】
一方、有機EL素子の大面積化、低コスト化、高生産性の観点から、有機EL素子の製造方法として、湿式法(ウェットプロセス等ともいう)が注目されている。この湿式法によれば、真空プロセスでの成膜に比して低温で成膜を行うことができるため、下層に位置する有機層のダメージを低減することができ、発光効率や素子寿命の改善が期待される。しかしながら、青色リン光発光を利用する有機EL素子のホスト材料や電子輸送材料は、溶剤に対する溶解性、溶液安定性が不十分であり、湿式法による製造を行うことが困難である。また、当該ホスト材料や電子輸送材料を用いて製造された有機EL素子は、駆動電圧が高いという問題もある。
【0013】
本発明の目的は、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れる有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することにある。
【課題を解決するための手段】
【0014】
本発明の上記目的は、以下の手段により達成することができる。
陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子において、
前記有機層の少なくとも1層には、一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が含有されている。
【0015】
【化1】

【0016】
一般式(1)中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表す。R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。Ra、Rb、Rc及びRdはそれぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。nb及びndは1〜4の整数を表し、ncは1または2を表す。X及びYは単なる結合手、置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。但し、X及びYが同時に単なる結合手で有ることは無い。
【発明の効果】
【0017】
本発明の上記手段により、低駆動電圧であり発光効率が高く、耐久性に優れ、ダークスポット、発光ムラ発生防止効果に優れる有機エレクトロルミネッセンス素子、照明装置及び表示装置が提供できる。
【図面の簡単な説明】
【0018】
【図1】有機EL素子から構成される表示装置の一例を示した模式図である。
【図2】図1の表示装置の表示部の模式図である。
【図3】図1の表示装置の画素の模式図である。
【図4】パッシブマトリクス方式フルカラー表示装置の模式図である。
【図5】照明装置の概略図である。
【図6】照明装置の断面図である。
【発明を実施するための形態】
【0019】
以下、本発明を実施するための形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0020】
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
【0021】
(i)陽極/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vi)陽極//正孔輸送層/陽極バッファー層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(vii)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
【0022】
複数の発光層が含まれる場合、該発光層間に非発光性の中間層を有してもよい。また、上記層構成の内、陽極及び陰極を除く発光層を含む有機化合物層を1つの発光ユニットとし、複数の発光ユニットを積層することが可能である。該複数の積層された発光ユニットにおいては、発光ユニット間に非発光性の中間層を有していてもよく、更に中間層は電荷発生層を含んでいてもよい。
【0023】
本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
【0024】
本発明の有機EL素子を構成する各層について説明する。
【0025】
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
【0026】
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm〜5μmの範囲に調整され、更に好ましくは2nm〜200nmの範囲に調整され、特に好ましくは5nm〜100nmの範囲に調整される。
【0027】
発光層の作製には、後述する発光ドーパントやホスト化合物を、例えば、真空蒸着法、湿式法(ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法)等を挙げることができる。))等により製膜して形成することができる。
【0028】
本発明の有機EL素子の発光層には、発光ドーパント(リン光発光性ドーパント(リン光ドーパント、リン光発光性ドーパント基ともいう)や蛍光ドーパント等)化合物と、発光ホスト化合物とを含有し、少なくとも1つの発光ドーパントは前述の一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体であり、好ましくは、一般式(2)、(2A)、(2a)又は(2b)で表されるリン光発光性有機金属錯体である。
【0029】
また、本発明に係る発光層には、以下の特許公報に記載されている化合物等を併用してもよい。
例えば、国際公開第00/70655号、特開2002−280178号公報、特開2001−181616号公報、特開2002−280179号公報、特開2001−181617号公報、特開2002−280180号公報、特開2001−247859号公報、特開2002−299060号公報、特開2001−313178号公報、特開2002−302671号公報、特開2001−345183号公報、特開2002−324679号公報、国際公開第02/15645号、特開2002−332291号公報、特開2002−50484号公報、特開2002−332292号公報、特開2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、特開2002−338588号公報、特開2002−170684号公報、特開2002−352960号公報、国際公開第01/93642号、特開2002−50483号公報、特開2002−100476号公報、特開2002−173674号公報、特開2002−359082号公報、特開2002−175884号公報、特開2002−363552号公報、特開2002−184582号公報、特開2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、特開2002−226495号公報、特開2002−234894号公報、特開2002−235076号公報、特開2002−241751号公報、特開2001−319779号公報、特開2001−319780号公報、特開2002−62824号公報、特開2002−100474号公報、特開2002−203679号公報、特開2002−343572号公報、特開2002−203678号公報等である。
【0030】
(1)発光性ドーパント化合物
発光性ドーパント化合物(発光ドーパントともいう)について説明する。
発光性ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。
【0031】
本発明者らは、上記した本発明の目的を達成するために鋭意研究を重ねた結果、一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体をリン光ドーパントとして用いることにより、高い発光輝度と低駆動電圧、さらに発光寿命の長寿命化も同時に達成できることを見出し、本発明に至った。また、本発明のリン光ドーパントを用いて作製された有機EL素子は経時安定性の点でも改善されることが分かった。
【0032】
また、上記特許文献6に記載されているように、特定の置換基を有するイミダゾール骨格を有する配位子が配位した金属錯体が、有機EL素子における発光ドーパントとして有用であることはすでに知られている。
【0033】
本発明の一般式(1)、(2)、(2A)、(2a)、(2b)では、配位子のフェニルイミダゾール部分で発光効率の向上効果、イミダゾール環のN−フェニル基と縮合したA環部分でキャリア移動が担われるという機能分離効果により、材料の堅牢性が向上していると推定される。その結果、素子全体のキャリアバランスも調整され、発光層のより中心部位でのキャリアの再結合が実現できていると考えられる。
【0034】
本発明に係る一般式(1)で表わされる配位子が金属原子に配位したリン光発光性有機金属錯体においては、遷移金属元素Mに配位している配位子の組み合わせを変更したり、配位子に置換基を導入したりすることによって、化合物の発光波長を所望の領域に制御することができる。
【0035】
このような金属錯体を有機EL素子材料として用いることにより、初期駆動電圧が低く、半減寿命が長く、ダークスポットや発光ムラの生成がなく、外部取り出し量子効率が高く、且つ、所望の発光波長で発光をコントロール可能な有機エレクトロルミネッセンス素子(有機EL素子)、照明装置及び表示装置を提供することができる。
【0036】
(1.1)リン光ドーパント(リン光発光ドーパントともいう)
本発明に係るリン光ドーパントについて説明する。
本発明に係るリン光ドーパント化合物は、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
【0037】
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
【0038】
リン光ドーパントの発光は原理としては2種挙げられ、1つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光性ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう1つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパント化合物からの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
【0039】
本発明の実施形態におけるリン光ドーパントとしては、以下に説明する、一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体、一般式(2)、(2A)、(2a)又は(2b)で表されるリン光発光性有機金属錯体が用いられる。
【0040】
(1.1.1)一般式(1)で表される配位子が配位したリン光発光性有機金属錯体
【0041】
【化2】

【0042】
一般式(1)において、環A及び環Bで表される5員または6員の芳香族炭化水素環としては、例えば、ベンゼン環が挙げられる。
一般式(1)において、環A及び環Bで表される5員または6員の芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、等が挙げられる。
好ましくは環Bがベンゼン環であり、さらに好ましくは環Aがベンゼン環である。
【0043】
一般式(1)において、R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。
一般式(1)において、R1及びR2で表されるアリール基としては、例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される1価の基が挙げられる。
一般式(1)において、R1及びR2で表されるヘテロアリール基としては、例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される1価の基が挙げられる。
一般式(1)において、R1及びR2で表される非芳香族炭化水素環基としては、例えば、シクロアルカン(例えば、シクロペンタン環、シクロヘキサン環等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、シクロヘキシルアミノスルホニル基、テトラヒドロナフタレン環、9,10−ジヒドロアントラセン環、ビフェニレン環等から導出される1価の基が挙げられる。
一般式(1)において、R1及びR2で表される非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される1価の基が挙げられる。
好ましくは、R1及びR2が共に炭素原子数2以上のアルキル基またはシクロアルキル基であり、また、R1及びR2の少なくとも一方が炭素原子数3以上の分岐アルキル基であることも好ましい。さらに好ましくはR1及びR2が共に炭素原子数3以上の分岐アルキル基である。
【0044】
一般式(1)において、Ra、Rb、Rc及びRdはそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。
一般式(1)において、Ra、Rb、Rc及びRdで表されるアリール基及びヘテロアリール基としては、一般式(1)においてR1及びR2で表されるアリール基及びヘテロアリール基として挙げられたものと同様の基が挙げられる。
一般式(1)において、Ra、Rb、Rc及びRdで表される非芳香族炭化水素環基及び非芳香族複素環基としては、一般式(1)においてR1及びR2で表される非芳香族炭化水素環基及び非芳香族複素環基として挙げられたものと同様の基が挙げられる。
【0045】
一般式(1)において、nb及びndは1〜4の整数を表し、ncは1または2を表す。
【0046】
一般式(1)において、X及びYは単なる結合手、置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。詳しくは、X及びYを表す炭素原子、窒素原子、ケイ素原子は、置換基を有していても良い。但し、X及びYが同時に単なる結合手で有ることは無い。
好ましくは、X及びYが置換基を有しても良い窒素原子若しくは酸素原子、硫黄原子である。更に好ましくは、Yが単なる結合手であり、Xが置換基を有しても良い窒素原子若しくは酸素原子、硫黄原子である。
【0047】
(1.1.2)一般式(2)で表されるリン光発光性有機金属錯体
【0048】
【化3】

【0049】
一般式(2)において、環A、環B、R1、R2、Ra、Rb、Rc、Rd、nb、nc、nd、X及びYは、上記一般式(1)の環A、環B、R1、R2、Ra、Rb、Rc、Rd、nb、nc、nd、X及びYと同義である。
一般式(2)において、LはMに配位したモノアニオン性の二座配位子のうちの1つまたは複数である。Lで表されるモノアニオン性の二座配位子の具体例としては、下記式の配位子等が挙げられる。
【0050】
【化4】

【0051】
上記の式中において、Rd’、Rd’’及びRd’’’は水素原子または置換基を表し、Rd’、Rd’’及びRd’’’で表される置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、非芳香族炭化水素環基(例えば、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、テトラヒドロナフタレン環、9,10−ジヒドロアントラセン環、ビフェニレン環等から導出される1価の基)、非芳香族複素環基(例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1,1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環、フェノキサジン環、フェノチアジン環、オキサントレン環、チオキサンテン環、フェノキサチイン環等から導出される一価の基)、芳香族炭化水素基(例えば、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o−テルフェニル環、m−テルフェニル環、p−テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等から導出される一価の基)、芳香族複素環基(例えば、シロール環、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンズイミダゾール環、ベンズチアゾール環、ベンズオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、チエノチオフェン環、カルバゾール環、アザカルバゾール環(カルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、ジベンゾシロール環、ジベンゾフラン環、ジベンゾチオフェン環、ベンゾチオフェン環やジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わった環、ベンゾジフラン環、ベンゾジチオフェン環、アクリジン環、ベンゾキノリン環、フェナジン環、フェナントリジン環、フェナントロリン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ジベンゾカルバゾール環、インドロカルバゾール環、ジチエノベンゼン環等から導出される一価の基)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
【0052】
一般式(2)において、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表すが、好ましくはOs、Ir、Ptであり、さらに好ましくはIrである。
【0053】
一般式(2)において、m’は0〜2の整数を表し、n’は少なくとも1であり、m’+n’は2または3を表す。好ましくはn’が3又は2、且つm’が0である。
【0054】
(1.1.3)一般式(2A)で表されるリン光発光性有機金属錯体
【0055】
【化5】

【0056】
一般式(2A)において、R1、R2、Ra、Rb、Rc、Rd、nb、nc、nd、X、Y、M、L’、m’、n’は、上記一般式(2)のR1、R2、Ra、Rb、Rc、Rd、nb、nc、nd、X、Y、M、L’、m’、n’と同義である。
【0057】
(1.1.4)一般式(2a)または(2b)で表されるリン光発光性有機金属錯体
【0058】
【化6】

【0059】
一般式(2a)及び(2b)において、R1、R2、Rb、Rc、Rd、nb、nc、nd、M、L’、m’、n’は、上記一般式(2)のR1、R2、Rb、Rc、Rd、nb、nc、nd、M、L’、m’、n’と同義である。Xは一般式(2A)においてXで表される元素として挙げられたものから単なる結合手を除いたものを表す。
【0060】
本発明に係る一般式(2)で表される青色リン光発光性有機金属錯体の中でも、一般式(2A)で表される有機金属錯体が好ましく、更に一般式(2a)又は(2b)で表される有機金属錯体が好ましい。
【0061】
(1.1.5)具体例
以下に、一般式(1)で表される配位子の具体例を記載するが、本発明はこれらに限定されない。
【0062】
【化7】

【0063】
【化8】

【0064】
以下の表1〜表3に、一般式(2)、(2A)、(2a)または(2b)で表されるリン光発光性有機金属錯体(ドーパント)の具体例を示すが、本発明はこれらに限定されない。表1〜3中においては、一般式(2)、(2A)、(2a)または(2b)で表されるリン光発光性有機金属錯体を、一般式:(L)n=Ir=(AL)mで表したときの各構成を示している。即ち、当該一般式中、Lは上記した一般式(1)で表される配位子を表し、ALは従来公知のモノアニオン性の2座配位子を表し、nはIrに配位しているLの個数、mはIrに配位しているALの個数をそれぞれ表す。
具体的には、例えば、表1中のIrD−1は、「(L−1)3Ir」と表すことができ、表2中のIrD−39は「(L−1)2Ir(AL−9)」と表すことができる。これらIrD−1及びIrD−39の構造式を下記に示す。
【0065】
【化9】

【0066】
【表1】

【0067】
【表2】

【0068】
【表3】

【0069】
表1〜3中における従来公知の配位子AL−1〜AL10は、以下に示す化合物である。
【0070】
【化10】

【0071】
(1.1.6)合成例
以下に、本発明に係る金属錯体の合成例を示すが、本発明はこれらに限定されない。
リン光発光性有機金属錯体IrD−1の合成方法を例にとって説明する。
【0072】
【化11】

【0073】
硫酸75mlと硝酸5.8mlの混酸中に15gの2,6−ジイソプロピルアミンを0℃にて滴下後、0℃のまま約1.5時間撹拌した。反応液を氷水中に空け水酸化ナトリウム水溶液で中和した後、酢酸エチルにて抽出し、シリカゲルカラムクロマトグラフィーにて精製することで、15.4g(81.9%)の3−ニトロ−2,6−ジイソプロピルアミンを得た。
【0074】
50mlのピリジンに15.4gの3−ニトロ−2,6−ジイソプロピルアミンを溶解させた溶液に、8.85mlのベンゾイルクロリドを0℃にて滴下後、室温まで昇温し約5時間反応させた。反応溶に100mlの水を加えた後、酢酸エチルにて抽出し、酢酸エチルとヘプタンから再結晶を行うことで、13.5g(59.7%)のN−(2,6−ジイソプロピル−3−ニトロフェニル)ベンズアミドを得た。
【0075】
300mlの酢酸エチル中に13.5gのN−(2,6−ジイソプロピル−3−ニトロフェニル)ベンズアミドと1gの5%Pd/Cを加えた溶液に、水素ガスを導入し、室温にて約12時間撹拌した。反応液をセライト濾過後、酢酸エチルとヘプタンから再結晶を行うことで、9.5g(77.3%)のN−(3−アミノ−2,6−ジイソプロピル)ベンズアミドを得た。
【0076】
100mlのエタノールと16.2mlの水の混合溶液に、9.5gのN−(3−アミノ−2,6−ジイソプロピル)ベンズアミドと16.2mlの臭化水素酸を加えた後、2.3gの亜硝酸ナトリウムを10mlの水に溶解させた溶液を0℃にて滴下した。滴下後、0℃のまま約2時間撹拌し、1.58gの臭化銅(I)を7mlの臭化水素酸に溶解させた溶液を0℃にて滴下した。滴下後、0℃で約1時間、室温にて約8時間、45℃にて約1時間撹拌した後、反応溶液に水200mlを加え、酢酸エチルにて抽出し、アセトニトリルで再結晶を行うことで、7.9g(68.2%)のN−(3−ブロモ−2,6−ジイソプロピル)ベンズアミドを得た。
【0077】
300mlのトルエン中に7.9gのN−(3−ブロモ−2,6−ジイソプロピル)ベンズアミドと2.45mlのオキシ塩化リンを加え、室温にて0.5時間撹拌後、加熱還流を2時間行った。反応溶液の約200mlを減圧留去後、残渣に9.67gのアミノエタノールと7.3gのトリエチルアミンを0℃にて滴下後、室温まで昇温し約5時間撹拌した。反応液に100mlの酢酸エチルを加え、析出した個体をろ別し、ろ液を濃縮後、ろ液残渣に200mlのトルエンと9.25gのp−トルエンスルホン酸一水和物を加え、加熱還流を約4時間行った。反応溶液に炭酸水素ナトリウム水溶液を加えた後、酢酸エチルにて抽出し、シリカゲルカラムクロマトグラフィーにて精製することで、4.42g(52.6%)の1−(3−ブロモ−2,6−ジイソプロピルフェニル)−2−フェニルイミダゾールを得た。
【0078】
23mlのジメチルスルホキシド中に、110mgのよう化銅(I)、142mgのピコリン酸、4.42gの1−(3−ブロモ−2,6−ジイソプロピルフェニル)−2−フェニルイミダゾール、1.78gの2−クロロフェノール、4.89gのリン酸三カリウムを加え、アルゴン下、90℃にて約24時間撹拌した。反応溶液に水を加え、酢酸エチルにて抽出し、シリカゲルカラムクロマトグラフィーにて精製することでし、3.71g(74.6%)の1−(3−(2−クロロフェニル)−2,6−ジイロプロピルフェニル)−2−フェニルイミダゾールを得た。
【0079】
50mlのジメチルホルムアミド中に、0.1gの酢酸パラジウム、0.23gのトリフェニルホスフィン、2.37gの炭酸カリウム、3.71gの1−(3−(2−クロロフェニル)−2,6−ジイロプロピルフェニル)−2−フェニルイミダゾールを加え、アルゴン下、約7時間加熱還流した。反応溶液に水を加え、酢酸エチルにて抽出し、シリカゲルカラムクロマトグラフィーにて精製することで、2.31g(68.2%)の1−(2,4−ジイロプロピルジベンゾフラン−3−イル)−2−フェニルイミダゾール(配位子L−1)を得た。
【0080】
続いて、得られた配位子L−1からリン光発光性有機金属錯体IrD−1を合成する。
【0081】
【化12】

【0082】
12mlの2−エトキシエタノールと4mlの水の混合溶液中に1.49gの1−(2,4−ジイロプロピルジベンゾフラン−3−イル)−2−フェニルイミダゾールを加え、窒素吹き込み管、温度計、コンデンサーを付けて油浴スターラー上にセットした。これに、0.45gのIrCl・3HOを添加し、窒素気流下、内温135℃で6時間煮沸還流して反応終了とした。
反応終了後室温まで冷却し、メタノールを加え、析出した固体を濾取した。得られた個体をメタノールで良く洗浄して乾燥し、μ錯体を1.12g(87.0%)得た。
【0083】
40mlの酢酸フェニル中に、1.12gのμ錯体、0.81gの1−(2,4−ジイロプロピルジベンゾフラン−3−イル)−2−フェニルイミダゾール、0.30gのトリフルオロ酢酸銀を加え、窒素吹き込み管、温度計、空冷管を付けて油浴スターラー上にセットした。窒素気流化内温150℃で8時間加熱攪拌した。
【0084】
反応終了後、室温まで冷却し、メタノールを加え分散後結晶を濾取し、1.22gの粗結晶が得られた。
【0085】
結晶をカラムクロマトグラフィー(展開溶媒テトラヒドロフラン/ヘプタン)で精製後、得られた結晶をテトラヒドロフラン及び酢酸エチルの混合溶媒で加熱懸濁後、濾過し、トリス(2−(1−(2,4−ジイロプロピルジベンゾフラン−3−イル)−イミダゾール−2−イル)フェニル−C,N−)イリジウム錯体(リン光発光性有機金属錯体IrD−1)を0.96g(63.6%)得た。
【0086】
以上のようにして、リン光発光性有機金属錯体IrD−1を合成することができる。
【0087】
本発明に係る一般式(1)、(2)、(2A)、(2a)、または(2b)で各々表される化合物は、WO2007/7097149等に記載の公知の方法を参照することによっても合成可能である。
【0088】
(1.2)蛍光ドーパント(蛍光性化合物ともいう)
蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
【0089】
(1.3)従来公知の発光ドーパントとの併用
また本発明に係る発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
以下に、本発明において、好ましく用いることの出来る公知のリン光ドーパント化合物の具体例を挙げる。勿論、本発明はこれらに限定されない。
【0090】
【化13】

【0091】
【化14】

【0092】
【化15】

【0093】
【化16】

【0094】
【化17】

【0095】
【化18】

【0096】
(2)ホスト化合物(発光ホストとも言う)
本発明に用いられるホスト化合物について説明する。
ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。
【0097】
ホスト化合物としては公知のホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、上記した発光ドーパントを複数種用いることで異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
【0098】
また、本発明に用いられるホスト化合物としては、従来公知の低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもよい。
【0099】
以下に、本発明に好ましく用いられるホスト化合物の具体例を示すが、本発明はこれらに限定されない。
【0100】
【化19】

【0101】
【化20】

【0102】
【化21】

【0103】
【化22】

【0104】
【化23】

【0105】
【化24】

【0106】
併用可能な公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、且つ、Tg(ガラス転移温度)が高いものが好ましい。
公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。
特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等。
【0107】
《注入層:正孔注入層(陽極バッファー層)、電子注入層(陰極バッファー層)》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
【0108】
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123頁〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0109】
陽極バッファー層(正孔注入層)は、特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2−フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。また、特表2003−519432や特開2006−135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔注入材料として用いることができる。
【0110】
陰極バッファー層(電子注入層)は、特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化ナトリウムやフッ化カリウム等に代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜5μmの範囲が好ましい。
【0111】
また、陽極バッファー層及び陰極バッファー層に用いられる材料は、他の材料と併用して用いることも可能であり、例えば正孔輸送層や電子輸送層中に混合して用いることも可能である。
【0112】
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
【0113】
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。また、特表2003−519432や特開2006−135145等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
【0114】
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
【0115】
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4’−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
【0116】
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
また、銅フタロシアニンやトリス(2−フェニルピリジン)イリジウム錯体等に代表されるシクロメタル化錯体やオルトメタル化錯体等も正孔輸送材料として使用することができる。
【0117】
また、特開平11−251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
【0118】
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5nm〜200nmである。この正孔輸送層は上記材料の一種または2種以上からなる一層構造であってもよい。
【0119】
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4−297076号公報、特開2000−196140号公報、同2001−102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
【0120】
以下、本発明の有機EL素子の正孔注入層及び正孔輸送層の形成に好ましく用いられる化合物の具体例を挙げるが、本発明はこれらに限定されない。
【0121】
【化25】

【0122】
【化26】

【0123】
【化27】

【0124】
【化28】

【0125】
【化29】

【0126】
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設けることができる。
【0127】
電子輸送層に用いられる電子輸送材料(正孔阻止材料、電子注入材料も含む)としては陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては従来公知の化合物の中から任意のものを選択して、単独または組み合わせて用いることが可能である。
【0128】
電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、を含むアザカルバゾール誘導体等が挙げられる。ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す。
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0129】
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も電子輸送材料として用いることができる。
【0130】
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
また、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0131】
電子輸送層の膜厚については特に制限はないが、通常は5nm〜5000nm程度、好ましくは5nm〜200nmである。この電子輸送層は上記材料の一種または二種以上からなる一層構造であってもよく、複数の層が積層した積層構造であってもよい。
【0132】
また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4−297076号公報、同10−270172号公報、特開2000−196140号公報、同2001−102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
【0133】
以下、本発明の白色有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の化合物(電子輸送材料)の具体例を挙げるが、本発明はこれらに限定されない。
【0134】
【化30】

【0135】
【化31】

【0136】
【化32】

【0137】
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11−204258号公報、同11−204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
【0138】
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
【0139】
また、前述の電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。
【0140】
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
【0141】
正孔阻止層には、カルバゾール誘導体、アザカルバゾール誘導体(ここで、アザカルバゾール誘導体とは、カルバゾール環を構成する炭素原子の1つ以上が窒素原子で置き換わったものを示す)、ピリジン誘導体など、含窒素化合物を含有することが好ましい。
【0142】
また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。
【0143】
更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
【0144】
イオン化ポテンシャルは化合物のHOMO(最高占有軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6−31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)として求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
(2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC−1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。
【0145】
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
【0146】
また、前述の正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子阻止層の膜厚としては、好ましくは3nm〜100nmであり、更に好ましくは3nm〜30nmである。
【0147】
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。
【0148】
また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
【0149】
あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm〜1000nm、好ましくは10nm〜200nmの範囲で選ばれる。
【0150】
《陰極》
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
【0151】
陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜5μm、好ましくは50nm〜200nmの範囲で選ばれる。
【0152】
なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光輝度が向上し好都合である。
また、陰極に上記金属を1nm〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで透明または半透明の陰極を作製でき、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
【0153】
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板としては、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
【0154】
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(JSR製)あるいはアペル(三井化学製)といったシクロオレフィン系樹脂等を挙げられる。
【0155】
樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JISK 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更にはJISK 7126−1987に準拠した方法で測定された酸素透過度が10−3ml/(m・24h・atm)以下、水蒸気透過度が10−5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
【0156】
バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
【0157】
バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004−68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
【0158】
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
【0159】
本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
【0160】
ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
【0161】
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
【0162】
《封止》
本発明の有機EL素子は、陽極、陰極、および陰極と陽極との間にある層を外気から密閉するために封止部材で遮断して封止しておくことが好ましい。
【0163】
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
【0164】
封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また、透明性、電気絶縁性は特に問わない。
【0165】
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属または合金からなるものが挙げられる。
【0166】
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JISK 7126−1987に準拠した方法で測定された酸素透過度が1×10−3ml/(m・24h・atm)以下、JISK 7129−1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が1×10−3g/(m・24h)以下のものであることが好ましい。
【0167】
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
【0168】
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2−シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
【0169】
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。
【0170】
封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
【0171】
また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し、封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
【0172】
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
【0173】
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
【0174】
《保護膜、保護板》
有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリフィルムを用いることが好ましい。
【0175】
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7〜2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
【0176】
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63−314795号公報)、素子の側面等に反射面を形成する方法(特開平1−220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62−172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001−202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11−283751号公報)等がある。
【0177】
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
【0178】
本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。
【0179】
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
【0180】
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
【0181】
また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
【0182】
全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間もしくは媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
【0183】
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
【0184】
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
【0185】
回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
【0186】
このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。
【0187】
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
【0188】
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
【0189】
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm〜100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。
【0190】
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
【0191】
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
【0192】
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる有機EL素子の作製法を説明する。
【0193】
まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm〜200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。
【0194】
更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50℃〜450℃、真空度10−6Pa〜10−2Pa、蒸着速度0.01nm/秒〜50nm/秒、基板温度−50℃〜300℃、膜厚0.1μm〜5μmの範囲で適宜選ぶことが望ましい。
【0195】
層をウェットプロセスで製膜する場合、本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
【0196】
これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。
【0197】
この有機EL素子の作製は一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
【0198】
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
【0199】
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては従来公知の方法を用いることができる。
【0200】
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS−1000(コニカミノルタセンシング製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
【0201】
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。
【0202】
《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。
本発明の表示装置は、単色でも多色でもよいが、ここでは多色表示装置について説明する。
【0203】
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
【0204】
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2V〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
【0205】
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
【0206】
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
【0207】
発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
【0208】
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
【0209】
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
【0210】
図2は表示部Aの模式図である。
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。図2においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
【0211】
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
【0212】
次に、画素の発光プロセスを説明する。
図3は画素の模式図である。
画素は有機EL素子10、スイッチングトランジスター11、駆動トランジスター12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
【0213】
図3において、制御部Bからデータ線6を介してスイッチングトランジスター11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスター11のゲートに走査信号が印加されると、スイッチングトランジスター11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスター12のゲートに伝達される。
【0214】
画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスター12の駆動がオンする。駆動トランジスター12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
【0215】
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスター11の駆動がオフする。しかし、スイッチングトランジスター11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスター12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスター12が駆動して有機EL素子10が発光する。
即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスター11と駆動トランジスター12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
【0216】
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
【0217】
図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
【0218】
《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0219】
また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
【0220】
発光層もしくは正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
【0221】
このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
【0222】
《本発明の照明装置の一態様》
本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。
図5は、照明装置の概略図を示している。
図5に示すとおり、有機EL素子101はガラスカバー102で覆われている。
ガラスカバー102での封止作業は、好ましくは、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行われる。
図6は、照明装置の断面図を示している。
図6に示すとおり、照明装置は主に陰極105、有機EL層106及び透明電極付きガラス基板107で構成され、これら部材がガラスカバー102で覆われている。
ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
【実施例1】
【0223】
《有機EL素子1−1の作製》
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0224】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてOC−37を200mg入れ、別のモリブデン製抵抗加熱ボートにBAlqを200mg入れ、別のモリブデン製抵抗加熱ボートに比較化合物として、D−50を100mg入れ、更に別のモリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取付けた。
BAlq及びAlqは、下記の構造式で表される。
【0225】
【化33】

【0226】
次いで、真空槽を4×10−4Paまで減圧した後、α−NPDの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板上に蒸着し、膜厚40nmの正孔輸送層を設けた。
【0227】
更に、OC−37と比較化合物D−50の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.012nm/秒で前記正孔輸送層上に共蒸着して、膜厚40nmの発光層を設けた。なお、蒸着時の基板温度は室温であった。
【0228】
更に、BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着し、膜厚10nmの正孔阻止層を設けた。
【0229】
その上に、更に、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔阻止層上に蒸着し、更に膜厚40nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0230】
引き続きフッ化リチウム0.5nmおよびアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
【0231】
《有機EL素子1−2〜1−15の作製》
有機EL素子1−1の作製において、各種材料を表4に示すホスト化合物及びドーパント化合物に変更した。
それ以外は同様にして、有機EL素子1−2〜1−15を作製した。
表4における比較化合物2は、下記の構造式で表される。
【0232】
【化34】

【0233】
《有機EL素子1−1〜1−15の評価》
得られた有機EL素子1−1を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5及び図6に示すような照明装置を形成し、当該照明装置をサンプルとして評価した。
【0234】
このようにして作製した各サンプルについて以下の評価を行った。評価結果を表4に示す。
【0235】
(1)発光効率(外部取りだし量子効率ともいう)
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm定電流を印加した時の外部取り出し量子効率(%)を測定し、発光効率の指標とした。なお、測定には分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。
表4の発光効率の測定結果は、有機EL素子1−1の測定値を100とした時の相対値で表した。
【0236】
(2)50℃駆動寿命(高温保存時の半減寿命)
下記に示す測定法に従って、50℃駆動寿命の評価を行った。
各有機EL素子を50℃の一定条件で初期輝度1000cd/mを与える電流で定電流駆動して、初期輝度の1/2(500cd/m)になる時間を求め、これを50℃駆動寿命の尺度とし、耐久性の指標とした。なお、50℃駆動寿命は有機EL素子1−1の測定値を100とした時の相対値で表示した。
【0237】
(3)ダークスポット
各有機EL素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行った際の発光面を目視で評価した。目視評価では、無作為に10人の観測者を抽出し、ダークスポットを確認した人数を評価の指標とした。ダークスポットを確認した人数が5人以上の場合を「×」、ダークスポットを確認した人数が1〜4人の場合を「△」、ダークスポットを確認した人数が0人の場合を「○」とした。
【0238】
【表4】

【0239】
(4)まとめ
表4から、本発明の有機EL素子1−3〜1−15は、比較の有機EL素子1−1、1−2に比べて、発光効率が高く、高温での劣化が小さく、且つ、ダークスポットの生成が抑えられていることが明らかである。
【実施例2】
【0240】
《有機EL素子2−1の作製》
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した基板(AvanStrate株式会社製、NA−45)にパターニングを行った。その後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥して、UVオゾン洗浄を5分間行った。
【0241】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer株式会社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、スピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚30nmの第1正孔輸送層を設けた。
【0242】
この第1正孔輸送層上に、正孔輸送材料Poly(N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル))ベンジジン(American Dye Source株式会社製、ADS−254)のクロロベンゼン溶液を用い、スピンコート法により薄膜を形成した。更に、150℃で1時間加熱乾燥し、膜厚40nmの第2正孔輸送層を設けた。
【0243】
この第2正孔輸送層上に、ホスト化合物OC−6およびドーパント化合物であるD−50の酢酸ブチル溶液を用い、スピンコート法により薄膜を形成した。更に、120℃で1時間加熱乾燥し、膜厚40nmの発光層を設けた。
【0244】
この発光層上に、電子輸送材料ET−10の1−ブタノールの溶液を用い、スピンコート法により薄膜を形成し、膜厚20nmの不溶化した電子輸送層を設けた。
【0245】
これを、真空蒸着装置に取付け、真空槽を4×10−4Paまで減圧した。次いで、電子注入層としてフッ化リチウム1.0nm、陰極としてアルミニウム110nmをそれぞれ蒸着し、有機EL素子2−1を作製した。
【0246】
《有機EL素子2−2〜2−15の作製》
有機EL素子2−1の作製において、各種材料を表5に示すホスト化合物及びドーパント化合物に変更した。
それ以外は同様にして、有機EL素子2−2〜2−15を各々作製した。
【0247】
《有機EL素子の評価》
得られた有機EL素子2−1〜2−15を評価するに際しては、これら有機EL素子を実施例1の有機EL素子1−1〜1−15と同様に封止し、図5及び図6に示すような照明装置を形成して評価した。
このようにして作製した各サンプルについて以下の評価を行った。評価結果を表5に示す。
【0248】
(1)発光効率(外部取りだし量子効率ともいう)
発光効率については実施例1と同様の方法で評価した(有機EL素子2−1を100とする相対値で表した)。
【0249】
(2)初期劣化
下記に示す測定法に従って、初期劣化の評価を行い、耐久性の指標とした。実施例1の(2)50℃駆動寿命の評価と同様の測定法において、輝度が90%に到達する時間を測定し、これを初期劣化の尺度とした。なお、初期劣化は有機EL素子2−1を100とした。初期劣化は以下の計算式を基に計算した。
初期劣化=(有機EL素子2−1の輝度90%到達時間)/(各素子の輝度90%到達時間)×100
即ち、初期劣化の値は、小さいほど初期の劣化が小さいことを示す。
【0250】
(3)連続駆動時の発光ムラ
初期輝度2000cd/mでの定電流駆動において、150hr後の発光輝度を分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて測定した。
【0251】
発光面中の任意な点20点を測定し、この際の測定値より、発光ムラ=面内最低輝度/最高輝度として算出し、下記のように3段階のランク評価を行った。発光ムラが0.90以上の場合を「○」、発光ムラが0.86以上0.90未満の場合を「△」、発光ムラが0.86未満の場合を「×」とした。
【0252】
【表5】

【0253】
(4)まとめ
表5から、本発明の有機EL素子2−3〜2−15は、比較の有機素子2−1、2−2に比べて、発光効率が高く、初期の劣化が小さく、且つ、発光ムラが抑えられていることが明らかである。
【実施例3】
【0254】
≪有機EL素子3−1の作製≫
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0255】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートにHT−31を200mg入れ、別のモリブデン抵抗加熱ボートにHT−1を200mg入れ、別のモリブデン製抵抗加熱ボートにOC−34を200mg入れ、別のモリブデン製抵抗加熱ボートにD−50を200mg入れ、別のモリブデン製抵抗加熱ボートにcGDを200mg入れ、別のモリブデン製抵抗加熱ボートにcRD−1を200mg入れ、別のモリブデン製抵抗加熱ボートにET−2を200mg入れ、真空蒸着装置に取り付けた。
なお、cGD及びcRD−1は、下記の構造式で表される。
【0256】
【化35】

【0257】
次いで真空槽を4×10−4Paまで減圧した後、HT−31の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板上に蒸着し、膜厚10nmの正孔注入層を設けた。
【0258】
更にHT−1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、膜厚20nmの正孔輸送層を設けた。
【0259】
更にOC−34とD−50とcGDとcRD−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/秒、0.025nm/秒、0.0007nm/秒、0.0002nm/秒で前記正孔輸送層上に共蒸着し、膜厚60nmの発光層を設けた。
【0260】
更にET−2の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層上に蒸着し、膜厚20nmの電子輸送層を設けた。
【0261】
引き続き、フッ化カリウムを蒸着して膜厚0.5nmの陰極バッファー層を形成し、更にアルミニウムを蒸着して膜厚110nmの陰極を形成し、有機EL素子3−1を作製した。
【0262】
≪有機EL素子3−2〜3−10の作製≫
有機EL素子3−1の作製において、各種材料を表6に示す化合物に変更した。
それ以外は同様にして、有機EL素子3−2〜3−10を作製した。
【0263】
≪有機EL素子3−1〜3−10の評価≫
得られた有機EL素子3−1〜3−10を評価するに際しては、これら有機EL素子を実施例1の有機EL素子1−1〜1−15と同様に封止し、図5及び図6に示すような照明装置を形成して評価した。
このようにして作製した各サンプルについて以下の評価を行った。評価結果を表6に示す。
【0264】
(1)駆動電圧
有機EL素子を室温(約23℃〜25℃)、2.5mA/cmの定電流条件下で駆動したときの電圧を各々測定し、測定結果を下記に示すように、有機EL素子3−1を100として各々相対値で示した。
電圧=(各素子の駆動電圧/有機EL素子3−1の駆動電圧)×100
なお、値が小さいほうが比較に対して駆動電圧が低いことを示す。
【0265】
(2)経時安定性
有機EL素子を85℃で24時間保存後、保存前後における各電力効率を求め、各々の電力効率比を下式に従って求め、これを経時安定性の尺度とした。
経時安定性(%)=保存後の電力効率/保存前の電力効率×100
なお、電力効率については分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。
【0266】
(3)発光色
2.5mA/cmの定電流条件下における連続発光を行った際の発光色を目視で評価した。
【0267】
【表6】

【0268】
(4)まとめ
表6から、本発明のドーパント化合物とホスト化合物を用いた有機EL素子3−3〜3−10は、比較の有機EL素子3−1、3−2に比べ、駆動電圧及び経時安定性に優れていることが明らかである。
【実施例4】
【0269】
≪有機EL素子4−1の作製≫
100mm×100mm×1.1mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を100nm成膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0270】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、BaytronP Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件下でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、膜厚20nmの第1正孔輸送層を設けた。
【0271】
この基板を窒素雰囲気下に移し、前記第1正孔輸送層上に、47mgのHT−44と3mgのHT−45とを10mlのトルエンに溶解した溶液を用い、1500rpm、30秒の条件の条件下でスピンコート法により薄膜を形成した。120℃、90秒間紫外光を照射し、光重合・架橋を行い、更に60℃で1時間真空乾燥し、膜厚約20nmの第2正孔輸送層を形成した。
【0272】
この第2正孔輸送層上に、100mgのOC−34と20mgのD−50、0.5mgのcGD、0.2mgのcRD−2を10mlの酢酸ブチルに溶解した溶液を用い、600rpm、30秒の条件下でスピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約70nmの発光層とした。
なお、cRD−2は、下記の構造式で表される。
【0273】
【化36】

【0274】
次に、この発光層上に、50mgのET−13を10mlのヘキサフルオロイソプロパノール(HFIP)に溶解した溶液を用い、1500rpm、30秒の条件下でスピンコート法により薄膜を形成した。更に60℃で1時間真空乾燥し、膜厚約20nmの電子輸送層とした。
【0275】
続いて、この基板を真空蒸着装置の基板ホルダーに固定し、真空槽を4×10−4Paまで減圧した後、フッ化カリウム0.4nmを蒸着して陰極バッファー層を形成し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4−1を作製した。
【0276】
≪有機EL素子4−2〜4−10の作製≫
有機EL素子4−1の作製において、D−50を表7に示す化合物に変更した。
それ以外は同様にして、有機EL素子4−2〜4−10を作製した。
【0277】
≪有機EL素子4−1〜4−10の評価≫
得られた有機EL素子4−1〜4−10を評価するに際しては、これら有機EL素子を実施例1の有機EL素子1−1〜4−15と同様に封止し、図5及び図6に示すような照明装置を形成して評価した。
このようにして作製した各サンプルについて以下の評価を行った。評価結果を表7に示す。
【0278】
(1)発光効率(外部取りだし量子効率ともいう)
発光効率については実施例1と同様の方法で評価した(有機EL素子4−1を100とする相対値で表した)。
【0279】
(2)経時安定性
有機EL素子を60℃、70%RHの条件で一ヶ月保存後、保存前後における各電力効率を求め、各々の電力効率比を下式に従って求め、これを経時安定性の尺度とした。
経時安定性(%)=保存後の電力効率/保存前の電力効率×100
なお、電力効率については分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いて、各有機EL素子の正面輝度及び輝度角度依存性を測定し、正面輝度1000cd/mにおける電力効率を求めた。
【0280】
(3)発光色
発光色については実施例3と同様の方法で評価した。
【0281】
【表7】

【0282】
(4)まとめ
表7から、本発明のドーパント化合物とホスト化合物を用いた有機EL素子4−3〜4−10は、比較の有機EL素子4−1、4−2に比べ、外部取り出し量子効率及び経時安定性に優れていることが明らかである。
【実施例5】
【0283】
(1)青色発光素子の作製
実施例1の有機EL素子1−1において、D−50を本発明の例示化合物IrD−1に変更した。それ以外は同様にして、青色発光素子を作製し、これを青色発光素子とした。
【0284】
(2)緑色発光素子の作製
実施例1の有機EL素子1−1において、D−50をcGDに変更した。
それ以外は同様にして、緑色発光素子を作製し、これを緑色発光素子とした。
【0285】
(3)赤色発光素子の作製
実施例1の有機EL素子1−1において、D−50をcRD−1又はCRD−2に変更した。
それ以外は同様にして、赤色発光素子を作製し、これを赤色発光素子とした。
【0286】
(4)表示装置の作製
上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並列配置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。
図2には、作製した前記表示装置の表示部Aの模式図のみを示した。
図2に示すとおり、表示部Aは、同一基板上に複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光色が赤領域の画素、緑領域の画素、青領域の画素等)とを有している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は格子状に直交しており、直交する位置で画素3に接続している(詳細は図示せず)。
【0287】
複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスターと駆動トランジスターとがそれぞれ設けられたアクティブマトリクス方式で駆動される。走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光するようになっている。このように、赤、緑、青の画素3を適宜、並置することによって、フルカラー表示装置を作製した。
実際にこのフルカラー表示装置を駆動させると、輝度が高く、高耐久性を有し、且つ鮮明なフルカラー動画表示が得られることが分かった。
【0288】
以上の実施例5によれば、緑色発光源となるイリジウム錯体cGDを含有する有機EL素子と、青色発光源となるイリジウム錯体(本発明の例示化合物IrD−1)を含有する有機EL素子と、赤色発光源となるイリジウム錯体(cRD−1又はCRD−2)を含有する有機EL素子とを、画素3として並列配置すればフルカラーの表示装置を構成しうることがわかる。
【符号の説明】
【0289】
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスター
12 駆動トランジスター
13 コンデンサー
101 有機EL素子
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部

【特許請求の範囲】
【請求項1】
陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子において、
前記有機層の少なくとも1層には、一般式(1)で表される配位子が金属原子に配位したリン光発光性有機金属錯体が含有されていることを特徴とする有機エレクトロルミネッセンス素子。
【化1】

〔一般式(1)中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表す。R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。Ra、Rb、Rc及びRdはそれぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。nb及びndは1〜4の整数を表し、ncは1または2を表す。X及びYは単なる結合手、置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。但し、X及びYが同時に単なる結合手で有ることは無い。〕
【請求項2】
陽極と陰極の間に、発光層を含む少なくとも1層の有機層が挟持された有機エレクトロルミネッセンス素子において、
前記有機層の少なくとも1層には、一般式(2)で表されるリン光発光性有機金属錯体が含有されていることを特徴とする有機エレクトロルミネッセンス素子。
【化2】

〔一般式中(2)、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表す。R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。Ra、Rb、Rc及びRdはそれぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。nb及びndは1〜4の整数を表し、ncは1または2を表す。X及びYは単なる結合手、置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。但し、X及びYが同時に単なる結合手で有ることは無い。L’はMに配位したモノアニオン性の二座配位子のうちの1つまたは複数であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、m’は0〜2の整数を表し、n’は少なくとも1であり、m’+n’は2または3である。〕
【請求項3】
請求項2に記載の有機エレクトロルミネッセンス素子において、
一般式(2)で表されるリン光発光性有機金属錯体が一般式(2A)で表されることを特徴とする有機エレクトロルミネッセンス素子。
【化3】

〔一般式(2A)中、環A及び環Bは5員または6員の芳香族炭化水素環または芳香族複素環を表す。R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。Ra、Rb、Rc及びRdはそれぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。nb及びndは1〜4の整数を表し、ncは1または2を表す。X及びYは単なる結合手、置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。但し、X及びYが同時に単なる結合手で有ることは無い。L’はMに配位したモノアニオン性の二座配位子のうちの1つまたは複数であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、m’は0〜2の整数を表し、n’は少なくとも1であり、m’+n’は2または3である。〕
【請求項4】
請求項3に記載の有機エレクトロルミネッセンス素子において、
一般式(2A)で表されるリン光発光性有機金属錯体が一般式(2a)または(2b)で表されることを特徴とする有機エレクトロルミネッセンス素子。
【化4】

〔一般式(2a)及び(2b)中、R1及びR2はそれぞれ独立に、水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよく、R1及びR2の少なくとも一方は炭素原子数2以上のアルキル基またはシクロアルキル基である。Rb、Rc及びRdはそれぞれ独立に水素原子、ハロゲン原子、シアノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アミノ基、シリル基、アリールアルキル基、アリール基、ヘテロアリール基、非芳香族炭化水素環基または非芳香族複素環基を表し、さらに置換基を有していてもよい。nb及びndは1〜4の整数を表し、ncは1または2を表す。Xは置換基を有しても良い炭素原子、窒素原子、ケイ素原子、酸素原子、硫黄原子またはセレン原子を表す。L’はMに配位したモノアニオン性の二座配位子のうちの1つまたは複数であり、Mは原子番号40以上且つ元素周期表における8〜10族の遷移金属原子を表し、m’は0〜2の整数を表し、n’は少なくとも1であり、m’+n’は2または3である。〕
【請求項5】
請求項2から4のいずれか1項に記載の有機エレクトロルミネッセンス素子において、
一般式(2)、(2A)、(2a)または(2b)中、Mがイリジウムであることを特徴とする有機エレクトロルミネッセンス素子。
【請求項6】
請求項2から5のいずれか1項に記載の有機エレクトロルミネッセンス素子において、
一般式(2)、(2A)、(2a)または(2b)で表されるリン光発光性有機金属錯体を含有した層が湿式法により形成される工程を経て製造されたことを特徴とする有機エレクトロルミネッセンス素子。
【請求項7】
請求項1から6のいずれか1項に記載の有機エレクトロルミネッセンス素子において、
発光色が白色であることを特徴とする有機エレクトロルミネッセンス素子。
【請求項8】
請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
【請求項9】
請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−58673(P2013−58673A)
【公開日】平成25年3月28日(2013.3.28)
【国際特許分類】
【出願番号】特願2011−197034(P2011−197034)
【出願日】平成23年9月9日(2011.9.9)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の共同研究の成果に係る特許出願(平成23年度独立行政法人新エネルギー・産業技術総合開発機構「次世代高効率・高品質照明の基盤技術開発/有機EL照明の高効率・高品質化に係る基盤技術開発」共同研究、産業技術力強化法第19条の適用を受ける特許出願)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】