説明

有機エレクトロルミネッセンス素子、表示装置及び照明装置

【課題】発光輝度が高く、外部取り出し量子効率が高く、長寿命であり、定電流駆動したときの電圧上昇の改良された有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供する。
【解決手段】基板と該基板の上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、該有機層は少なくとも1層の発光層を有し、該発光層の少なくとも1層は、下記一般式(1)で表される燐光性化合物と、3.45eV〜3.70eVのバンドギャップを有するホスト化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。
【背景技術】
【0002】
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(ELD)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
【0003】
一方、有機EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0004】
今後の実用化に向けた有機EL素子の開発としては、更に低消費電力で、効率よく高輝度に発光する有機EL素子が望まれているわけであり、例えば、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術(例えば、特許文献1参照。)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特許文献2参照。)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特許文献3参照。)等が知られている。
【0005】
上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。
【0006】
ところが、プリンストン大より、励起三重項からの燐光発光を用いる有機EL素子の報告(例えば、非特許文献1参照。)がされて以来、室温で燐光を示す材料の研究が活発になってきている(例えば、非特許文献2参照。)。励起三重項を使用すると、内部量子効率の上限が100%となるため、励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目されている。例えば、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている(例えば、非特許文献3参照。)。
【0007】
また、ドーパントとしてトリス(2−フェニルピリジン)イリジウムを用いた検討がなされている(例えば、非特許文献2参照。)。その他、ドーパントとしてL2Ir(acac)、例えば、(ppy)2Ir(acac)(例えば、非特許文献4参照。)を、またドーパントとして、トリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)3)、トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq)3)、Ir(bzq)2ClP(Bu)3を用いた検討(例えば、非特許文献5参照。)、また、フェニルピラゾールを配位子に用いたイリジウム錯体等を用いた検討(例えば、特許文献4参照。)が行われている。
【0008】
また、高い発光効率を得るためにホール輸送性の化合物を燐光性化合物のホストとして用いている(例えば、非特許文献6参照。)。
【0009】
さらに、青色に発光する燐光素子の高効率化のため特定のホストが提案されている。(例えば、特許文献5参照。)
しかしながら、従来の有機エレクトロルミネッセンス素子において、高い発光効率、特に青色発光において改良が望まれている。また、定電圧駆動したときの電圧上昇、発光輝度と寿命の両立においても更なる改良が望まれている。
【特許文献1】特許第3093796号公報
【特許文献2】特開昭63−264692号公報
【特許文献3】特開平3−255190号公報
【特許文献4】国際公開第04/085450号パンフレット
【特許文献5】特開2002−100476号公報
【非特許文献1】M.A.Baldo et al.,nature、395巻、151−154ページ(1998年)
【非特許文献2】M.A.Baldo et al.,nature、403巻、17号、750−753ページ(2000年)
【非特許文献3】S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304ページ(2001年)
【非特許文献4】M.E.Tompson et al.,The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)
【非特許文献5】Moon−Jae Youn.0g,Tetsuo Tsutsui et al.,The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)
【非特許文献6】Ikai et al.,The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明の目的は、発光輝度が高く、外部取り出し量子効率が高く、長寿命であり、定電流駆動したときの電圧上昇の改良された有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することである。
【課題を解決するための手段】
【0011】
本発明の上記課題は、下記構成1〜10により達成された。
【0012】
1.基板と該基板の上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、
該有機層は少なくとも1層の発光層を有し、該発光層の少なくとも1層は、下記一般式(1)で表される燐光性化合物を含み、且つ、該有機層の少なくとも1層が、正孔輸送材料およびアクセプター性化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0013】
【化1】

【0014】
〔式中、R1は置換基を表す。Zは5員環〜7員環を形成するのに必要な非金属原子群を表す。n1は0〜5の整数を表す。B1〜B5は、各々炭素原子、窒素原子、酸素原子または硫黄原子を表し、少なくとも一つは窒素原子を表す。M1は元素周期表における8族〜10族の遷移金属元素を表す。X1、X2は、各々炭素原子、窒素原子または酸素原子を表し、L1は、X1およびX2とともに2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
2.前記アクセプター性化合物が、Au、Pt、W、Ir、POCl3、AsF6、I2、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニル及びブロマニルからなる群から選択される少なくとも一つの化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
【0015】
3.前記一般式(1)の、m2が0であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
【0016】
4.前記一般式(1)の、B1〜B5で形成される含窒素複素環がイミダゾール環であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0017】
5.前記基板がガスバリア層を有することを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0018】
6.青色に発光することを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0019】
7.白色に発光することを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0020】
8.請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【0021】
9.請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。
【0022】
10.請求項1〜7のいずれか1項に記載の照明装置と表示手段としての液晶素子を有することを特徴とする表示装置。
【発明の効果】
【0023】
本発明により、発光輝度が高く、外部取り出し量子効率が高く、長寿命であり、定電流駆動したときの電圧上昇の改良された有機エレクトロルミネッセンス素子、照明装置及び表示装置を提供することができた。
【発明を実施するための最良の形態】
【0024】
本発明の有機EL素子においては、請求項1〜7のいずれか1項に規定される構成により、高い発光輝度を示し、外部取り出し量子効率が高く、長寿命であり、定電流駆動したときの電圧上昇が改良された、有機EL素子を提供することができた。また、併せて、前記有機EL素子を具備した表示装置や照明装置を提供することができた。
【0025】
以下、本発明の各構成要件について詳細に説明する。
【0026】
《燐光性化合物(燐光発光性化合物ともいう)》
本発明に係る有機層は、少なくとも1層の発光層を有し、該発光層の少なくとも1層は、前記一般式(1)で表される燐光性化合物を含有する。尚、本発明に係る有機層については、後に詳細に説明する。
【0027】
《一般式(1)で表される燐光性化合物》
一般式(1)で表される燐光性化合物について説明する。
【0028】
一般式(1)において、R1で表される置換基としては、例えばアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。
【0029】
これらの置換基のうち、好ましいものはアルキル基またはアリール基であり、更に好ましいものは無置換のアルキル基またはアリール基である。
【0030】
一般式(1)において、Zにより形成される5員環〜7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環及びチアゾール環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。
【0031】
一般式(1)において、B1〜B5により形成される含窒素複素環としては縮合環でも単環でもよいが、好ましくは単環であり、更に好ましくは単環の含窒素芳香族複素環が好ましい。前記単環の含窒素芳香族複素環としては、例えば、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、オキサジアゾール環及びチアジアゾー環ル等が挙げられる。中でも好ましいものは、ピラゾール環、イミダゾール環であり、特に好ましいのは、イミダゾール環である。
【0032】
これらの環は上記の置換基によって更に置換されていてもよい。置換基として好ましいものは無置換アルキル基および無置換アリール基である。
【0033】
一般式(1)において、L1はX1、X2と共に2座の配位子を形成する原子群を表す。X1−L1−X2で表される2座の配位子の具体例としては、例えば、フェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、ピコリン酸及びアセチルアセトン等が挙げられる。これらの2座の配位子は上記の置換基によって更に置換されていてもよい。
【0034】
一般式(1)において、m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は、2または3である。中でも、m2は0である場合が好ましい。
【0035】
一般式(1)において、M1は、元素周期表の8族〜10族の遷移金属元素(単に遷移金属ともいう)を表すが、中でも、イリジウム、白金が好ましく、さらに好ましくはイリジウムである。
【0036】
尚、一般式(1)で表される燐光性化合物は、重合性基または反応性基を有していてもよく、有していなくてもよい。
【0037】
以下、一般式(1)で表される燐光性化合物の具体例を挙げるが、本発明はこれらに限定されない。
【0038】
【化2】

【0039】
【化3】

【0040】
【化4】

【0041】
【化5】

【0042】
【化6】

【0043】
【化7】

【0044】
【化8】

【0045】
【化9】

【0046】
上記一般式(1)で表される燐光性化合物は、例えば、Organic Letter誌、vol3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry.,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
【0047】
本発明に係る燐光性化合物は、励起三重項からの発光が観測される化合物であり、室温(25℃)にて燐光発光する化合物であり、燐光量子収率が、25℃において0.01以上の化合物である。燐光量子収率は好ましくは0.1以上である。上記燐光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測定できるが、本発明に係る燐光性化合物(燐光発光性錯体等ともいう)は、任意の溶媒のいずれかにおいて上記燐光量子収率が達成されればよい。
【0048】
本発明に係る有機層(有機層の層構成等については、後で詳細に説明する。)の少なくとも1層は、以下に示す、正孔輸送材料及びアクセプター材料を含有する層であり、該層は、後述する正孔輸送層として設けられることが好ましい。
【0049】
以下、前記正孔輸送材料と前記アクセプター材料について説明する。
【0050】
《正孔輸送材料》
本発明に係る正孔輸送材料としては、陽極より注入された正孔を発光層に伝達する機能を有していれば特に制限はなく、従来公知の化合物の中から任意のものを選択して用いることができ、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、チオフェンオリゴマー、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物等が挙げられる。
【0051】
中でも、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物が好ましく、更に好ましいのは、芳香族第三級アミン化合物である。また、これらのうちで、さらに好ましいものとしては以下に一般式(2)、(3)または(4)で表される化合物が挙げられる。
【0052】
【化10】

【0053】
式中、R1、R2は置換基を表す。n1及びn2は0〜3の整数を表す。A1及びA2はアリールアミノ基を表す。
【0054】
【化11】

【0055】
式中、R11は置換基を表す。n11は0〜4の整数を表す。A11及びA12はアリールアミノ基を表す。
【0056】
【化12】

【0057】
式中、R21及びR22は置換基を表す。n21及びn22は0〜3の整数を表す。A21及びA22はアリールアミノ基を表す。Lは2価の連結基を表す。
【0058】
一般式(2)、(3)、(4)において、R1、R2、R11、R31、R32で表される置換基としては、アルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メチル基、エチル基、iso−プロピル基、tert−ブチル基、n−オクチル基、n−デシル基、n−ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、ビニル基、アリル基、2−ブテニル基、3−ペンテニル基等が挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えば、プロパルギル基、3−ペンチニル基等が挙げられる。)、芳香族炭化水素環基(芳香族炭化水素基、アリール基ともいい、好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えば、フェニル基、p−メチルフェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基等が挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えば、メトキシ基、エトキシ基、ブトキシ基等が挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルオキシ基、2−ナフチルオキシ基等が挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、アセチル基、ベンゾイル基、ホルミル基、ピバロイル基等が挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えば、メトキシカルボニル基、エトキシカルボニル基等が挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えば、フェニルオキシカルボニル基等が挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えば、アセトキシ基、ベンゾイルオキシ基等が挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えば、アセチルアミノ基、ベンゾイルアミノ基等が挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えば、メトキシカルボニルアミノ基等が挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えば、フェニルオキシカルボニルアミノ基等が挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルホニルアミノ基、ベンゼンスルホニルアミノ基等が挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、フェニルスルファモイル基等が挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、カルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、フェニルカルバモイル基等が挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メチルチオ基、エチルチオ基等が挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えば、フェニルチオ基等が挙げられる。)、アルキルスルホニル基またはアリールスルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メシル基、トシル基等が挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、メタンスルフィニル基、ベンゼンスルフィニル基等が挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ウレイド基、メチルウレイド基、フェニルウレイド基等が挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えば、ジエチルリン酸アミド基、フェニルリン酸アミド基等が挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、シアノ基、スルホ基、カルボキシ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(ヘテロ原子として、例えば、窒素原子、酸素原子、硫黄原子、セレン原子等を含む、好ましくは炭素数1〜30、より好ましくは炭素数1〜20の、例えば、イミダゾリル、ピリジル、フリル基、ピペリジル基、モルホリノ基などが挙げられる。)などが挙げられる。これらの置換基は更に置換されてもよい。また、可能な場合には連結して環を形成してもよい。
【0059】
これらのうち好ましいものはアルキル基およびアリール基である。
【0060】
一般式(2)のA1、A2、一般式(3)のA11、A12、(3)、一般式(4)のA21、A22で、各々表されるアリールアミノ基としては、例えば、ジフェニルアミノ基、フェニル−(1−ナフチル)アミノ基、フェニルー(3−メチル)アミノ基等が挙げられる。
【0061】
一般式(4)において、Lで表される2価の連結基としては、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基などの炭化水素基のほか、ヘテロ原子を含むもの(例えば、ヘテロアリーレン基等)であってもよく、また、チオフェン−2,5−ジイル基や、ピラジン−2,3−ジイル基のような、芳香族複素環を有する化合物(ヘテロ芳香族化合物ともいう)に由来する2価の連結基であってもよいし、酸素や硫黄などのカルコゲン原子であってもよい。また、アルキルイミノ基、ジアルキルシランジイル基やジアリールゲルマンジイル基等のような、ヘテロ原子を介して連結する基でもよい。
【0062】
本発明に係る正孔輸送材料としては、低分子化合物、重合性化合物いずれも使用することが可能である。
【0063】
高分子化合物とは重合性基を少なくとも一つ有する化合物(重合性化合物)が重合したものであり、重合性基としては、例えば、ビニル基、エポキシ基、オキセタン基、イソシアネート基、チオイソシアネート基等が挙げられる。これらのうちで好ましいものはビニル基である。上記の一般式(2)、(3)または(4)で各々表される正孔輸送材料はこれらの重合性基を分子内のいずれかの位置に有してもよい。
【0064】
重合性化合物の重合反応について説明する。重合が形成される時期として、予め重合した高分子を用いてもよいし、また素子作製前の溶液中でも素子作製時でも重合してよい。
【0065】
また、素子作製後に結合を形成してもよい。重合反応を起こす場合、外部からのエネルギー(熱・光・超音波など)供給を行ってもよいし、重合開始剤、酸触媒もしくは塩基触媒を添加し反応を起こしてもよい。あるいは本発明に係る化合物を発光素子に含有したときに重合反応を起こす場合、発光素子の駆動時に供給される電流や発生する光や熱によって反応が起こってもよい。また、2つ以上の重合性化合物を重合させ、共重合体を形成してもよい。
【0066】
重合した高分子の重量平均分子量は5000以上であることが好ましい。重量平均分子量は5000〜1000000がより好ましく、さらに好ましくは5000〜100000である。ここで、前記重量平均分子量は、市販のGPC(ゲルパーミーションクロマトグラフィ)法により、市販のGPC装置を用いて測定分析できる。
【0067】
上記のように重量平均分子量を調整することにより、本発明の有機EL素子の発光輝度及びダークスポットのより一層の改良効果が発揮される。
【0068】
ラジカル重合開始剤としては、例えば、2,2′−アゾビスブチロニトリル、2,2′−アゾビスシクロヘキサンカルボニトリル、1,1′−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2′−アゾビス(2−メチルブチロニトリル)、2,2′−アゾビス(2,4−ジメチルバレロニトリル)、2,2′−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、4,4′−アゾビス(4−シアノ吉草酸)、2,2′−アゾビスイソ酪酸ジメチル、2,2′−アゾビス(2−メチルプロピオンアミドキシム)、2,2′−アゾビス(2−(2−イミダゾリン−2−イル)プロパン)、2,2′−アゾビス(2,4,4−トリメチルペンタン)等のアゾ系開始剤、過酸化ベンゾイル、過酸化ジ−t−ブチル、t−ブチルヒドロペルオキシド、クメンヒドロペルオキシド等の過酸化物系開始剤、ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、ベンジルジメチルケタール、ベンジル−β−メトキシエチルアセタール、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、4−フェノキシジクロロアセトフェノン、4−t−ブチルジクロロアセトフェノン、4−t−ブチルトリクロロアセトフェノン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン等の芳香族カルボニル系開始剤等が挙げられる。また、テトラエチルチイラムジスルフィド等のジスルフィド系開始剤、2,2,6,6−テトラメチルピペリジン−1−オキシル等のニトロキシル開始剤、4,4′−ジ−t−ブチル−2,2′−ビピリジン銅錯体−トリクロロ酢酸メチル複合体等のリビングラジカル重合開始剤を用いることもできる。
【0069】
酸触媒としては、活性白土、酸性白土等の白土類、硫酸、塩酸等の鉱酸類、p−トルエンスルホン酸、トリフルオロ酢酸等の有機酸、塩化アルミニウム、塩化第二鉄、塩化第二スズ、三塩化チタン、四塩化チタン、三フッ化硼素、フッ化水素、三臭化硼素、臭化アルミニウム、塩化ガリウム、臭化ガリウム等のルイス酸、さらに固体酸、例えば、ゼオライト、シリカ、アルミナ、シリカ・アルミナ、カチオン交換樹脂、ヘテロポリ酸(例えば、リンタングステン酸、リンモリブデン酸、ケイタングステン酸、ケイモリブデン酸)等各種のものが使用できる。
【0070】
本発明で用いられる塩基性触媒としては、Li2CO3、Na2CO3、K2CO3等のアルカリ金属炭酸塩、BaCO3、CaCO3等のアルカリ土類金属炭酸塩、Li2O、Na2O、K2O等のアルカリ金属酸化物、BaO、CaO等のアルカリ土類金属酸化物、Na、K等のアルカリ金属、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、あるいはナトリウム、カリウム、ルビジウム、セシウム等のアルコキシド等を挙げることができる。
【0071】
以下に本発明に係る正孔輸送材料および重合性化合物(重合性を有する正孔輸送材料ともいう)の具体的な例を挙げるが、本発明はこれらに限定されない。
【0072】
【化13】

【0073】
【化14】

【0074】
【化15】

【0075】
【化16】

【0076】
《アクセプター化合物(アクセプター材料ともいう)》
本発明に係るアクセプター化合物(アクセプター材料ともいう)について説明する。
【0077】
本発明に係るアクセプター化合物としては、Au、Pt、W、Ir、POCl3、AsF6、I2等の無機材料、TCNQ(7,7,8,8,−テトラシアノキノジメタン)、TCNQF4(テトラフルオロテトラシアノキノジメタン)等のキノジメタン誘導体、TCNE(テトラシアノエチレン)、HCNB(ヘキサシアノブタジエン)等のエチレン誘導体、DDQ(ジシクロジシアノベンゾキノン)等のシアノ基を有する化合物、TNF(トリニトロフルオレノン)、DNF(ジニトロフルオレノン)等のニトロ基を有する化合物、フルオラニル(テトラフルオロ−p−ベンゾキノン)、クロラニル(テトラクロロ−p−ベンゾキノン)、ブロマニル(テトラブロモ−p−ベンゾキノン)等の有機材料が挙げられる。この内、TCNQ、TCNQF4、TCNE、HCNB、DDQ等のシアノ基を有する化合物がより好ましい。尚、正孔輸送材料に対するアクセプターの添加割合は、1質量%〜100質量%であることが好ましい。
【0078】
《併用してもよい、蛍光性化合物、燐光性化合物》
本発明に用いられる蛍光性化合物、燐光性化合物について説明する。
【0079】
本発明の有機EL素子の発光層の少なくとも1層には、上記一般式(1)で表される燐光性化合物が用いられるが、本発明では、従来公知でありその他の燐光性化合物や蛍光性化合物等と併用してもよい。蛍光性化合物として好ましいのは、溶液状態で蛍光量子収率が高いものである。ここで蛍光量子収率は10%以上、特に30%以上が好ましい。
【0080】
具体的な蛍光性化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
【0081】
ここで、本発明に用いられる蛍光性化合物の蛍光量子収率は、第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することができる。
【0082】
次に、本発明で用いられる燐光性化合物と併用可能な燐光性化合物の具体例を示すが、これらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704〜1711に記載の方法等により合成できる。尚、含有する蛍光性化合物及び燐光性化合物は、重合性基または反応性基を有していてもいなくてもよい。
【0083】
また、併用してもよい燐光性化合物についても、本発明に係る一般式(1)で表される燐光性化合物と同様に、燐光量子収率は、25℃において0.01以上である。
【0084】
【化17】

【0085】
【化18】

【0086】
【化19】

【0087】
【化20】

【0088】
【化21】

【0089】
【化22】

【0090】
【化23】

【0091】
《有機エレクトロルミネッセンス素子の層構成》
本発明に係る有機エレクトロルミネッセンス素子(有機EL素子)の層構成について説明する。
【0092】
本発明の有機エレクトロルミネッセンス素子は、基板上に電極(陰極と陽極)と少なくとも1層以上の有機層を有し、有機層の少なくとも1層は燐光性化合物を含有する発光層である。
【0093】
本発明に係る発光層は、広義の意味では陰極と陽極からなる電極に電流を流した際に発光する層のことであり、具体的には陰極と陽極からなる電極に電流を流した際に発光する化合物を含有する層のことをさす。
【0094】
本発明に係る有機層は、必要に応じ発光層の他に正孔輸送層、電子輸送層、陽極バッファー層及び陰極バッファー層等を有してもよく、陰極と陽極で挟持された構造をとる。具体的には以下に示される構造が挙げられる。
【0095】
(i)陽極/正孔輸送層/発光層/陰極
(ii)陽極/発光層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/電子輸送層/陰極
(iv)陽極/陽極バッファー層/正孔輸送層/発光層/電子輸送層/陰極バッファー層/陰極
本発明に係る有機層は、発光層、正孔輸送層または電子輸送層の他に必要に応じて、電子輸送層、陽極バッファー層及び陰極バッファー層等を有してもよく、陰極と陽極で挟持された構造をとる。有機EL素子を構成する、電極(陽極及び陰極)間に挟持された複数層のうち、有機層は2層以上が好ましく、さらに好ましくは3層以上である。
【0096】
《発光層》
本発明の有機EL素子に係る発光層について説明する。
【0097】
本発明の有機EL素子に係る発光層には、上記一般式(1)で表される燐光性化合物(燐光発光性化合物ともいう)とホスト化合物とが含有されることが好ましい。これにより、より一層発光効率を高くすることができる。
【0098】
ここで、本発明に用いられるホスト化合物とは、発光層に含有される化合物のうちで室温(25℃)において燐光発光の燐光量子収率が、0.01未満の化合物と定義される。
【0099】
更に、ホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種もちいることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、燐光性化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。燐光性化合物の種類、ドープ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる。
【0100】
本発明に用いられるホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、発光の長波長化を防ぎ、更に高Tg(ガラス転移温度)である化合物が好ましい。また、ホスト化合物としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、例えば、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾールとは、カルボリン環を構成する少なくとも一つの炭素原子が窒素原子で置換されたものを表す。)、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、フェナントロリン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、有機金属化合物、アリールメタン誘導体等が挙げられる。
【0101】
これらのうち、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体を用いることが好ましい。
【0102】
また、本発明に用いられるホスト化合物としては、従来公知のホスト化合物を用いてもよく、公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。例えば、特開2001−257076号公報、同2002−308855号公報、同2001−313179号公報、同2002−319491号公報、同2001−357977号公報、同2002−334786号公報、同2002−8860号公報、同2002−334787号公報、同2002−15871号公報、同2002−334788号公報、同2002−43056号公報、同2002−334789号公報、同2002−75645号公報、同2002−338579号公報、同2002−105445号公報、同2002−343568号公報、同2002−141173号公報、同2002−352957号公報、同2002−203683号公報、同2002−363227号公報、同2002−231453号公報、同2003−3165号公報、同2002−234888号公報、同2003−27048号公報、同2002−255934号公報、同2002−260861号公報、同2002−280183号公報、同2002−299060号公報、同2002−302516号公報、同2002−305083号公報、同2002−305084号公報、同2002−308837号公報等が挙げられる。
【0103】
(発光層の膜厚)
このようにして形成された発光層の膜厚については特に制限はなく、状況に応じて適宜選択することができるが、5nm〜5μmの範囲に膜厚調整することが好ましい。
【0104】
次に正孔注入層、正孔輸送層、電子注入層、電子輸送層等、発光層と組み合わせて有機EL素子を構成するその他の層について説明する。
【0105】
《正孔注入層、正孔輸送層、電子注入層、電子輸送層》
本発明に用いられる正孔注入層、正孔輸送層は、陽極より注入された正孔を発光層に伝達する機能を有し、この正孔注入層、正孔輸送層を陽極と発光層の間に介在させることにより、より低い電界で多くの正孔が発光層に注入され、その上発光層に陰極、電子注入層、または電子輸送層より注入された電子は、発光層と正孔注入層もしくは正孔輸送層の界面に存在する電子の障壁により、発光層内の界面に累積され発光効率が向上するなど発光性能の優れた素子となる。
【0106】
《正孔注入材料、正孔輸送材料》
この正孔注入層、正孔輸送層の材料(各々、正孔注入材料、正孔輸送材料という)については、前記陽極より注入された正孔を発光層に伝達する機能を有する性質を有するものであれば特に制限はないが、正孔輸送材料としては、上記の正孔輸送材料を含有することが好ましく、特に好ましくは、上記一般式(2)、(3)または(4)で表される化合物を含有することが好ましい。
【0107】
また、従来、光導伝性材料において、正孔の電荷注入輸送材料として慣用されているものや、有機EL素子の正孔注入層、正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0108】
上記正孔注入材料、正孔輸送材料は正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。この正孔注入材料、正孔輸送材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、または導電性高分子オリゴマー、特にチオフェンオリゴマーなどが挙げられる。
【0109】
正孔注入材料、正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、特に芳香族第三級アミン化合物を用いることが好ましい。
【0110】
上記芳香族第三級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′−テトラフェニル−4,4′−ジアミノフェニル;N,N′−ジフェニル−N,N′−ビス(3−メチルフェニル)−〔1,1′−ビフェニル〕−4,4′−ジアミン(TPD);2,2−ビス(4−ジ−p−トリルアミノフェニル)プロパン;1,1−ビス(4−ジ−p−トリルアミノフェニル)シクロヘキサン;N,N,N′,N′−テトラ−p−トリル−4,4′−ジアミノビフェニル;1,1−ビス(4−ジ−p−トリルアミノフェニル)−4−フェニルシクロヘキサン;ビス(4−ジメチルアミノ−2−メチルフェニル)フェニルメタン;ビス(4−ジ−p−トリルアミノフェニル)フェニルメタン;N,N′−ジフェニル−N,N′−ジ(4−メトキシフェニル)−4,4′−ジアミノビフェニル;N,N,N′,N′−テトラフェニル−4,4′−ジアミノジフェニルエーテル;4,4′−ビス(ジフェニルアミノ)クオードリフェニル;N,N,N−トリ(p−トリル)アミン;4−(ジ−p−トリルアミノ)−4′−〔4−(ジ−p−トリルアミノ)スチリル〕スチルベン;4−N,N−ジフェニルアミノ−(2−ジフェニルビニル)ベンゼン;3−メトキシ−4′−N,N−ジフェニルアミノスチルベンゼン;N−フェニルカルバゾール、更に、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′−ビス〔N−(1−ナフチル)−N−フェニルアミノ〕ビフェニル(α−NPD)、特開平4−308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″−トリス〔N−(3−メチルフェニル)−N−フェニルアミノ〕トリフェニルアミン(MTDATA)などが挙げられる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0111】
または、p型−Si、p型−SiCなどの無機化合物も正孔注入材料、正孔輸送材料として使用することができる。この正孔注入層、正孔輸送層は上記正孔注入材料、正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法などの公知の方法により、薄膜化することにより形成することができる。
【0112】
(正孔注入層の膜厚、正孔輸送層の膜厚)
正孔注入層、正孔輸送層の膜厚については特に制限はないが、5nm〜5μm程度での範囲に調整することが好ましい。この正孔注入層、正孔輸送層は上記材料の一種または二種以上からなる一層構造であってもよく、同一組成または異種組成の複数層からなる積層構造であってもよい。
【0113】
《電子輸送層、電子輸送材料》
本発明に係る電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができる。
【0114】
この電子輸送層に用いられる材料(以下、電子輸送材料という)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、有機金属錯体などが挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0115】
または8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)など、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
【0116】
その他、メタルフリーまたはメタルフタロシアニン、更にはそれらの末端がアルキル基やスルホン酸基などで置換されているものも、電子輸送材料として好ましく用いることができる。または発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiCなどの無機半導体も電子輸送材料として用いることができる。
【0117】
上記電子輸送材料はドナー化合物と併用して用いてもよい。ドナー化合物としては、アルカリ金属及びアルカリ土類金属として元素周期表(単に周期表ともいう)のものが挙げられ、それらの塩としては、例えば、カルボン酸塩(酢酸塩等)、スルホン酸塩(メタンスルホン酸塩、トシル酸塩等)、ハロゲン化物(フッ化物、塩化物、臭化物及びヨウ化物)、水酸化物、炭酸塩、硝酸塩及び硫酸塩等が挙げられる。この中で、セシウムおよびその塩(例えば、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム、酢酸セシウム、炭酸セシウム)がより好ましい。さらに好ましくはセシウムおよびフッ化セシウムである。
【0118】
電子輸送材料に対するドナーの添加割合は、1質量%〜100質量%であることが好ましい。
【0119】
(電子輸送層の膜厚)
電子輸送層の膜厚は特に制限はないが、5nm〜5μmの範囲に調整することが好ましい。この電子輸送層は、これらの電子輸送材料一種または二種以上からなる一層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。
【0120】
更に本発明においては、陽極と発光層または正孔注入層の間、及び陰極と発光層または電子注入層との間にはバッファー層(電極界面層)を存在させてもよい。
【0121】
バッファー層とは、駆動電圧低下や発光効率向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、陽極バッファー層と陰極バッファー層とがある。
【0122】
陽極バッファー層は特開平9−45479号公報、同9−260062号公報、同8−288069号公報の各公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0123】
陰極バッファー層は特開平6−325871号公報、同9−17574号公報、同10−74586号公報の各公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウム、酸化リチウムに代表される酸化物バッファー層等が挙げられる。
【0124】
上記バッファー層はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm〜100nmの範囲が好ましい。
【0125】
更に上記基本構成層の他に必要に応じてその他の機能を有する層を積層してもよく、例えば、特開平11−204258号公報、同11−204359号公報の各公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層などのような機能層を有していてもよい。
【0126】
本発明の有機EL素子を構成する上記の有機層(例えば、陽極バッファー層、正孔輸送層、発光層、電子輸送層、陰極バッファー層、正孔阻止層、電子阻止層等)は塗布で形成するのが好ましい。塗布に際しては、スピンコート、ディップコート、ロールコート、バーコート、フレキソ印刷、スクリーン印刷、オフセット印刷、インクジェット法であり、好ましくはインクジェット法である。
【0127】
《電極》
次に有機EL素子の電極について説明する。有機EL素子の電極は陰極と陽極からなる。この有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。
【0128】
上記陽極は蒸着やスパッタリング等の方法により、これらの電極物質の薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合(100μm以上程度)は、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、または陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10nm〜1μm、好ましくは10nm〜200nmの範囲で選ばれる。
【0129】
一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物等が好適である。
【0130】
上記陰極は、これらの電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより作製することができる。または陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm〜1μm、好ましくは50nm〜200nmの範囲で選ばれる。なお発光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光効率が向上するので好都合である。
【0131】
《基材》
本発明の有機EL素子は、基材(以下、基板、基体、支持体、フィルム等ともいう)上に形成されているのが好ましい。
【0132】
本発明の有機EL素子に用いることのできる基材としては、ガラス、プラスチック等の種類には特に限定はなく、また、透明のものであれば特に制限はないが、好ましく用いられる基材としては例えばガラス、石英、透明フィルムを挙げることができる。特に好ましい基材は、有機EL素子にフレキシブル性を与えることが可能な透明フィルムである。
【0133】
具体的にはエチレン、ポリプロピレン、ブテン等の単独重合体または共重合体、または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2,6−ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン−ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン−四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン−パーフロロプロピレン−パーフロロビニルエーテル−共重合体(EPA)等のフッ素系樹脂等を用いることができる。
【0134】
また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエーテルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂及びこれらの混合物等を用いることも可能である。さらに、これらの樹脂の1または2種以上をラミネート、コーティング等の手段によって積層させたものを基材フィルムとして用いることも可能である。
【0135】
これらの素材は単独であるいは適宜混合されて使用することもできる。中でもゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)等の市販品を好ましく使用することができる。
【0136】
また、上記に挙げた樹脂等を用いた本発明に係る基材は、未延伸フィルムでもよく、延伸フィルムでもよい。
【0137】
本発明に係る基材は、従来公知の一般的な方法により製造することが可能である。例えば、材料となる樹脂を押し出し機により溶融し、環状ダイやTダイにより押し出して急冷することにより、実質的に無定形で配向していない未延伸の基材を製造することができる。また、未延伸の基材を一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、基材の流れ(縦軸)方向、または基材の流れ方向と直角(横軸)方向に延伸することにより延伸基材を製造することができる。この場合の延伸倍率は、基材の原料となる樹脂に合わせて適宜選択することできるが、縦軸方向及び横軸方向にそれぞれ2〜10倍が好ましい。
【0138】
また、本発明に係る基材においては、蒸着膜を形成する前にコロナ処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の表面処理を行ってもよい。
【0139】
さらに本発明に係る基材表面には、蒸着膜との密着性の向上を目的としてアンカーコート剤層を形成してもよい。このアンカーコート剤層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、及びアルキルチタネート等を、1または2種以上併せて使用することができる。これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤はロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により基材上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1g/m2〜5g/m2(乾燥状態)程度が好ましい。
【0140】
基材はロール状に巻き上げられた長尺品が便利である。基材の厚さは得られるフィルムの用途によって異なるので一概には規定できないが、フィルムを包装用途とする場合には、特に制限を受けるものではなく、包装材料としての適性から、3μm〜400μm、中でも、6μm〜30μmの範囲内とすることが好ましい。
【0141】
また、本発明に用いられる基材は、フィルム形状のものの膜厚としては、10μm〜200μmが好ましく、より好ましくは50μm〜100μmである。
【0142】
《表示装置》
本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0143】
《光取り出し技術》
本発明の有機EL素子は、発光層から放射された光の取り出し効率を向上させるため、基板の表面にプリズムやレンズ状の加工を施す、もしくは基板の表面にプリズムシートやレンズシートを貼りつけてもよい。
【0144】
本発明の有機EL素子は、電極と基板の間に低屈折率層を有してもよい。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。
【0145】
基板の屈折率は一般に1.5〜1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。またさらに1.35以下であることが好ましい。また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
【0146】
本発明の有機EL素子はいずれかの層間、もしくは媒質中(透明基板内や透明電極内)に回折格子を有してもよい。導入する回折格子は二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。回折格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2〜3倍程度が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
【0147】
本発明に係る基材は、ガスバリア層を有することが好ましい。これによりダークスポット及び高温、高湿下での経時安定性のより一層の改良効果を有する。
【0148】
《ガスバリア層》
本発明に係るガスバリア層とは、酸素及び水蒸気の透過を阻止する層であれば、その組成等は特に限定されるものではない。酸素の透過度が23℃、0%RHにおいて0.005ml/m2/日以下が好ましく、また、JIS K7129 B法に従って測定した水蒸気透過度が0.1g/m2/日以下が好ましい。本発明に係るガスバリア層を構成する材料として、具体的には無機酸化物が好ましく、酸化珪素、酸化アルミニウム、酸化窒化珪素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ等を挙げることができる。
【0149】
また、本発明におけるガスバリア層の厚さは用いられる材料の種類、構成により最適条件が異なり、適宜選択されるが、5nm〜2000nmの範囲内であることが好ましい。ガスバリア層の厚さが上記の範囲より薄い場合には、均一な膜が得られず、ガスに対するバリア性を得ることが困難であるからである。またガスバリア層の厚さが上記の範囲より厚い場合には、ガスバリア性フィルムにフレキシビリティを保持させることが困難であり、成膜後に折り曲げ、引っ張り等の外的要因により、ガスバリア性フィルムに亀裂が生じる等のおそれがあるからである。
【0150】
本発明に係るガスバリア層は、後述する原材料をスプレー法、スピンコート法、スパッタリング法、イオンアシスト法、後述するプラズマCVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成することができる。
【0151】
図1は、本発明に係るガスバリア層を有する基材21の構成を示す一例である。
【0152】
本発明に係るガスバリア層を有する基材21の構成とその密度について説明する。
【0153】
本発明に係るガスバリア層を有する基材21は、基材22上に密度の異なる層を積層しており、密着膜23、セラミック膜24、保護膜25を積層した構成を1ユニットとし、図1においては12ユニットを積層した例を示してある。各層内における密度分布は均一とし、セラミック膜の密度をその上下に位置する密着膜及び保護膜のそれぞれの密度よりも高く設定している。尚、図1においては各層を1層として示したが、必要に応じてそれぞれ2層以上の構成をとってもよい。
【0154】
基材22上に密着膜23、セラミック膜24及び保護膜25を形成する方法としては、スプレー法、スピンコート法、スパッタリング法、イオンアシスト法、後述するプラズマCVD法、後述する大気圧または大気圧近傍の圧力下でのプラズマCVD法等を適用して形成することができる。
【実施例】
【0155】
以下、本発明について実施例をもって説明するが、本発明はこれに限定されるものではない。なお、特に断りない限り、実施例中の「%」は「質量%」を表す。また、実施例で用いる化合物の構造式を以下に示す。
【0156】
【化24】

【0157】
実施例1
基材として、厚さ100μmのポリエチレンナフタレートフィルム(帝人・デユポン社製フィルム、以下PENと略記する)上に、下記の大気圧プラズマ放電処理装置及び放電条件で、図1に記載のガスバリア層を有する基材21を作製した。
【0158】
《大気圧プラズマ放電処理装置》
図2の大気圧プラズマ放電処理装置を用い、誘電体で被覆したロール電極及び複数の角筒型電極のセットを以下のように作製した。
【0159】
第1電極となるロール電極は、冷却水による冷却手段を有するチタン合金T64製ジャケットロール金属質母材に対して、大気プラズマ法により高密度、高密着性のアルミナ溶射膜を被覆し、ロール径1000mmφとなるようにした。一方、第2電極の角筒型電極は、中空の角筒型のチタン合金T64に対し、上記同様の誘電体を同条件にて方肉で1mm被覆し、対向する角筒型固定電極群とした。
【0160】
この角筒型電極をロール回転電極のまわりに、対向電極間隙を1mmとして10本配置した。角筒型固定電極群の放電総面積は、150cm(幅手方向の長さ)×4cm(搬送方向の長さ)×10本(電極の数)=6000cm2であった。なお、何れもフィルターは適切なものを設置した。
【0161】
プラズマ放電中、第1電極(ロール回転電極)は120℃及び第2電極(角筒型固定電極群)は80℃になるように調節保温し、ロール回転電極はドライブで回転させて薄膜形成を行った。上記10本の角筒型固定電極中、上流側より2本を下記第1層(密着層)の製膜用に、次の6本を下記第2層(セラミック層)の製膜用に、次の2本を第3層(保護層)の製膜用に使用し、各条件を設定して1パスで3層を積層した。
【0162】
(第1層:密着層)
下記の条件で、プラズマ放電を行って、厚さ約50nmの密着層を形成した。
【0163】
〈ガス条件〉
放電ガス:窒素ガス 94.5体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 0.5体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件:第1電極側の電源のみを使用した〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
上記形成した第1層(密着層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、1.90であった。
【0164】
(第2層:セラミック層)
下記の条件で、プラズマ放電を行って、厚さ約30nmのセラミック層を形成した。
【0165】
〈ガス条件〉
放電ガス:窒素ガス 94.9体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 0.1体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
第2電極側 電源種類 パール工業社製高周波電源
周波数 13.56MHz
出力密度 10W/cm2
上記形成した第2層(セラミック層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、2.20であった。
【0166】
(第3層:保護層)
下記の条件で、プラズマ放電を行って、厚さ約200nmの保護層を形成した。
【0167】
〈ガス条件〉
放電ガス:窒素ガス 93.0体積%
薄膜形成性ガス:ヘキサメチルジシロキサン(リンテック社製気化器にて窒素ガスに混合して気化) 2.0体積%
添加ガス:酸素ガス 5.0体積%
〈電源条件:第1電極側の電源のみを使用した〉
第1電極側 電源種類 応用電機社製高周波電源
周波数 80kHz
出力密度 10W/cm2
上記形成した第3層(保護層)の密度は、前述のマックサイエンス社製MXP21を用いたX線反射率法で測定した結果、1.95であった。
【0168】
JIS−K−7129Bに準拠した方法により水蒸気透過率を測定した結果、10-3g/m2/日以下であった。JIS−K−7126Bに準拠した方法により酸素透過率を測定した結果、10-3g/m2/日以下であった。
【0169】
次いで、ガスバリア層を有する基材1上にITO(インジウムチンオキシド)を120nm成膜した基板にパターニングを行った後、このITO透明電極を付けた基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。市販の真空蒸着装置の基板ホルダーに固定し、真空度4×10-4Paまで減圧し、ITO基板100を作製した。
【0170】
《有機EL素子OLED1−1の作製》
図3に示すようなインクジェット記録方法を用いて、本発明の有機EL素子OLED1−1の作製を行った。以下、工程を図3を基にして説明する。
【0171】
市販のインクジェット式ヘッド10(コニカミノルタ製KM512S非水系ヘッド)を用いて、正孔輸送材料として下記のA26の重合体、TCNQ(質量比100:50)及びTHFを含む流動体D1(図示せず)を、ITO基板100上に吐出させ、100℃、60分の条件にて、膜厚50nmの正孔輸送層111を形成した。
【0172】
次に、インクジェット式ヘッド10を用いて、ホストとしてCBP、燐光性化合物1−1(質量比100:5)及びTHFを含む流動体D2(図示せず)を、正孔輸送層111上に吐出させ、100℃、60分の条件にて、膜厚50nmの発光層112を形成した。
【0173】
次に、Alq3及びTHF(テトラヒドロフラン)を含む流動体を、発光層112上に吐出させ、100℃、60分の条件にて、膜厚50nmの電子輸送層113を形成した。
【0174】
更に、電子輸送層113の上に厚さ200nmのアルミニウム114(陰極)を蒸着形成した。アルミニウム114(陰極)上にガスバリア層115として、図1に記載のガスバリア層を有する基材21を貼りつけて、有機EL素子OLED1−1を作製した。
【0175】
(例示化合物A26の重合体の合成)
反応容器に、2.0g(2.5mmol)の例示化合物A26、2,2’−アゾビス(イソブチロニトリル)(AIBN)0.010g(0.061mmol)、酢酸ブチル30mlを入れて窒素置換を行った後、80℃で10時間反応させた。反応後、アセトンに投入して再沈殿を行い、濾過によりポリマーを回収した。回収したポリマーのクロロホルム溶液をメタノール中に投入して再沈殿させることを更に2回行うことにより精製し、回収後、真空乾燥し、例示化合物A26の重合体1.50gを粉末として得た。
【0176】
この重合体の重量平均分子量はポリスチレン換算で25000(HFIP(ヘキサフルオロイソプロパノール)を溶離液に用いたGPC測定による)であった。
【0177】
《有機EL素子OLED1−2〜1−10の作製》
有機EL素子OLED1−1の製造方法において、各層の材料を下記表1に示す材料に替えた以外は、有機EL素子OLED1−1の製造方法と同様の製造方法で、有機EL素子OLED1−2〜1−10を作製した。
【0178】
【表1】

【0179】
《有機EL素子の評価》
得られた有機EL素子1−1〜1−10について下記の評価を行った。
【0180】
《発光輝度》
有機EL素子の温度23℃、10V直流電圧を印加した時の発光輝度(cd/m2)を測定した。発光輝度は有機エレクトロルミネッセンス素子OLED1−10を100とした時の相対値で表した。発光輝度については、CS−1000(コニカミノルタセンシング社製)を用いて測定した。
【0181】
《外部取りだし量子効率》
作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を印加した時の外部取り出し量子効率(%)を測定した。
【0182】
測定には同様に分光放射輝度計CS−1000(コニカミノルタセンシング社製)を用いた。尚、50℃駆動寿命は、比較の有機エレクトロルミネッセンス素子OLED1−10を100とした時の相対値で表した。
【0183】
《駆動電圧》
駆動電圧とは、2.5mA/cm2で駆動した時の電圧で、有機エレクトロルミネッセンス素子OLED1−10を100とした時の相対値で表した。
【0184】
《電圧上昇率》
10mA/cm2の一定電流で駆動したときに、初期電圧と150時間後の電圧を測定した。初期電圧に対する100時間後の電圧の相対値を電圧上昇率とした。
【0185】
《駆動寿命》
各有機EL素子を、50℃の一定条件で、初期輝度1000cd/m2を与える電流で定電流駆動して、初期輝度の1/2(500cd/m2)になる時間を求め、これを50℃駆動寿命の尺度とした。なお、50℃駆動寿命は、比較の有機エレクトロルミネッセンス素子OLED1−10を100とした時の相対値で表した。
【0186】
【表2】

【0187】
表2の結果から明らかなように、本発明の有機EL素子は発光輝度、外部取りだし量子効率,駆動電圧特性が良好であり、定電流駆動したときの電圧上昇が少なく、さらに駆動寿命が良好な素子であることがわかった。
【0188】
実施例2
《有機EL素子2−1の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行なった。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、モリブデン製抵抗加熱ボートにA1を200mg入れ、別のモリブデン製抵抗加熱ボートにDDQ(ジシクロジシアノベンゾキノン)を100mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物としてCBPを200mg入れ、別のモリブデン製抵抗加熱ボートにドーパントD−1を100mg入れ、別のモリブデン製抵抗加熱ボートにBCPを200mg入れ、別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取付けた。
【0189】
次いで、真空槽を4×10-4Paまで減圧した後、A1とDDQの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着し正孔輸送層を設けた。更に、CBPとD−1の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/秒、0.010nm/秒で前記正孔輸送層上に共蒸着して発光層を設けた。なお、蒸着時の基板温度は室温であった。更に、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記発光層の上に蒸着して膜厚10nmの正孔阻止層を設けた。更に、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔阻止層の上に蒸着して膜厚10nmの電子輸送層を設けた。
【0190】
尚、蒸着時の基板温度は室温であった。
【0191】
引き続きアルミニウム110nmを蒸着して陰極を形成し、更にその上にガスバリア層として、図1に記載のガスバリア層を有する基材21を貼りつけて、有機EL素子OLED2−1を作製した。(但し、有機EL素子の層構成は図示していない。)
《有機EL素子2−2〜2−10の作製》
有機EL素子2−1の作製において、電子輸送層、発光層および正孔輸送層を表3に示す各化合物に置き換えた以外は有機EL素子1−1と同じ方法で有機EL素子2−2〜2−10を作製した。
【0192】
【表3】

【0193】
《有機EL素子2−1〜2−10の評価》
得られた有機EL素子2−1〜2−10の評価を実施例1に記載と同様に行った。尚、発光輝度、外部取りだし量子効率、駆動電圧および駆動寿命は有機エレクトロルミネッセンス素子OLED2−2を100とした時の相対値で表した。
【0194】
得られた結果を表4に示す。
【0195】
【表4】

【0196】
表4から、本発明の有機EL素子は発光輝度、外部取りだし量子効率,駆動電圧特性が良好であり、定電流駆動したときの電圧上昇が少なく、さらに駆動寿命が良好な素子であることがわかった。
【0197】
実施例3
《フルカラー表示装置の作製》
実施例2で作製した本発明の有機EL素子2−3と、実施例2で作製した本発明の有機EL素子OLED2−3の燐光性化合物をIr−1に代えた以外は、同様にして作製した緑色発光有機EL素子と、本発明の有機EL素子OLED2−3の燐光性化合物をIr−9に代えた以外は、同様にして作製した赤色発光有機EL素子を同一基板上に並置し、図4に示すアクティブマトリックス方式フルカラー表示装置を作製した。
【0198】
図5には、作製したフルカラー表示装置の表示部Aの模式図のみを示した。即ち同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。
【0199】
前記複数の画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリックス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を適宜、並置することによって、フルカラー表示が可能となる。
【0200】
フルカラー表示装置を駆動することにより、鮮明なフルカラー動画表示が得られた。
【0201】
実施例4
《照明装置の作製》
実施例3で作製した青色発光、緑色発光及び赤色発光の有機EL素子各々の非発光面をガラスケースで覆い、照明装置とした。照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することができた。図5は照明装置の概略図で、図6は照明装置の断面図である。有機EL素子101をガラスカバー102で覆った。105は陰極で106は有機EL層、107は透明電極付きガラス基板である。なおガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
【0202】
実施例5
《有機EL素子OLED5−1の作製》
実施例2の有機EL素子OLED2−1の作製において、下記表5に示す材料(化合物)及び膜厚構成に変更した以外は同様にして、有機EL素子OLED5−1を作製した。尚、表5中の%は質量比(%)を表す。尚、中間層1、中間層2の作製は下記のようにして行った。
【0203】
尚、中間層1、中間層2については正孔輸送層と同様の条件で作製した。即ち、モリブデン製抵抗加熱ボートに化合物A1を200mg入れ、真空蒸着装置に取付けた。
【0204】
次いで、真空槽を4×10-4Paまで減圧した後、化合物A1が入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で透明支持基板に蒸着して、膜厚10nmの中間層1および中間層2を設けた。
【0205】
【表5】

【0206】
次いで、その上に厚さ200nmのアルミニウムを蒸着した。封止にあたっては、有機EL素子OLED1−1と同様にガスバリア層を有する基材21を貼りつけた。
【0207】
得られた有機EL素子OLED5−1を実施例4と同様に図6、図7に示すような照明装置とした。得られた照明装置は発光効率が高く、発光寿命の長い白色光を発する薄型の照明装置として使用することができた。
【0208】
次いで、ディスプレイ用として市販されているカラーフィルターを組み合わせた際の色再現域を評価した。有機EL素子5−1とカラーフィルターの組み合わせにおいて、色再現域が広く、色再現性において優れた性能を有することが確認された。
【図面の簡単な説明】
【0209】
【図1】本発明に係る透明ガスバリアフィルムの層構成を示す模式図である。
【図2】対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。
【図3】有機EL素子の吐出及び成膜工程を示す図である。
【図4】有機EL素子から構成される表示装置の一例を示した模式図である。
【図5】表示部の模式図である。
【図6】照明装置の概略図である。
【図7】照明装置の断面図である。
【符号の説明】
【0210】
30 プラズマ放電処理室
35 ロール電極
36 電極
41、42 電源
51 ガス供給装置
55 電極冷却ユニット
100 ITO基板
111 正孔輸送層
112 発光層
113 電子輸送層
114 陰極
115 ガスバリア層
10 インクジェット式ヘッド
D 液滴
1 ディスプレイ
3 画素
5 走査線
6 データ線
A 表示部
B 制御部
107 透明電極付きガラス基板
106 有機EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤

【特許請求の範囲】
【請求項1】
基板と該基板の上に電極と少なくとも1層以上の有機層を有する有機エレクトロルミネッセンス素子において、
該有機層は少なくとも1層の発光層を有し、該発光層の少なくとも1層は、下記一般式(1)で表される燐光性化合物を含み、且つ、該有機層の少なくとも1層が、正孔輸送材料およびアクセプター性化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】

〔式中、R1は置換基を表す。Zは5員環〜7員環を形成するのに必要な非金属原子群を表す。n1は0〜5の整数を表す。B1〜B5は、各々炭素原子、窒素原子、酸素原子または硫黄原子を表し、少なくとも一つは窒素原子を表す。M1は元素周期表における8族〜10族の遷移金属元素を表す。X1、X2は、各々炭素原子、窒素原子または酸素原子を表し、L1は、X1およびX2とともに2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。〕
【請求項2】
前記アクセプター性化合物が、Au、Pt、W、Ir、POCl3、AsF6、I2、TCNQ、TCNQF4、TCNE、HCNB、DDQ、TNF、DNF、フルオラニル、クロラニル及びブロマニルからなる群から選択される少なくとも一つの化合物であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
【請求項3】
前記一般式(1)の、m2が0であることを特徴とする請求項1または2に記載の有機エレクトロルミネッセンス素子。
【請求項4】
前記一般式(1)の、B1〜B5で形成される含窒素複素環がイミダゾール環であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項5】
前記基板がガスバリア層を有することを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項6】
青色に発光することを特徴とする請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項7】
白色に発光することを特徴とする請求項1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項8】
請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする表示装置。
【請求項9】
請求項1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。
【請求項10】
請求項1〜7のいずれか1項に記載の照明装置と表示手段としての液晶素子を有することを特徴とする表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−208102(P2007−208102A)
【公開日】平成19年8月16日(2007.8.16)
【国際特許分類】
【出願番号】特願2006−26786(P2006−26786)
【出願日】平成18年2月3日(2006.2.3)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】