説明

有機エレクトロルミネッセンス素子、表示装置及び照明装置

【課題】高い発光効率を示し、且つ発光寿命が長く、輝度ムラが改善され、且つダークスポットが抑制された有機EL素子、該有機EL素子を用いた照明装置及び表示装置を提供する。
【解決手段】構成層として少なくとも陽極、発光層、電子輸送層及び陰極を有し、発光層には少なくともホスト化合物と金属錯体を含有する有機エレクトロルミネッセンス素子において、前記発光層が特定の配位子と結合した8〜10族金属錯体を含有し、且つ前記電子輸送層がカルバゾリル基を有する化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機エレクトロルミネッセンス素子、表示装置及び照明装置に関する。
【背景技術】
【0002】
従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDと言う)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子とも言う)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。
【0003】
有機EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用して発光する素子であり、数V〜数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。
【0004】
しかしながら、今後の実用化に向けた有機EL素子においては、更に低消費電力で効率よく高輝度に発光する有機EL素子の開発が望まれている。
【0005】
特許第3093796号公報では、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成している。また、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子(例えば、特開昭63−264692号公報)、8−ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子(例えば、特開平3−255190号公報)等が知られている。
【0006】
以上のように、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であり、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。
【0007】
ところが、プリンストン大より励起三重項からのリン光発光を用いる有機EL素子の報告(M.A.Baldo et al.,Nature、395巻、151〜154頁(1998年))がされて以来、室温でリン光を示す材料の研究が活発になってきている。
【0008】
例えば、M.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)、また米国特許第6,097,147号明細書等にも開示されている。
【0009】
励起三重項を使用すると、内部量子効率の上限が100%となるため励起一重項の場合に比べて原理的に発光効率が4倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途としても注目されている。
【0010】
例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討されている。
【0011】
また、前述のM.A.Baldo et al.,Nature、403巻、17号、750〜753頁(2000年)においては、ドーパントとしてトリス(2−フェニルピリジン)イリジウムを用いた検討がされている。
【0012】
その他、M.E.Tompson等は、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてL2Ir(acac)、例えば、(ppy)2Ir(acac)を、またMoon−Jae Youn.0g、Tetsuo Tsutsui等は、やはりThe 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)において、ドーパントとしてトリス(2−(p−トリル)ピリジン)イリジウム(Ir(ptpy)3)、トリス(ベンゾ[h]キノリン)イリジウム(Ir(bzq)3)等を用いた検討を行っている(なおこれらの金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれている。)。
【0013】
また、前記S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304頁(2001年)や特開2001−247859号公報等においても、各種イリジウム錯体を用いて素子化する試みがされている。
【0014】
また、高い発光効率を得るために、The 10th International Workshop on Inorganic and Organic Electroluminescence(EL’00、浜松)では、Ikai等はホール輸送性の化合物をリン光性化合物のホストとして用いている。また、M.E.Tompson等は各種電子輸送性材料をリン光性化合物のホストとして、これらに新規なイリジウム錯体をドープして用いている。
【0015】
中心金属をイリジウムの代わりに白金としたオルトメタル化錯体も注目されている。この種の錯体に関しては、配位子に特徴を持たせた例が多数知られている。
【0016】
いずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光がリン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の発光寿命については従来の素子よりも低いという問題点があった。このように、リン光性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しく、実用に耐えうる性能を十分に達成できていないのが現状である。
【0017】
また、波長の短波化に関しては、これまでフェニルピリジンにフッ素原子、トリフルオロメチル基、シアノ基等の電子吸引基を置換基として導入すること、配位子としてピコリン酸やピラザボール系の配位子を導入することが知られているが、これらの配位子では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求められていた。
【0018】
配位子としてフェニル基を置換したフェニルピラゾールを有する金属錯体が知られている(例えば、国際公開第04/085450号パンフレット、特開2005−53912号公報参照。)。しかし、ここで開示されているフェニルピラゾールへのフェニル基の置換様式では発光の素子寿命に改善が見られるが、まだ十分ではなく発光効率の観点からも改良の余地が残っている。一方、立体障害性の置換基を有する配位子が発光輝度の改善に良いという知見が得られており、特開2003−109758号公報にフェニルピラゾール母核に適用された例がある。
【0019】
配位子としてフェニルイミダゾールを基本骨格にして、種々の置換基を導入した金属錯体を含む発光素子の例が開示されている(例えば、特許文献1、2参照)。
【0020】
このような有機EL素子は、照明装置または表示装置に応用する上では発光面全域で均一な発光が得られることや、長時間安定な発光をすることが必要不可欠な条件である。
【0021】
しかしながら、有機E素子においては発光面内で輝度ムラが生じたり、長時間駆動によりダークスポットと呼ばれる非発光点が発生するという問題があるのが現状である。
【0022】
このような輝度ムラやダークスポットの原因として考えられることは色々あるが、外的要因としては、水分や酸素の有機エレクトロルミネッセンス素子内への浸入による有機層の結晶化、第2電極の剥離等が考えられ、内的要因としては、第2電極を構成している金属の結晶成長によるショート、発光に伴う発熱による有機層の結晶化、劣化等が考えられる。
【0023】
外的要因に対する対策はこれまでに種々提案されている(例えば、特開平5−182759号公報、同5−36475公報及び特開2002−43055参照。)が、内的要因に関する対策はあまり考案されていない。
【0024】
内的要因として考えられる有機層の結晶化であるが、これは材料個々の性質もあるが、有機化合物の多層構造を持つ有機EL素子では、それらの材料の組み合わせが重要である。材料個々の性質がよくても、組み合わせによっては相互作用により結晶化が生じたりする。
【0025】
有機EL素子で用いられる電荷輸送材料は、電圧印加時に基板あるいは電荷注入層から電荷を受け取り、発光材料への電荷の授受を行い、残留電荷を残さないという役割を有している。残留電荷が素子に蓄積してしまった場合、その部分に負荷がかかり、ダークスポットの成長につながる。
【0026】
以上のことより、安定で均一な発光をする有機EL素子を得るためには、相互作用による結晶化が起こらず、電荷の授受がスムースに行われるような各層の材料の組み合わせを見出すことが重要である。
また、電子輸送層にカルバゾール化合物を用いて素子の寿命を改善する提案がされている(例えば、特許文献3、4参照)。しかし、ここで開示されている配位子としてフェニルピリジン誘導体を有するイリジウム錯体との組み合わせのみであり、この構成ではまだまだ改善が求められている。
【先行技術文献】
【特許文献】
【0027】
【特許文献1】国際公開第05/007767号パンフレット
【特許文献2】特開2005−68110号公報
【特許文献3】国際公開第05/003095号パンフレット
【特許文献4】国際公開第06/28224号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0028】
本発明は、上記課題を鑑みてなされたものであり、本発明の目的は、高い発光効率を示し、且つ発光寿命が長く、輝度ムラが改善され、且つダークスポットが抑制された有機EL素子、該有機EL素子を用いた照明装置及び表示装置を提供することである。
【課題を解決するための手段】
【0029】
本発明の上記目的は、下記構成1〜10により達成される。
具体的に本発明によれば、構成1において、一般式(A)、(1)、(2)が下記の特定構造を有する有機エレクトロルミネッセンス素子が提供される。
一般式(A)中、Xは窒素原子または炭素原子を表し、Zは炭化水素環基または複素環基を表し、中心金属であるM1はイリジウムまたは白金を表す。
一般式(1)中、R3、R4はアリール基を表す。
一般式(2)中、R5〜R13のうち、R13が一般式(1)中のArとの結合部位を表す。
【0030】
1.構成層として少なくとも陽極、発光層、電子輸送層及び陰極を有し、発光層には少なくともホスト化合物と金属錯体を含有する有機エレクトロルミネッセンス素子において、前記発光層が下記一般式(A)で表される金属錯体を含有し、且つ前記電子輸送層が下記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【0031】
【化1】

【0032】
(一般式(A)中、X4は窒素原子または炭素原子を表し、Zは炭化水素環基または複素環基を表し、X3及びYは炭素原子または窒素原子を表し、AはX3−Cと共に5〜6員の炭化水素環または複素環を形成するのに必要な原子群を表す。BはX4−Y−Nと共に置換基を有してもよいピラゾール環、イミダゾール環、トリアゾール環又はテトラゾール環を形成するのに必要な原子群を表す。X1−L1−X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中心金属であるM1はイリジウムまたは白金を表す。)
【0033】
【化2】

【0034】
(一般式(1)中、nは1〜2の整数を表し、Arはアリーレン基またはヘテロアリーレン基を表し、R3、R4はアリール基を表す。X1〜X3はそれぞれ=CR−または=N−であり、X1〜X3の少なくとも一つは=N−であり、X1〜X3の少なくとも一つは=CR−である。Rは水素原子または置換基を表す。Czは下記一般式(2)で表されるカルバゾリル基である。但し、下記化合物ETM1を除く。)
【0035】
【化3】

【0036】
(一般式(2)中、R5〜R13のうち、R13が一般式(1)中のArとの結合部位を表し、その他はそれぞれ水素原子または置換基を表す。)
2.前記一般式(A)のX4が窒素原子を表し、Zが結合する窒素原子Xから数えて3番目の原子の少なくとも1つに、立体パラメーター値(Es値)が−0.5以下の置換基を結合している炭化水素環基または複素環基であることを特徴とする前記1に記載の有機エレクトロルミネッセンス素子。
【0037】
3.前記一般式(A)のBと共に形成される環がイミダゾール環であることを特徴とする前記1または2に記載の有機エレクトロルミネッセンス素子。
【0038】
4.前記イミダゾール環が一般式(A)のX4が窒素原子であるイミダゾール環であることを特徴とする前記3に記載の有機エレクトロルミネッセンス素子。
【0039】
5.前記一般式(A)のAと共に形成される環がベンゼン環であることを特徴とする前記1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0040】
6.前記一般式(A)で表される金属錯体が同一の配位子のみで構成されることを特徴とする前記1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0041】
7.前記一般式(A)において、M1がイリジウムであることを特徴とする前記1〜6のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0042】
8.前記一般式(2)中のR13が一般式(1)中のArとの単なる結合手であることを特徴とする前記1〜7のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【0043】
9.前記1〜8のいずれか1項に記載の有機エレクトロルミネッセンス素子を含有することを特徴とする表示装置。
10.前記1〜8いずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。
【発明の効果】
【0044】
本発明により、高い発光効率を示し、且つ発光寿命が長く、輝度ムラが改善され、且つダークスポットが抑制された有機EL素子、該有機EL素子を用いた照明装置、及び表示装置を提供することができる。
【図面の簡単な説明】
【0045】
【図1】有機EL素子から構成される表示装置の一例を示した模式図である。
【図2】表示部Aの模式図である。
【図3】画素の模式図である。
【図4】パッシブマトリクス方式フルカラー表示装置の模式図である。
【図5】照明装置の概略図である。
【図6】照明装置の模式図である。
【発明を実施するための形態】
【0046】
以下、本発明に係る各構成要素の詳細について、順次説明する。
【0047】
まず、本発明における、一般式(A)で表される金属錯体について説明する。
【0048】
(配位子)
本発明に係る一般式(A)で表される金属錯体においては、m1>m2である場合、m1を有する括弧内に示す部分構造、もしくはその互変異性体で表される部分構造を主配位子と称し、m2を有する括弧内に示す部分構造、もしくはその互変異性体で表される部分構造を副配位子と称す。
【0049】
本発明においては、該金属錯体は主配位子もしくはその互変異性体と副配位子もしくはその互変異性体の組み合わせで構成されるか、後述するが、m2=0の場合、即ち該金属錯体の配位子の全てが、主配位子またはその互変異性体で表される部分構造のみで構成されていてもよい。
【0050】
更に従来公知の金属錯体形成に用いられる、所謂配位子として当該業者が周知の配位子(配位化合物とも言う)を必要に応じて配位子として有していてもよい。
【0051】
本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は1〜2種類から構成されることが好ましく、更に好ましくは1種類である。
【0052】
従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが、例えば、「Photochemistry and Photophysics of Coordination Compounds」Springer−Verlag社 H.Yersin著 1987年発行、「有機金属化学−基礎と応用」裳華房社 山本明夫著 1982年発行等に記載の配位子(例えば、ハロゲン配位子(好ましくは塩素配位子))、含窒素ヘテロ環配位子(例えば、ビピリジル、フェナントロリンなど)、ジケトン配位子などが挙げられる。
【0053】
(元素周期表の8〜10族の遷移金属元素)
本発明に係る一般式(A)で表される金属錯体の形成に用いられる金属としては、元素周期表の8〜10族の遷移金属元素(単に遷移金属とも言う)が用いられるが、中でもイリジウム、白金が好ましい遷移金属元素として挙げられる。
【0054】
(立体パラメーター値(Es値))
本発明のおけるEs値について説明する。一般に、酸性条件下でのエステルの加水分解反応においては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよいことが知られており、この事を利用して置換基の立体障害を数値化したものがEs値である。
【0055】
置換基XのEs値は、次の化学反応式
X−CH2COORX+H2O→X−CH2COOH+RXOH
で表される、酢酸のメチル基の水素原子1つを置換基Xで置換したα位モノ置換酢酸から誘導されるα位モノ置換酢酸エステルを酸性条件下で加水分解する際の反応速度定数kXと、次の化学反応式
CH3COORY+H2O→CH3COOH+RYOH
(RXはRYと同じである)で表される、上記のα位モノ置換酢酸エステルに対応する酢酸エステルを酸性条件下で加水分解する際の反応速度定数kHから次の式で求められる。
【0056】
Es=log(kX/kH)
置換基Xの立体障害により反応速度は低下し、その結果kX<kHとなるのでEs値は通常負となる。実際にEs値を求める場合には、上記の二つの反応速度定数kXとkHを求め、上記の式により算出する。
【0057】
Es値の具体的な例は、Unger,S.H.,Hansch,C.,Prog.Phys.Org.Chem.,12,91(1976)に詳しく記載されている。また、「薬物の構造活性相関」(化学の領域増刊122号、南江堂)、「American Chemical Society Professional Reference Book,’Exploring QSAR’p.81 Table 3−3」にも、その具体的な数値の記載がある。次にその一部を表1に示す。
【0058】
【表1】

【0059】
ここで、注意するのは本明細書で定義するところのEs値は、メチル基のそれを0として定義したのではなく、水素原子を0としたものであり、メチル基を0としたEs値から1.24を差し引いたものである。
【0060】
本発明においてEs値は−0.5以下である。好ましくは−7.0以上−0.6以下である。最も好ましくは−7.0以上−1.0以下である。
【0061】
ここで、本発明においては、立体パラメーター値(Es値)が−0.5以下の置換基、例えば、Rにケト−エノール互変異性体が存在し得る場合、ケト部分はエノールの異性体としてEs値を換算している。他の互変異性が存在する場合も同様の換算方法においてEs値を換算する。
【0062】
一般式(A)のZは炭化水素環基または複素環基であることが好ましく、炭化水素環基としては、非芳香族炭化水素環基、芳香族炭化水素環基が挙げられ、非芳香族炭化水素環基としては、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらの基は、無置換でも後述する置換基を有していてもよい。また、芳香族炭化水素環基(芳香族炭化水素基、アリール基等とも言う)としては、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等が挙げられる。
【0063】
複素環基としては、非芳香族複素環基、芳香族複素環基が挙げられ、非芳香族複素環基としては、例えば、エポキシ環、アジリジン環、チイラン環、オキセタン環、アゼチジン環、チエタン環、テトラヒドロフラン環、ジオキソラン環、ピロリジン環、ピラゾリジン環、イミダゾリジン環、オキサゾリジン環、テトラヒドロチオフェン環、スルホラン環、チアゾリジン環、ε−カプロラクトン環、ε−カプロラクタム環、ピペリジン環、ヘキサヒドロピリダジン環、ヘキサヒドロピリミジン環、ピペラジン環、モルホリン環、テトラヒドロピラン環、1,3−ジオキサン環、1,4−ジオキサン環、トリオキサン環、テトラヒドロチオピラン環、チオモルホリン環、チオモルホリン−1、1−ジオキシド環、ピラノース環、ジアザビシクロ[2,2,2]−オクタン環等から導出される基を挙げることができる。
【0064】
芳香族複素環基としては、例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等が挙げられる。これらの基は、無置換でも更に置換基を有していてもよい。これらの置換基としては、後述する、R01、R02で各々表される置換基と同義のものが挙げられる。
【0065】
以下に一般式(A)におけるZの好ましい例を挙げるが、Zは以下の例示以外にも更に置換基を有していてもよいなどこれらの例に限定されない。なお、*は結合位置を表す。
【0066】
【化4】

【0067】
【化5】

【0068】
【化6】

【0069】
【化7】

【0070】
【化8】

【0071】
【化9】

【0072】
【化10】

【0073】
【化11】

【0074】
【化12】

【0075】
【化13】

【0076】
【化14】

【0077】
【化15】

【0078】
【化16】

【0079】
【化17】

【0080】
【化18】

【0081】
【化19】

【0082】
一般式(A)において、Yは炭素原子または窒素原子を表し、好ましくは炭素原子である。Bは−C(R01)=C(R02)−、−N=C(R02)−、−C(R01)=N−または−N=N−を表す。
【0083】
Yを含む含窒素複素環基の好ましい例としては、2−イミダゾリル基、2−(1,3,4−トリアゾリル)基、2−(1,3,5−トリアゾリル)基、2−テトラゾリル基等が挙げられる。これらの含窒素複素環基で最も好ましくは2−イミダゾリル基である。
【0084】
01及びR02は水素原子または置換基を表す。置換基の例としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素環基(芳香族炭素環基、アリール基等とも言い、例えば、フェニル基、p−クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4−トリアゾール−1−イル基、1,2,3−トリアゾール−1−イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2−エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2−エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2−エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2−ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2−エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2−ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2−エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2−エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2−ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
【0085】
一般式(A)のA−C−Xで表される炭化水素環基または複素環基において、Xは炭素原子または窒素原子を表し、好ましくは炭素原子である。
【0086】
A−C−Xで表される炭化水素環基が芳香族炭化水素環基のとき、(4n+2)π系の芳香族炭化水素化合物から任意の位置の水素原子を1つ取り除いたものであり、具体的にはフェニル基、1−ナフチル基、2−ナフチル基、9−アントリル基、1−アントリル基、9−フェナントリル基、2−トリフェニレニル基、3−ペリレニル基等が挙げられる。更に該炭化水素環基は、例えば、R01で説明した置換基によって置換されていてもよく、更に縮合環(例えば、9−フェナントリル基に炭化水素環を縮合させた9−ピレニル基、フェニル基に複素環を縮合させた8−キノリル基等)を形成してもよい。
【0087】
A−C−Xで表される複素環基が芳香族複素環基のとき、該芳香族複素環基は含窒素芳香族複素環に結合する部分の少なくとも片隣接位が炭素原子であり、且つ4n+2π系の芳香族基であれば特に制限はないが、含窒素芳香族複素環に結合する部分の両隣接位が炭素原子であることが好ましい。具体的には、3−ピリジル基、5−ピリミジル基、4−ピリダジル基、5−ピリダジル基、4−イソオキサゾリル基、4−イソチアゾリル基、4−ピラゾリル基、3−ピロロ基、3−フリル基、3−チエニル基等が挙げられる。更に該複素環は、例えば、R01で説明した置換基によって置換されていてもよく、更に縮合環を形成してもよい。
【0088】
一般式(A)において、X1−L1−X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。X1−L1−X2で表される2座の配位子の具体例としては、置換または無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中でも、m2は0である場合が好ましい。
【0089】
一般式(A)において、中心金属であるM1は元素周期表における8〜10族の金属を表すが、中でも好ましくはイリジウムまたは白金である。
【0090】
以下、本発明に係る前記一般式(A)で表される金属錯体の具体例を示すが、本発明はこれらに限定されない。
【0091】
【化20】

【0092】
【化21】

【0093】
【化22】

【0094】
【化23】

【0095】
【化24】

【0096】
【化25】

【0097】
【化26】

【0098】
【化27】

【0099】
【化28】

【0100】
【化29】

【0101】
【化30】

【0102】
【化31】

【0103】
【化32】

【0104】
【化33】

【0105】
【化34】

【0106】
【化35】

【0107】
【化36】

【0108】
【化37】

【0109】
【化38】

【0110】
【化39】

【0111】
【化40】

【0112】
【化41】

【0113】
【化42】

【0114】
【化43】

【0115】
【化44】

【0116】
【化45】

【0117】
【化46】

【0118】
【化47】

【0119】
【化48】

【0120】
【化49】

【0121】
【化50】

【0122】
これらの金属錯体は、例えば、Organic Letter誌、vol3、No.16、2579〜2581頁(2001)、Inorganic Chemistry,第30巻、第8号、1685〜1687頁(1991年)、J.Am.Chem.Soc.,123巻、4304頁(2001年)、Inorganic Chemistry,第40巻、第7号、1704〜1711頁(2001年)、Inorganic Chemistry,第41巻、第12号、3055〜3066頁(2002年)、New Journal of Chemistry,第26巻、1171頁(2002年)、European Journal of Organic Chemistry,第4巻、695〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用することにより合成できる。
【0123】
次に、本発明における一般式(1)で表される化合物について説明する。
【0124】
一般式(1)において、nは1〜2の整数を表し、Arはアリーレン基またはヘテロアリーレン基を表し、アリーレン基としてはフェニレン、4,4′−ビフェニレン、3,3′−ビフェニレン、3,4′−ビフェニレン、p−ターフェニレン、m−ターフェニレン等が挙げられ、これらは置換基を有していてもよい。置換基としては、一般式(A)の説明において前述したR01、R02で各々表される置換基と同義のものが挙げられる。
【0125】
ヘテロアリーレン基としては以下のものが挙げられ、これらは更に置換基を有していてもよい(*は結合部位を表す。)。置換基としては、一般式(A)の説明において前述したR01、R02で各々表される置換基と同義のものが挙げられる。
【0126】
【化51】

【0127】
一般式(1)において、R3及びR4は水素原子またはアリール基を表し、アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基、フェナンスリル基、ビフェニル基等が挙げられ、これらは更に置換基を有していてもよい。置換基としては、一般式(A)の説明において前述したR01、R02で各々表される置換基と同義のものが挙げられる。
【0128】
1〜X3はそれぞれ=CR−または=N−であり、X1〜X3の少なくとも一つは=N−である。Rは水素原子または置換基であり、置換基としては、一般式(A)の説明において前述した、R01、R02で各々表される置換基と同義のものが挙げられる。Czは前記一般式(2)で表されるカルバゾリル基である。
【0129】
一般式(2)中、R5〜R13は少なくとも一つがArとの結合部位を表し、その他はそれぞれ水素原子または置換基を表す。R5〜R13の少なくとも一つが表すArとの結合部位としては、R13が単なる結合手であることが特に好ましい。置換基としては、一般式(A)の説明において前述したR01、R02で各々表される置換基と同義のものが挙げられる。
【0130】
以下、本発明に係る前記一般式(1)で表される化合物の具体例を示すが、本発明はこれらに限定されない。
【0131】
【化52】

【0132】
【化53】

【0133】
【化54】

【0134】
【化55】

【0135】
【化56】

【0136】
【化57】

【0137】
【化58】

【0138】
【化59】

【0139】
【化60】

【0140】
【化61】

【0141】
【化62】

【0142】
次に、代表的な有機EL素子の構成について述べる。
【0143】
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。
【0144】
本発明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
【0145】
(i)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/第1の電子輸送層/第2の電子輸送層/陰極
(iii)陽極/第1の正孔輸送層/第2の正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iv)陽極/第1の正孔輸送層/第2の正孔輸送層/発光層/第1の電子輸送層/第2の電子輸送層/陰極
(v)陽極/第1の正孔輸送層/第2の正孔輸送層/発光層/第1の電子輸送層/第2の電子輸送層/陰極バッファー層/陰極
(vi)陽極/陽極バッファー層/第1の正孔輸送層/第2の正孔輸送層/発光層/第1の電子輸送層/第2の電子輸送層/陰極バッファー層/陰極。
【0146】
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設けることができる。
【0147】
正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
【0148】
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
【0149】
この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5〜5000nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構造であってもよい。
【0150】
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設けることができる。
【0151】
本発明の有機EL素子は構成層として電子輸送層を有し、該電子輸送層には一般式(1)で表される化合物が含まれる。本発明の有機EL素子は複数の電子輸送層を有していてもよく、該層に含まれる材料としては、従来公知の化合物の中から任意のものを選択して用いることができる。
【0152】
この電子輸送層に用いられる材料(以下、電子輸送材料と言う)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
【0153】
更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
【0154】
また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も電子輸送材料として用いることができる。
【0155】
その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。
【0156】
この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5〜5000nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構造であってもよい。
【0157】
次に、本発明の有機EL素子の構成層として用いられる発光層について説明する。
【0158】
《発光層》
本発明において、発光層には一般式(A)で表される金属錯体が含まれる。発光層には発光ホストと発光ドーパントが含まれ、一般式(A)で表される金属錯体は発光ドーパントとして機能する。
【0159】
(発光ホストと発光ドーパント)
本発明に用いられるホスト化合物(発光ホストとも言う)とは、発光層に含有される化合物のうちで室温(25℃)においてリン光発光のリン光量子収率が、0.01未満の化合物を表す。
【0160】
本発明に用いられる発光ホストとしては構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、またはカルボリン誘導体や該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体等が挙げられる。中でも、カルバゾール誘導体、カルボリン誘導体や該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体が好ましく用いられる。
【0161】
以下に具体例を挙げるが、本発明はこれらに限定されない。
【0162】
【化63】

【0163】
【化64】

【0164】
【化65】

【0165】
【化66】

【0166】
本発明に係る発光層においては、ホスト化合物として公知のホスト化合物を複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。これらの公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。
【0167】
また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(蒸着重合性発光ホスト)でもいい。
【0168】
発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、且つ高Tg(ガラス転移温度)である化合物が好ましい。
【0169】
発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。例えば、特開2001−257076号公報、特開2002−308855号公報、特開2001−313179号公報、特開2002−319491号公報、特開2001−357977号公報、特開2002−334786号公報、特開2002−8860号公報、特開2002−334787号公報、特開2002−15871号公報、特開2002−334788号公報、特開2002−43056号公報、特開2002−334789号公報、特開2002−75645号公報、特開2002−338579号公報、特開2002−105445号公報、特開2002−343568号公報、特開2002−141173号公報、特開2002−352957号公報、特開2002−203683号公報、特開2002−363227号公報、特開2002−231453号公報、特開2003−3165号公報、特開2002−234888号公報、特開2003−27048号公報、特開2002−255934号公報、特開2002−260861号公報、特開2002−280183号公報、特開2002−299060号公報、特開2002−302516号公報、特開2002−305083号公報、特開2002−305084号公報、特開2002−308837号公報等。
【0170】
また、発光層はホスト化合物として更に蛍光極大波長を有するホスト化合物を含有していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物へのエネルギー移動で、有機EL素子としての電界発光は蛍光極大波長を有する他のホスト化合物からの発光も得られる。蛍光極大波長を有するホスト化合物として好ましいのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は10%以上、特に30%以上が好ましい。
【0171】
具体的な蛍光極大波長を有するホスト化合物としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素等が挙げられる。蛍光量子収率は、前記第4版実験化学講座7の分光IIの362頁(1992年版、丸善)に記載の方法により測定することができる。
【0172】
発光層中の主成分であるホスト化合物である発光ホストに対する発光ドーパントとの混合比は、好ましくは質量で0.1〜30質量%未満の範囲に調整することである。
【0173】
但し、発光ドーパントは複数種の化合物を混合して用いてもよく、混合する相手は構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパントや蛍光性ドーパントでもよい。
【0174】
ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光性ドーパント、蛍光性ドーパント等)について述べる。発光ドーパントは大きく分けて、蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
【0175】
前者(蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
【0176】
後者(リン光性ドーパント)の代表例としては、好ましくは元素周期表で8族、9族、10族の遷移金属元素を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、白金化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。
【0177】
具体的には以下の特許公報に記載されている化合物である。
【0178】
国際公開第00/70655号パンフレット、特開2002−280178号公報、特開2001−181616号公報、特開2002−280179号公報、特開2001−181617号公報、特開2002−280180号公報、特開2001−247859号公報、特開2002−299060号公報、特開2001−313178号公報、特開2002−302671号公報、特開2001−345183号公報、特開2002−324679号公報、国際公開第02/15645号パンフレット、特開2002−332291号公報、特開2002−50484号公報、特開2002−332292号公報、特開2002−83684号公報、特表2002−540572号公報、特開2002−117978号公報、特開2002−338588号公報、特開2002−170684号公報、特開2002−352960号公報、国際公開第01/93642号パンフレット、特開2002−50483号公報、特開2002−100476号公報、特開2002−173674号公報、特開2002−359082号公報、特開2002−175884号公報、特開2002−363552号公報、特開2002−184582号公報、特開2003−7469号公報、特表2002−525808号公報、特開2003−7471号公報、特表2002−525833号公報、特開2003−31366号公報、特開2002−226495号公報、特開2002−234894号公報、特開2002−235076号公報、特開2002−241751号公報、特開2001−319779号公報、特開2001−319780号公報、特開2002−62824号公報、特開2002−100474号公報、特開2002−203679号公報、特開2002−343572号公報、特開2002−203678号公報等。
【0179】
以下に、具体例の一部を示す。
【0180】
【化67】

【0181】
【化68】

【0182】
【化69】

【0183】
【化70】

【0184】
次に、本発明の有機EL素子の構成層として用いられる注入層について説明する。
【0185】
《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
【0186】
注入層とは駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日 エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
【0187】
陽極バッファー層(正孔注入層)は特開平9−45479号公報、同9−260062号公報、同8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
【0188】
陰極バッファー層(電子注入層)は特開平6−325871号公報、同9−17574号公報、同10−74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。
【0189】
上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1〜100nmの範囲が好ましい。
【0190】
この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法、LB法等の公知の方法により、薄膜化することにより形成することができる。注入層の膜厚については特に制限はないが、通常は5〜5000nm程度である。この注入層は上記材料の一種または二種以上からなる一層構造であってもよい。
【0191】
《陽極》
本発明の有機EL素子に係る陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In23−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
【0192】
陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。
【0193】
《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
【0194】
これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al23)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
【0195】
陰極はこれらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10〜1000nm、好ましくは50〜200nmの範囲で選ばれる。なお、発光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光輝度が向上し好都合である。
【0196】
《基体(基板、基材、支持体等とも言う)》
本発明の有機EL素子に係る基体としては、ガラス、プラスチック等の種類には特に限定はなく、また透明のものであれば特に制限はないが、好ましく用いられる基板としては、例えば、ガラス、石英、光透過性樹脂フィルムを挙げることができる。特に好ましい基体は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
【0197】
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート(PC)、セルローストリアセテート(TAC)、セルロースアセテートプロピオネート(CAP)等からなるフィルム等が挙げられる。
【0198】
樹脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129−1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m2・24h)以下の高バリア性フィルムであることが好ましい。
【0199】
本発明の有機EL素子の発光の室温における外部取り出し効率は1%以上であることが好ましく、より好ましくは2%以上である。ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
【0200】
また、カラーフィルター等の色相改良フィルター等を併用してもよい。
【0201】
照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム(アンチグレアフィルム等)を併用することもできる。
【0202】
多色表示装置として用いる場合は、少なくとも2種類の異なる発光極大波長を有する有機EL素子からなるが、有機EL素子を作製する好適な例を説明する。
【0203】
《有機EL素子の作製方法》
本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極からなる有機EL素子の作製法について説明する。
【0204】
まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの膜厚になるように蒸着やスパッタリング等の方法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成させる。
【0205】
この有機化合物を含有する薄膜の薄膜化の方法としては、スピンコート法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好ましい。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10-6〜10-2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1〜5μmの範囲で適宜選ぶことが望ましい。
【0206】
これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。この有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
【0207】
《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機EL素子を有する。
【0208】
本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
【0209】
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターニングが好ましい。
【0210】
また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
【0211】
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を−の極性として電圧2〜40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても、電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が−の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
【0212】
多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
【0213】
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
【0214】
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これに限定するものではない。
【0215】
《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。
【0216】
本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
【0217】
また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
【0218】
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
【0219】
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
【0220】
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
【0221】
制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
【0222】
図2は表示部Aの模式図である。
【0223】
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
【0224】
図においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。
【0225】
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
【0226】
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
【0227】
次に、画素の発光プロセスを説明する。
【0228】
図3は画素の模式図である。
【0229】
画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
【0230】
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加された画像データ信号がコンデンサ13と駆動トランジスタ12のゲートに伝達される。
【0231】
画像データ信号の伝達により、コンデンサ13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
【0232】
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサ13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
【0233】
即ち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
【0234】
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
【0235】
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
【0236】
図4はパッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
【0237】
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
【0238】
パッシブマトリクス方式では画素3にアクティブ素子が無く、製造コストの低減が計れる。
【0239】
また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有したものでもよい。
【0240】
また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で、例えば、電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
【0241】
発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。
【0242】
このように、本発明に係る白色発光有機EL素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に用いられる。
【0243】
その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
【実施例】
【0244】
以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
【0245】
実施例1
《有機EL素子1−1〜1−15の作製》
陽極として、100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0246】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートに銅フタロシアニン(CuPc)を200mg入れ、別のモリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートに化合物H−1を200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物(196)を100mg入れ、更に別のモリブデン製抵抗加熱ボートに例示化合物HB−1を200mg入れ、真空蒸着装置に取り付けた。
【0247】
次いで、真空槽を8×10-5Paまで減圧した後、CuPcの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し,20nm正孔注入層を設けた。
【0248】
次いで、同様にα−NPDの入った前記加熱ボートを加熱し、蒸着速度0.1nm/secで20nm蒸着し、正孔輸送層を設けた。
【0249】
次いで、化合物H−1の入った前記加熱ボートと例示化合物(196)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.1nm/sec、0.006nm/secで正孔輸送層上に共蒸着して40nmの発光層を設けた。
【0250】
更に化合物HB−1の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層上に蒸着して膜厚30nmの電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0251】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1−1を作製した。
【0252】
また、発光層の例示化合物(196)と電子輸送層の例示化合物HB−1とを、それぞれ表2に記載の化合物に置き換えた以外は有機EL素子1−1と同様にして、有機EL素子1−2〜1−15を作製した。
【0253】
【表2】

【0254】
【化71】

【0255】
《有機EL素子の評価》
得られた有機EL素子1−1〜1−15を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亜合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図5、図6に示すような照明装置を形成して評価した。
【0256】
図5は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。図6は照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
【0257】
(効率)
効率(%)は外部取り出し効率(%)のことで、作製した有機EL素子について、23℃、乾燥窒素ガス雰囲気下で2.5mA/cm2定電流を流して測定した。
【0258】
(寿命)
寿命(時間)は初期輝度300cd/m2で駆動したときに、輝度が発光開始直後の輝度の半分に低下するのに要した時間を測定した。
【0259】
(輝度ムラ)
輝度ムラは作製した素子の発光輝度が1000cd/cm2となる条件において、発光面の最も暗い部分と最も明るい部分の輝度を測定し、下式によって求めた。
【0260】
輝度ムラ(%)=発光面の最も暗い部分の輝度/発光面の最も暗い部分と最も明るい部分の輝度
(ダークスポット)
ダークスポットは作製したサンプルから有機ELパネルを作製し、温度60度、湿度90%RHの条件で300時間保存した後、ダークスポット(発光ムラ)の発生の有り無しを以下に示す試験方法により試験し、以下に示す評価ランクに従って評価した。
【0261】
ダークスポット(発光ムラ)の試験方法
KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。200cdで発光させた発光素子について、50倍の顕微鏡でダークスポット(発光ムラ)が生じるかを観察した。
【0262】
ダークスポット(発光ムラ)の評価ランク
◎:9割以上が均一に発光している
○:8割以上が均一に発光している
△:7割以上が均一に発光している
×:7割未満しか均一に発光していない。
【0263】
以上評価結果を表3に示した。但し、効率、寿命は有機EL素子1−1の値を100とした相対値で示した。
【0264】
【表3】

【0265】
結果から明らかなように、本発明は、発光層のドーパントに特定の構造を持った化合物と、電子輸送層に特定の構造を持った化合物とを用いることで効果が発揮される。
【0266】
本発明の有機EL素子1−1〜1−8では効率、寿命がよく、更に輝度ムラ、ダークスポットが改善された素子が実現しているが、電子輸送層に本発明の一般式(1)に当てはまる構造以外の化合物を用いた、有機EL素子1−9〜1−12では満足した性能が得られなかった。
【0267】
また、ドーパントが本発明の一般式(A)に当てはまる構造以外の化合物を用いた有機EL素子1−13〜1−15でも満足した性能が得られなかった。このことから、この2つの層の化合物の構造の組み合わせが、本発明の効果に大いに貢献していることがわかる。これらの原因は詳細についてはよくわかっていないが、発光層と電子輸送層の材料をそれぞれ特定の構造にすることで、恐らく発光界面での劣化が抑えられているものと考えられる。
【0268】
実施例2
《有機EL素子2−1〜2−15の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0269】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートに銅フタロシアニン(CuPc)を200mg入れ、別のモリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートに化合物H−2を200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物(198)を100mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物HB−10を200mg入れ、更に別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。
【0270】
次いで、真空槽を8×10-5Paまで減圧した後、CuPcの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し20nm正孔注入層を設けた。
【0271】
次いで、同様にα−NPDの入った前記加熱ボートを加熱し、蒸着速度0.1nm/secで20nm蒸着し、正孔輸送層を設けた。
【0272】
次いで、化合物H−2の入った前記加熱ボートと例示化合物(198)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/sec、0.012nm/secで正孔輸送層上に共蒸着して、30nmの発光層を設けた。
【0273】
更に例示化合物HB−10の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層上に蒸着して、膜厚10nmの第1の電子輸送層を設けた。その上に、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記第1の電子輸送層の上に蒸着し、膜厚30nmの第2の電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0274】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2−1を作製した。
【0275】
また、発光層の例示化合物(198)と、第1の電子輸送層の例示化合物HB−10とを、それぞれ表4に記載の化合物に置き換えた以外は有機EL素子2−1と同様にして、有機EL素子2−2〜2−15を作製し、実施例1に記載の方法で封止し、評価した。結果を表5に示した。但し、効率及び寿命は有機EL素子2−1の値を100とした相対値で示した。
【0276】
【表4】

【0277】
【表5】

【0278】
【化72】

【0279】
ここでも、実施例1と同様の効果を得ることができた。
【0280】
実施例3
《有機EL素子3−1〜3−16の作製》
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0281】
この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボートに銅フタロシアニン(CuPc)を200mg入れ、別のモリブデン製抵抗加熱ボートにα−NPDを200mg入れ、別のモリブデン製抵抗加熱ボートに化合物H−3を200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物(198)を100mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物HB−28を200mg入れ、更に別のモリブデン製抵抗加熱ボートにAlq3を200mg入れ、真空蒸着装置に取り付けた。
【0282】
次いで、真空槽を8×10-5Paまで減圧した後、CuPcの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで透明支持基板に蒸着し、20nm正孔注入層を設けた。
【0283】
次いで、同様にα−NPDの入った前記加熱ボートを加熱し、蒸着速度0.1nm/secで20nm蒸着し、正孔輸送層を設けた。
【0284】
次いで、化合物H−3の入った前記加熱ボートと例示化合物(198)の入った前記加熱ボートに通電して加熱し、それぞれ蒸着速度0.2nm/sec、0.012nm/secで正孔輸送層上に共蒸着して20nmの発光層を設けた。
【0285】
更に例示化合物HB−28の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記発光層上に蒸着して膜厚15nmの第1の電子輸送層を設けた。その上に、Alq3の入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/secで前記第1の電子輸送層の上に蒸着し、膜厚25nmの第2の電子輸送層を設けた。なお、蒸着時の基板温度は室温であった。
【0286】
引き続き、陰極バッファー層としてフッ化リチウム0.5nmを蒸着し、更にアルミニウム110nmを蒸着して陰極を形成し、有機EL素子3−1を作製した。
【0287】
また、発光層の例示化合物(198)と第1の電子輸送層の例示化合物HB−28とを、それぞれ表6に記載の化合物に置き換えた以外は有機EL素子3−1と同様にして、有機EL素子3−2〜3−16を作製し、実施例1に記載の方法で封止し、評価した。結果を表7に示した。但し、効率及び寿命は有機EL素子3−1の値を100とした相対値で示した。
【0288】
【表6】

【0289】
【表7】

【0290】
【化73】

【0291】
ここでも、実施例1と同様の効果を得ることができた。
【0292】
実施例4
陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA−45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
【0293】
この透明支持基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。
この基板を窒素雰囲気下に移し、化合物H−4(100mg)と例示化合物196(10mg)を10mlのトルエンに溶解した溶液を3000rpm、30秒の条件下、スピンコート法により製膜し発光層とした。
【0294】
これを真空蒸着装置に取り付け、次いで、真空槽を4×10-4Paまで減圧し、例示化合物HB−19を0.1nm/sの蒸着速度で30nm蒸着し電子輸送層とした。
【0295】
陰極バッファー層としてフッ化リチウム0.5nm、及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子4−1を作製した。
【0296】
このように本発明の有機EL素子は塗布によっても作製することができる。また、塗布によって得られた有機EL素子でも、実施例1と同様の効果を得ることができた。
【0297】
【化74】

【0298】
実施例5
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例1の有機EL素子1−1のドーパントである例示化合物(196)を例示化合物(217)に置き換えた以外は同様にして、青色発光素子を作製し、これを青色発光素子として用いた。
【0299】
(緑色発光素子の作製)
実施例3の有機EL素子3−1において、ドーパントである例示化合物(197)をIr−16に変更した以外は同様にして、緑色発光素子を作製し、これを緑色発光素子として用いた。
【0300】
(赤色発光素子の作製)
実施例2の有機EL素子2−1において、ドーパントである例示化合物(198)をIr−17に変更した以外は同様にして、赤色発光素子を作製し、これを赤色発光素子として用いた。
【0301】
上記で作製した赤色、緑色、青色発光有機EL素子を同一基板上に並置し、図1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。図2には、作製した前記表示装置の表示部Aの模式図のみを示した。即ち、同一基板上に複数の走査線5及びデータ線6を含む配線部と並置した複数の画素3(発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示せず)。前記複数画素3は、それぞれの発光色に対応した有機EL素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されるとデータ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
【0302】
このフルカラー表示装置は駆動することにより、輝度が高く、高耐久性を有し、且つ鮮明なフルカラー動画表示が得られることが分かった。
【0303】
実施例6
《白色発光素子及び白色照明装置の作製》
実施例1の透明電極基板の電極を20mm×20mmにパターニングし、その上に実施例1と同様に正孔輸送層としてα−NPDを20nmの厚さで成膜し、更に化合物H−5の入った前記加熱ボートと例示化合物(191)の入ったボート及びIr−9の入ったボートをそれぞれ独立に通電して、発光ホストである化合物H−5と発光ドーパントである例示化合物(191)及びIr−9の蒸着速度が100:5:0.6になるように調節し、膜厚30nmの厚さになるように蒸着し、発光層を設けた。
【0304】
次いで、例示化合物HB−1を10nm成膜して第1の電子輸送層を設けた。更にAlq3を40nmで成膜し、第2の電子輸送層を設けた。
【0305】
次に、実施例1と同様に電子注入層の上にステンレス鋼製の透明電極とほぼ同じ形状の正方形穴あきマスクを設置し、陰極バッファー層としてフッ化リチウム0.5nm、及び陰極としてアルミニウム150nmを蒸着成膜した。
【0306】
この素子を実施例1と同様な方法及び同様な構造の封止缶を具備させ、図5、図6に示すような平面ランプを作製した。この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用できることが分かった。
【0307】
【化75】

【符号の説明】
【0308】
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
A 表示部
B 制御部
102 ガラスカバー
105 陰極
106 有機EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤

【特許請求の範囲】
【請求項1】
構成層として少なくとも陽極、発光層、電子輸送層及び陰極を有し、発光層には少なくともホスト化合物と金属錯体を含有する有機エレクトロルミネッセンス素子において、
前記発光層が下記一般式(A)で表される金属錯体を含有し、且つ前記電子輸送層が下記一般式(1)で表される化合物を含有することを特徴とする有機エレクトロルミネッセンス素子。
【化1】

(一般式(A)中、X4は窒素原子または炭素原子を表し、Zは炭化水素環基または複素環基を表し、X3及びYは炭素原子または窒素原子を表し、AはX3−Cと共に5〜6員の炭化水素環または複素環を形成するのに必要な原子群を表す。BはX4−Y−Nと共に置換基を有してもよいピラゾール環、イミダゾール環、トリアゾール環又はテトラゾール環を形成するのに必要な原子群を表す。X1−L1−X2は2座の配位子を表し、X1、X2は各々独立に炭素原子、窒素原子または酸素原子を表す。L1はX1、X2と共に2座の配位子を形成する原子群を表す。m1は1、2または3の整数を表し、m2は0、1または2の整数を表すが、m1+m2は2または3である。中心金属であるM1はイリジウムまたは白金を表す。)
【化2】

(一般式(1)中、nは1〜2の整数を表し、Arはアリーレン基またはヘテロアリーレン基を表し、R3、R4はアリール基を表す。X1〜X3はそれぞれ=CR−または=N−であり、X1〜X3の少なくとも一つは=N−であり、X1〜X3の少なくとも一つは=CR−である。Rは水素原子または置換基を表す。Czは下記一般式(2)で表されるカルバゾリル基である。但し、下記化合物ETM1を除く。)
【化3】

(一般式(2)中、R5〜R13のうち、R13が一般式(1)中のArとの結合部位を表し、その他はそれぞれ水素原子または置換基を表す。)
【請求項2】
前記一般式(A)のX4が窒素原子を表し、Zが結合する窒素原子Xから数えて3番目の原子の少なくとも1つに、立体パラメーター値(Es値)が−0.5以下の置換基を結合している炭化水素環基または複素環基であることを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子。
【請求項3】
前記一般式(A)のBと共に形成される環がイミダゾール環であることを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス素子。
【請求項4】
前記一般式(A)のAと共に形成される環がベンゼン環であることを特徴とする請求項1〜3のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項5】
前記一般式(A)で表される金属錯体が同一の配位子のみで構成されることを特徴とする請求項1〜4のいずれか1項に記載の有機エレクトロルミネッセンス素子。
【請求項6】
請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を含有することを特徴とする表示装置。
【請求項7】
請求項1〜5のいずれか1項に記載の有機エレクトロルミネッセンス素子を有することを特徴とする照明装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2013−84965(P2013−84965A)
【公開日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2012−257480(P2012−257480)
【出願日】平成24年11月26日(2012.11.26)
【分割の表示】特願2007−182063(P2007−182063)の分割
【原出願日】平成19年7月11日(2007.7.11)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】