説明

有機圧電材料、有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置

【課題】効果的に分極構造を形成させる分極処理方法を用いて形成された、圧電特性及び耐熱性に優れた有機圧電材料、それを用いた有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置を提供する。
【解決手段】コロナ放電により分極処理を施された有機圧電材料であって、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されたことを特徴とする有機圧電材料。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、効果的に分極構造を形成させる分極処理方法を用いて形成された、圧電特性及び耐熱性に優れた有機圧電材料、それを用いた有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置に関する。
【背景技術】
【0002】
超音波探触子は非破壊検査装置の他、医療用の超音波診断装置として急速に利用が高まっている。例えば超音波内視鏡等の探触子は、超音波トランスデューサから高周波の音響振動を被検体内に放射し、反射して戻ってきた超音波を超音波トランスデューサで受信し、わずかな界面特性の違いによって異なる情報を処理することにより、生体内部の断面像を得るものである。
【0003】
近年では、この超音波探触子から被検体内へ送信された超音波の周波数(基本周波数)成分ではなく、その高調波周波数成分によって被検体内の内部状態の画像を形成するハーモニックイメージング(Harmonic Imaging)技術が研究、開発されている。このハーモニックイメージング技術は、(1)基本周波数成分のレベルに比較してサイドローブレベルが小さく、S/N比(signal to noise ratio)が良くなってコントラスト分解能が向上すること、(2)周波数が高くなることによってビーム幅が細くなって横方向分解能が向上すること、(3)近距離では音圧が小さくて音圧の変動が少ないために多重反射が抑制されること、および、(4)焦点以遠の減衰が基本波並みであり高周波を基本波とする場合に較べて深速度を大きく取れることなどの様々な利点を有しており、高精度な診断を可能としている(例えば特許文献1参照)。
【0004】
このような超音波探触子には超音波を発生させる圧電体が使われている。従来、圧電体としては、水晶、LiNbO3、LiTaO3、KNbO3などの単結晶、ZnO、AlNなどの薄膜、Pb(Zr,Ti)O3系などの焼結体を分極処理した、いわゆる無機材質の圧電セラミックスが広く利用されている。
【0005】
これに対して、ポリフッ化ビニリデン(PVDF)のような有機系高分子物質を利用した有機圧電体(「圧電高分子材料」、「ポリマー圧電物質」ともいう。)も開発されている(例えば特許文献2参照)。この有機圧電体は、セラミックス圧電体と比較して、可撓性が大きく、薄膜化、大面積化、長尺化が容易で任意の形状、形態のものを作ることができる、誘電率εが小さく、静水圧電圧出力係数(gh定数)は極めて大となるので感度特性に優れる、さらに低密度、低弾性であるため、効率のよいエネルギー伝播が可能である、等の特性を有する。
【0006】
しかしながら、この有機圧電体からなる素子は、無機圧電体からなる素子に比べ、相転移温度が低いことから耐熱性に劣るという欠点があり、無機圧電体と併用して超音波探触子に構成するにあたって、生産工程での加工時の熱、使用環境での加熱殺菌消毒による熱等に対しての対策が求められている。PVDFの耐熱性向上という点においては、特許文献3には、圧電特性を失う相転移温度を有しない製造方法による耐熱性に優れたポリフッ化ビニリデン共重合体の記載がある。この方法は、特定の組成比であるフッ化ビニリデンとトリフルオロエチレン(以下「3FE」とも略称する。)の共重合の熱溶融物に対しては有効であるが、組成比が異なる場合や延伸成形膜には適用ができない、膜融点に近い高温では特性が劣化するという限界がある。
【0007】
一方、同じポリマー圧電物質であるポリ尿素は分子設計が容易であり、分子鎖内に芳香環を含むことで高い耐熱性を有することができる。しかしながら、ポリ尿素を圧電材料として使用するには、一般的には分極処理が必要となるが、針状電極を用いた場合、針の直下から同心円状に電界が変化し、分極方法に分布が生じ、改善方法として針状電極と被分極物質の間にグリッド電極を挟むことでその分極分布を低減する方法が考案されている(例えば特許文献4参照)。しかしながら、本方法では分極分布を完全になくすことはできず、有機圧電体の特徴である大面積の製造ができなくなってしまうという問題がある。
【特許文献1】特開平11−276478号公報
【特許文献2】特開平6−216422号公報
【特許文献3】特開昭60−217674号公報
【特許文献4】特開平8−180959号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、効果的に分極構造を形成させる分極処理方法を用いて形成された、圧電特性及び耐熱性に優れた有機圧電材料、それを用いた有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置を提供することである。
【課題を解決するための手段】
【0009】
本発明に係る上記課題は、以下の手段により解決される。
【0010】
1.コロナ放電により分極処理を施された有機圧電材料であって、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されたことを特徴とする有機圧電材料。
【0011】
2.前記分極処理が、窒素もしくは希ガス気流下、質量絶対湿度が0.004以下の環境中で、施されたことを特徴とする前記1に記載の有機圧電材料。
【0012】
3.前記分極処理が、前記第1の面上に接するように設置された平面電極を含む有機圧電材料、もしくは第2の面側に設けられた円柱状のコロナ放電用電極の少なくとも一方が、一定の速度で移動しながらコロナ放電が施されたことを特徴とする前記1又は2に記載の有機圧電材料。
【0013】
4.前記有機圧電材料が、有機高分子材料を用いて形成されたことを特徴とする前記1〜3のいずれか一項に記載の有機圧電材料。
【0014】
5.前記有機圧電材料が、ウレア結合もしくはチオウレア結合を有する化合物を構成成分として含有することを特徴とする前記1〜4のいずれか一項に記載の有機圧電材料。
【0015】
6.前記ウレア結合もしくはチオウレア結合を有する化合物が、下記一般式(1)〜(3)で表される化合物もしくはこれらの化合物の誘導体を原料として形成されたことを特徴とする前記5に記載の有機圧電材料。
【0016】
【化1】

【0017】
(式中、R11及びR12は、各々独立に水素原子、アルキル基、3〜10員の非芳香族環基、アリール基、またはヘテロアリール基を表し、これらの基は更に置換基を有しても良い。R21〜R26は、各々独立に水素原子、アルキル基、電子吸引性基を表す。)
【0018】
【化2】

【0019】
(式中、R13は、各々独立にカルボキシル基、ヒドロキシ基、メルカプト基、アミノ基を表し、これらの活性水素は、更にアルキル基、3〜10員の非芳香族環基、アリール基、またはヘテロアリール基等で置換されてもよく、また、R13は、カルボニル基、スルホニル基、チオカルボニル基、スルホン基を表し、これらの置換基は、水素原子、アリール基、またはヘテロアリール基を結合する。R21〜R26は上記一般式(5)のR21〜R26と同義の基を表す。)
【0020】
【化3】

【0021】
(式中、Yは、各々独立にケト基、オキシム基、置換ビニリデン基を表し、R21〜R26は、上記一般式(1)のR21〜R26と同義の置換基を表す。)
7.前記ウレア結合もしくはチオウレア結合を有する化合物が、分子量が400〜10,000であるマクロモノマーを原料として形成されたことを特徴とする前記5又は6に記載の有機圧電材料。
【0022】
8.前記1〜7のいずれか一項に記載の有機圧電材料により形成されたことを特徴とする有機圧電膜。
【0023】
9.前記8に記載の有機圧電膜を用いたことを特徴とする超音波振動子。
【0024】
10.超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、前記9に記載の超音波振動子を超音波受信用振動子として用いたことを特徴とする超音波探触子。
【0025】
11.電気信号を発生する手段と、前記電気信号を受けて超音波を被検体に向けて送信し、前記被検体から受けた反射波に応じた受信信号を生成する複数の振動子が配置された超音波探触子と、前記超音波探触子が生成した前記受信信号に応じて、前記被検体の画像を生成する画像処理手段とを有する超音波医用画像診断装置において、前記超音波探触子として、前記10に記載の超音波探触子を用いたことを特徴とする超音波医用画像診断装置。
【発明の効果】
【0026】
本発明の上記手段により、効果的に分極構造を形成させる分極処理方法を用いて形成された、圧電特性及び耐熱性に優れた有機圧電材料、それを用いた有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置を提供することができる。
【0027】
すなわち、作用機構的観点から説明するならば、コロナ放電処理において、従来一般に使用されている剣山状電極や針状電極を用いた場合には、針先の電界集中により、生じる電界にムラがある。そのため均一な分極は難しく、その結果として、材料本来の圧電性を実現することができない。
【0028】
しかし、本発明においては、円柱状の電極を用いることにより、電界のムラを軽減することができ、かつ被分極処理体、電極の少なくとも一方の移動により、電界のムラを失くし、均一な分極処理を実現できる。また低湿度、窒素等不活性ガス気流下で行うことで、水・酸素に起因する材料表面の酸化を防ぎ、圧電性を損なわないようにすることができる。従って、これにより本来の特徴を活かした有機圧電材料、有機圧電膜、超音波振動子、超音波探触子、及び超音波医用画像診断装置を提供することができる。
【発明を実施するための最良の形態】
【0029】
本発明の有機圧電材料は、コロナ放電により分極処理を施された有機圧電材料であって、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されたことを特徴とする。この特徴は、請求項1〜11に係る発明に共通する技術的特徴である。
【0030】
本発明の実施態様としては、本発明に係る課題解決の観点から、前記分極処理が、窒素もしくは希ガス気流下、質量絶対湿度が0.004以下の環境中で施される態様が好ましい。また、前記第1面上に接するように設置された平面電極を含む有機圧電材料、もしくは第2の面側に設けられた円柱状のコロナ放電用電極の少なくとも一方が、一定の速度で移動しながらコロナ放電が施される態様であることが好ましい。
【0031】
また、本発明の実施態様としては、前記有機圧電材料が、有機高分子材料を用いて形成される態様であることが好ましい。更に、当該有機圧電材料が、ウレア結合もしくはチオウレア結合を有する化合物を構成成分として含有することが好ましい。また、前記ウレア結合もしくはチオウレア結合を有する化合物が、前記記一般式(1)〜(3)で表される化合物若しくはこれらの化合物の誘導体を原料として形成された態様であることが好ましい。又は、前記ウレア結合もしくはチオウレア結合を有する化合物が、分子量が400〜10,000であるマクロモノマーを原料として形成された態様であることが好ましい。
【0032】
本発明の有機圧電材料は、圧電特性及び耐熱性に優れているという特徴を有することから、有機圧電膜を形成する材料として適している。また、当該有機圧電膜は、超音波振動子に好適に用いることができる。特に、超音波送信用振動子と超音波受信用振動子を具備する超音波探触子において、超音波受信用振動子に好適に用いることができる。更に、この超音波探触子は、超音波医用画像診断装置に用いることができる。例えば、電気信号を発生する手段と、前記電気信号を受けて超音波を被検体に向けて送信し、前記被検体から受けた反射波に応じた受信信号を生成する複数の振動子が配置された超音波探触子と、前記超音波探触子が生成した前記受信信号に応じて、前記被検体の画像を生成する画像処理手段とを有する超音波医用画像診断装置において、前記超音波探触子として好適に用いることができる。
【0033】
以下、本発明とその構成要素、及び発明を実施するための最良の形態・態様等について詳細な説明をする。
【0034】
(有機圧電材料)
本発明においては、下記の有機高分子材料を好適に有機圧電材料とすることができる。また、当該有機高分子材料を用いて有機圧電材料を形成する際に、目的に応じて適当な他の材料と混合することもできる。
【0035】
(有機高分子材料)
本発明に係る「有機高分子材料」とは、一般的な有機高分子材料を指すが、当該材料の双極子モーメント量を増加させる作用を有する電子吸引性基を持つ重合性化合物により形成した有機高分子材料であることが好ましい。このような有機高分子材料であれば、双極子モーメント量を増加させる作用を有することから、有機圧電材料(膜)として用いた場合、優れた圧電特性を得ることができる。
【0036】
なお、本願において、「電子吸引性基」とは、電子吸引性の度合いを示す指標としてハメット置換基定数(σp)が0.10以上である置換基をいう。ここでいうハメットの置換基定数σpの値としては、Hansch,C.Leoらの報告(例えば、J.Med.Chem.16、1207(1973);ibid.20、304(1977))に記載の値を用いるのが好ましい。
【0037】
例えば、σpの値が0.10以上の置換基または原子としては、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、カルボキシル基、シアノ基、ニトロ基、ハロゲン置換アルキル基(例えばトリクロロメチル、トリフルオロメチル、クロロメチル、トリフルオロメチルチオメチル、トリフルオロメタンスルホニルメチル、パーフルオロブチル)、脂肪族、芳香族もしくは芳香族複素環アシル基(例えばホルミル、アセチル、ベンゾイル)、脂肪族・芳香族もしくは芳香族複素環スルホニル基(例えばトリフルオロメタンスルホニル、メタンスルホニル、ベンゼンスルホニル)、カルバモイル基(例えばカルバモイル、メチルカルバモイル、フェニルカルバモイル、2−クロロ−フェニルカルバモイル)、アルコキシカルボニル基(例えばメトキシカルボニル、エトキシカルボニル、ジフェニルメチルカルボニル)、置換アリール基(例えばペンタクロロフェニル、ペンタフルオロフェニル、2,4−ジメタンスルホニルフェニル、2−トリフルオロメチルフェニル)、芳香族複素環基(例えば2−ベンゾオキサゾリル、2−ベンズチアゾリル、1−フェニル−2−ベンズイミダゾリル、1−テトラゾリル)、アゾ基(例えばフェニルアゾ)、ジトリフルオロメチルアミノ基、トリフルオロメトキシ基、アルキルスルホニルオキシ基(例えばメタンスルホニルオキシ)、アシロキシ基(例えばアセチルオキシ、ベンゾイルオキシ)、アリールスルホニルオキシ基(例えばベンゼンスルホニルオキシ)、ホスホリル基(例えばジメトキシホスホニル、ジフェニルホスホリル)、スルファモイル基(例えば、N−エチルスルファモイル、N,N−ジプロピルスルファモイル、N−(2−ドデシルオキシエチル)スルファモイル、N−エチル−N−ドデシルスルファモイル、N,N−ジエチルスルファモイル)などが挙げられる。
【0038】
本発明に用いることができる化合物の具体例としては、以下の化合物、もしくはその誘導体を挙げることができるが、これらに限定されるものではない。
【0039】
4,4’−ジアミノジフェニルメタン(MDA)、4,4’−メチレンビス(2−メチルアニリン)、4,4’−メチレンビス(2,6−ジメチルアニリン)、4,4’−メチレンビス(2−エチル−6−メチルアニリン)、4,4’−メチレンビス(2,6−ジエチルアニリン)、4,4’−メチレンビス(2,6−ジ−t−ブチルアニリン)、4,4’−メチレンビス(2,6−ジシクロヘキシルアニリン)、4,4’−メチレンビス(2−エチルアニリン)、4,4’−メチレンビス(2−t−ブチルアニリン)、4,4’−メチレンビス(2−シクロヘキシルアニリン)、4,4’−メチレンビス(3,5−ジメチルアニリン)、4,4’−メチレンビス(2,3−ジメチルアニリン)、4,4’−メチレンビス(2,5−ジメチルアニリン)、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノフェニル)プロパン、1,1−ビス(4−アミノフェニル)シクロヘキサン、α,α−ビス(4−アミノフェニル)トルエン、4,4’−メチレンビス(2−クロロアニリン)、4,4’−メチレンビス(2,6−ジクロロアニリン)、4,4’−メチレンビス(2,3−ジブロモアニリン)、3,4’−ジアミノジフェニルエーテル、4,4’−ジアミノオクタフルオロジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルジスルフィド、ビス(4−アミノフェニル)スルホン、ビス(3−アミノフェニル)スルホン、ビス(3−アミノ−4−ヒドロキシフェニル)スルホン、ビス(4−アミノフェニル)スルホキシド、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,5−ビス(4−アミノフェニル)−1,3,4−オキサジアゾール、ネオペンチルグリコールビス(4−アミノフェニル)エーテル、4,4’−ジアミノスチルベン、α,α’−ビス(4−アミノフェニル)−1,4−ジイソプロピルベンゼン、1,2−フェニレンジアミン、1,3−フェニレンジアミン、1,4−フェニレンジアミン、ベンジジン、4,4’−ジアミノオクタフルオロビフェニル、3,3’−ジアミノベンジジン、3,3’−ジメチルベンジジン、2,2’−ビス(トリフルオロメチル)ベンジジン、3,3’,5,5’−テトラメチルベンジジン、3,3’−ジヒドロキシベンジジン、3,3’−ジメチルベンジジン、3,3’−ジヒドロキシ−5,5’−ジメチルベンジジン、4,4”−ジアミノ−p−ターフェニル、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレン、2,6−ジアミノナフタレン、2,7−ジアミノナフタレン、3,3’−ジメチルナフチジン、2,7−ジアミノカルバゾール、3,6−ジアミノカルバゾール、3,4−ジアミノ安息香酸、3,5−ジアミノ安息香酸、1,5−ジアミノペンタン、1.6−ジアミノヘキサン、1,7−ジミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,5−ジメチルヘキシルアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−1:4,4’−ジアミノベンゾフェノン、4,4’−ジメチルアミノ−3,3’−ジクロロベンゾフェノン、4,4’−ジアミノ−5,5’−ジエチル−3,3’−ジフルオロベンゾフェノン、4,4’−ジアミノ−3,3’,5,5’−テトラフルオロベンゾフェノン、2,2−ビス(4−アミノフェニル)プロパン、2,2−ビス(4−アミノ−3,5−ジクロロフェニル)プロパン、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、2,2−ビス(4−アミノ−3−フルオロフェニル)ヘキサフルオロプロパン、4,4’−ジアミノジフェニルエーテル(ODA)、4,4’−ジアミノ−3,3’,5,5’−テトラクロロジフェニルエーテル、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノ−3,3’−ジブロモジフェニルスルフィド、4,4’−ジアミノジフェニルジスルフィド、4,4’−ジアミノ−3,3’,5,5’−テトラフルオロジフェニルジスルフィド、ビス(4−アミノフェニル)スルホン、ビス(4−アミノ−3−クロロ−5−メチルフェニル)スルホン、ビス(4−アミノフェニル)スルホキシド、ビス(4−アミノ−3−ブロモフェニル)スルホキシド、1,1−ビス(4−アミノフェニル)シクロプロパン、1,1−ビス(4−アミノフェニル)シクロオクタン、1,1−ビス(4−アミノフェニル)シクロヘキサン、1,1−ビス(4−アミノ−3,5−ジフルオロフェニル)シクロヘキサン、4,4’−(シクロヘキシルメチレン)ジアニリン、4,4’−(シクロヘキシルメチレン)ビス(2,6−ジクロロアニリン)、2,2−ビス(4−アミノフェニル)マロン酸ジエチル、2,2−ビス(4−アミノ−3−クロロフェニル)マロン酸ジエチル、4−(ジp−アミノフェニルメチル)ピリジン、1−(ジp−アミノフェニルメチル)−1H−ピロール、1−(ジp−アミノフェニルメチル)−1H−イミダゾール、2−(ジp−アミノフェニルメチル)オキサゾール等のジアミン化合物とそれら誘導体と、4,4’−ジフェニルメタンジイソシアナート(MDI)、4,4’−メチレンビス(2,6−ジメチルフェニルイソシアナート)、4,4’−メチレンビス(2,6−ジエチルフェニルイソシアナート)、4,4’−メチレンビス(2,6−ジ−t−ブチルフェニルイソシアナート)、4,4’−メチレンビス(2,6−ジシクロヘキシルフェニルイソシアナート)、4,4’−メチレンビス(2−メチルフェニルイソシアナート)、4,4’−メチレンビス(2−エチルフェニルイソシアナート)、4,4’−メチレンビス(2−t−ブチルフェニルイソシアナート)、4,4’−メチレンビス(2−シクロヘキシルフェニルイソシアナート)、4,4’−メチレンビス(3,5−ジメチルフェニルイソシアナート)、4,4’−メチレンビス(2,3−ジメチルフェニルイソシアナート)、4,4’−メチレンビス(2,5−ジメチルフェニルイソシアナート)、2,2−ビス(4−イソシアナートフェニル)ヘキサフルオロプロパン、2,2−ビス(4−イソシアナートフェニル)プロパン、1,1−ビス(4−イソシアナートフェニル)シクロヘキサン、α,α−ビス(4−イソシアナートフェニル)トルエン、4,4’−メチレンビス(2,6−ジクロロフェニルイソシアナート)、4,4’−メチレンビス(2−クロロフェニルイソシアナート)、4,4’−メチレンビス(2,3−ジブロモフェニルイソシアナート)、m−キシリレンジイソシアナート、4,4’−ジイソシアナート−3,3’−ジメチルビフェニル、1,5−ジイソシアナトナフタレン、1,3−フェニレンジイソシアナート、1,4−フェニレンジイソシアナート、2,4−トルエンジイソシアナート(2,4−TDI)、2,6−トルエンジイソシアナート(2,6−TDI)、1,3−ビス(2−イソシアナート−2−プロピル)ベンゼン、1,3−ビス(イソシアナートメチル)シクロヘキサン、ジシクロヘキシルメタン−4,4’−ジイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、トリメチルヘキサメチレンジイソシアナート、2,7−フルオレンジイソシアネート、ベンゾフェノン−4,4’−ジイソシアン酸、3,3’−ジクロロベンゾフェノン−4,4’−ジイソシアン酸、5,5’−ジエチル−3,3’−ジフルオロベンゾフェノン−4,4’−ジイソシアン酸、2,2−ビス(4−イソシアネートフェニル)プロパン、2,2−ビス(3,5−ジクロロ−4−イソシアネートフェニル)プロパン、2,2−ビス(4−イソシアネートフェニル)ヘキサフルオロプロパン、2,2−ビス(3−フルオロ−4−イソシアネートフェニル)ヘキサフルオロプロパン、ビス(4−イソシアネートフェニル)エーテル、ビス(3,5−ジフルオロ−4−イソシアネートフェニル)エーテル、ビス(4−イソシアネートフェニル)スルフィド、ビス(3,5−ジブロモ−4−イソシアネートフェニル)スルフィド、ビス(4−イソシアネートフェニル)ジスルフィド、ビス(4−イソシアネートフェニル)スルホン、ビス(4−イソシアネートフェニル)スルホキシド、ビス(3,5−ジフルオロ−4−イソシアネートフェニル)スルホキシド、1,1−ビス(4−イソシアネートフェニル)シクロプロパン、1,1−ビス(4−イソシアネートフェニル)シクロオクタン、1,1−ビス(4−イソシアネートフェニル)シクロヘキサン、1,1−ビス(3,5−ジクロロ−4−イソシアネートフェニル)シクロヘキサン、4,4’−(シクロヘキシルメチレン)ビス(イソシアネートベンゼン)、4,4’−(シクロヘキシルメチレン)ビス(1−イソシアネート−2−クロロベンゼン)、2,2−ビス(4−イソシアネートフェニル)マロン酸ジエチル、2,2−ビス(3−クロロ−4−イソシアネートフェニル)マロン酸ジエチル、4−(ジp−イソシアネートフェニルメチル)ピリジン、1−(ジp−イソシアネートフェニルメチル)−1H−ピロール、1−(ジp−イソシアネートフェニルメチル)−1H−イミダゾール、2−(ジp−イソシアネートフェニルメチル)オキサゾール等のジイソシアネート化合物とそれら誘導体と、4,4’−ジフェニルメタンジイソチオシアナート、4,4’−メチレンビス(2,6−ジエチルフェニルイソチオシアナート)、4,4’−メチレンビス(2,6−ジ−t−ブチルフェニルイソチオシアナート)、1,3−ビス(イソチオシアナートメチル)シクロヘキサン、ベンゾフェノン−4,4’−ジイソチオシアン酸、3,3’−ジフルオロベンゾフェノン−4,4’−ジイソチオシアン酸、2,2−ビス(3,5−ジクロロ−4−イソチオシアネートフェニル)プロパン、ビス(4−イソチオシアネートフェニル)エーテル、ビス(4−イソチオシアネートフェニル)スルホン、ビス(4−イソチオシアネートフェニル)スルホキシド、ビス(3,5−ジフルオロ−4−イソチオシアネートフェニル)スルホキシド、1,1−ビス(4−イソチオシアネートフェニル)シクロプロパン、1,1−ビス(4−イソチオシアネートフェニル)シクロオクタン、4,4’−(シクロヘキシルメチレン)ビス(イソチオシアネートベンゼン)、2,2−ビス(4−イソチオシアネートフェニル)マロン酸ジエチル、1−(ジp−イソチオシアネートフェニルメチル)−1H−ピロール、2−(ジp−イソチオシアネートフェニルメチル)オキサゾール等のジイソチオシアネート化合物とそれら誘導体である。
【0040】
本発明においては、特に前記一般式(1)〜(3)で表される芳香族縮環系化合物を含有することが好ましい。
【0041】
好ましい例としては、前記一般式(1)〜(3)で表される化合物若しくはこれらの化合物の誘導体を挙げることができる。
【0042】
〈一般式(1)で表される化合物〉
一般式(1)で表される化合物としては、2,7−ジアミノフルオレン、2,7−ジアミノ−4,5−ジニトロフルオレン、2,7−ジアミノ−3,4,5、6−テトラクロロフルオレン、2,7−ジアミノ−3,6−ジフルオロフルオレン、2,7−ジアミノ−9−(n−ヘキシル)フルオレン、9、9−ジメチル−2,7−ジアミノフルオレン、2,7−ジアミノ−9−ベンジルフルオレン、9,9−ビスフェニル−2,7−ジアミノフルオレン、2,7−ジアミノ−9−メチルフルオレン、9,9−ビス(3,4−ジクロロフェニル)−2,7−ジアミノフルオレン、9,9−ビス(3−メチル−4−クロロフェニル)−2,7−ジアミノフルオレン、9,9−ビス(メチルオキシエチル)−2,7−ジアミノフルオレン、2,7−ジアミノ−3,6−ジメチル−9−アミノメチルフルオレン、などが挙げられるがこの限りではない。
【0043】
〈一般式(2)で表される化合物〉
一般式(2)で表される化合物としては、2,7−ジアミノ−9−フルオレンカルボン酸、2,7−ジアミノ−9−フルオレンカルボキシアルデヒド、2,7−ジアミノ−9−ヒドロキシフルオレン、2,7−ジアミノ−3,6−ジフルオロ−9−ヒドロキシフルオレン、2,7−ジアミノ−4,5−ジブロモ−9−メルカプトフルオレン、2,7,9−トリアミノフルオレン、2,7−ジアミノ−9−ヒドロキシメチルフルオレン、2,7−ジアミノ−9−(メチルオキシ)フルオレン、2,7−ジアミノ−9−アセトキシフルオレン、2,7−ジアミノ−3,6−ジエチル−9−(パーフルオロフェニルオキシ)フルオレン、2,7−ジアミノ−4,5−ジフルオロ−9−(アセトアミド)フルオレン、2,7−ジアミノ−N−イソプロピルフルオレン−9−カルボキシアミド、2,7−ジアミノ−4,5−ジブロモ−9−メチルスルフィニルフルオレン、などが挙げられるがこの限りではない。
【0044】
〈一般式(3)で表される化合物〉
一般式(3)で表される化合物としては、9,9−ジメチル−2,7−ジアミノフルオレノン、2,7−ジアミノ−9−ベンジルフルオレノン、9,9−ビスフェニル−2,7−ジアミノフルオレノン、2,7−ジアミノ−9−メチルフルオレノン、9,9−ビス(3,4−ジクロロフェニル)−2,7−ジアミノフルオレノン、9,9−ビス(3−メチル−4−クロロフェニル)−2,7−ジアミノフルオレノン、9−ヘキシリデン−2,7−ジアミノ−4,5−ジクロロフルオレン、1−(2,7−ジアミノ−9−フルオレニリデン)−2−フェニルヒドラジン、2−((2,7−ジアミノ−1,8−ジメチル−9−フルオレニリデン)メチル)ピリジン、などが挙げられるがこの限りではない。
【0045】
本発明においては、例えば、上記フルオレン例示化合物を脂肪族若しくは芳香族のジオール、ジアミン、ジイソシアネート、ジイソチオシアネートなどと反応させてポリウレア若しくはポリウレタン構造等を形成してから下記一般式(4)〜(6)で表される化合物、もしくはそれらより形成される高分子量体と混ぜて複合材料とすることもできる。
【0046】
【化4】

【0047】
(式中、Raは、各々独立に水素原子、アルキル基、アリール基、電子吸引性基を含むアルキル基、電子吸引性基を含むアリール基もしくはヘテロアリール基を表す。Xは、結合しうる炭素以外の原子、もしくはなくてもよい。nはXの原子価−1以下の整数を表す。)
一般式(4)で表される化合物で表される化合物としては、p−アセトキシスチレン、p−アセチルスチレン、p−ベンゾイルスチレン、p−トリフルオロアセチルスチレン、p−モノクロロアセチルスチレン、p−(パーフルオロブチリルオキシ)スチレン、p−(パーフルオロベンゾイルオキシ)スチレン、S−4−ビニルフェニルピリジン−2−カルボチオエート、及びN−(4−ビニルフェニル)ピコリナミド、などが挙げられるがこの限りではない。
【0048】
【化5】

【0049】
(式中、Rbは、各々独立に電子吸引性基を含むアルキル基、電子吸引性基を含むアリール基もしくはヘテロアリール基を表す。Xは結合しうる炭素以外の原子、又はなくてもよい。nはXの原子価−1以下。)
一般式(5)で表される化合物としては、p−トリフルオロメチルスチレン、p−ジブロモメチルスチレン、p−トリフルオロメトキシスチレン、p−パーフルオロフェノキシスチレン、p−ビス(トリフルオロメチル)アミノスチレン、及びp−(1H−イミダゾリルオキシ)スチレン、などが挙げられるがこの限りではない。
【0050】
【化6】

【0051】
(式中、Rcは、各々独立に電子吸引性基を含むアルキル基、電子吸引性基を含むアリール基もしくはヘテロアリール基を表す。Xは結合しうる炭素以外の原子、又はなくてもよい。nはXの原子価−1以下の整数を表す。)
一般式(6)で表される化合物としては、p−(メタンスルホニルオキシ)スチレン、p−(トリフルオロメタンスルホニルオキシ)スチレン、p−トルエンスルホニルスチレン、p−(パーフルオロプロピルスルホニルオキシ)スチレン、p−(パーフルオロベンゼンスルホニルオキシ)スチレン、及び(4−ビニルフェニル)ビス(トリフルオロメタンスルホニル)アミド、などが挙げられるがこの限りではない。
【0052】
なお、本発明においては、エチレングリコール、グリセリン、トリエチレングリコール、ポリエチレングリコール、ポリビニルアルコール、4,4−メチレンビスフェノールなどのアルコール化合物等、さらにアミノ基と水酸基の両方を有するエターノルアミン、アミノブチルフェノール、4−(4−アミノベンジル)フェノール(ABP)などのアミノアルコール類、アミノフェノール類等も用いることができる。
【0053】
〈マクロモノマー〉
本願において、「マクロモノマー」とは、分子鎖の末端の少なくとも一箇所に、イソシアネート基、活性水素を有する基又はビニル基等の重合可能な官能基を有し、ウレア結合(−NR1CONR2−)、チオウレア結合(−NR3CSNR4−)、ウレタン結合(−OCONR1−)、アミド結合(−CONR1−)、エーテル結合(−O−)、エステル結合(−CO2−)及びカーボネート結合(−CO2−)から選ばれる2個以上の結合を有する化合物のことをいう。
【0054】
なお、本願においては、「ウレタン結合」におけるR1は、水素原子又は炭素数1〜10のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等)を表し、好ましくは、水素原子又は炭素数5以下のアルキル基であり、更に好ましくは、水素原子又はメチル基である。また、「アミド結合」におけるR1は、水素原子又は炭素数1〜10のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等)を表し、好ましくは、水素原子又は炭素数5以下のアルキル基であり、更に好ましくは、水素原子又はメチル基である。
【0055】
本発明に係るマクロモノマーは、双極子モーメントを有するウレア結合又はチオウレア結合を有していることが好ましい。すなわち、本発明に係るマクロモノマーは、反応性基を有するモノマーを逐次縮合させることにより、双極子モーメントを有する複数の結合及び連結基を導入することができるため、従来では困難だった樹脂組成物の溶解性や剛直性の調整が原料の選択により可能となる。又、マクロモノマーを原料とすることで、残モノマーの影響を排除できるため、圧電材料としての耐熱性及び圧電特性を著しく向上させることができる。
【0056】
なお、「ウレア結合」は、一般式:−NR1CONR2−で表される。又、「チオウレア結合」は、一般式:−NR3CSNR4−で表される。
【0057】
ここで、R1及びR2は、各々独立に水素原子又は炭素数1〜10のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等)を表し、好ましくは、水素原子又は炭素数5以下のアルキル基であり、更に好ましくは、水素原子又はメチル基である。
【0058】
ウレア結合又はチオウレア結合は、如何なる手段を用いて形成されても良いが、イソシアネートとアミン、イソチオシアネートとアミンとの反応で得ることができる。又、1,3−ビス(2−アミノエチル)ウレア、1,3−ビス(2−ヒドロキシエチル)ウレア、1,3−ビス(2−ヒドロキシプロピル)ウレア、1,3−ビス(2−ヒドロキシメチル)チオウレア、1,3−ビス(2−ヒドロキシエチル)チオウレア、1,3−ビス(2−ヒドロキシプロピル)チオウレア等の様に、末端にヒドロキシル基又はアミノ基を有するアルキル基で置換されたウレア化合物を原料としてマクロモノマーを合成しても良い。
【0059】
原料として使用するイソシアネートは、分子内にイソシアネート基を2つ以上有するポリイソシアネートであれば特に構わないが、アルキルポリイソシアネート又は芳香族ポリイソシアネートが好ましく、アルキルジイソシアネート又は芳香族ジイソシアネートが更に好ましい。又、原料として、非対称ジイソシアネート(例えば、p−イソシアネートベンジルイソシアネート等)を併用しても良い。
【0060】
アルキルポリイソシアネートとは、複数のイソシアネート基が全てアルキル鎖を介して存在している化合物であり、例えば、1,3−ビス(イソシアナトメチル)シクロヘキサン、ジイソシアン酸イソホロン、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ペンタメチレンジイソシアネート、ヘキサメチレンジイソシアネート、1,3−シクロペンタンジイソシアネート等が挙げられる。
【0061】
芳香族ポリイソシアネートとは、複数のイソシアネート基が全て芳香族環と直接結合している化合物であり、例えば、9H−フルオレン−2,7−ジイソシアネート、9H−フルオレン−9−オン−2,7−ジイソシアネート、4,4’−ジフェニルメタンジイソシアナート、1,3−フェニレンジイソシアナート、トリレン−2,4−ジイソシアナート、トリレン−2,6−ジイソシアナート、1,3−ビス(イソシアナトメチル)シクロヘキサン、2,2−ビス(4−イソシアナトフェニル)ヘキサフルオロプロパン、1,5−ジイソシアナトナフタレン等が挙げられる。
【0062】
原料として使用するアミンは、分子内にアミノ基を2つ以上有するポリアミンが好ましく、ジアミンが最も好ましい。ポリアミンとして、例えば、2,7−ジアミノ−9H−フルオレン、3,6−ジアミノアクリジン、アクリフラビン、アクリジンイエロー、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン、4,4’−ジアミノベンゾフェノン、ビス(4−アミノフェニル)スルホン、4,4’−ジアミノジフェニルエーテル、ビス(4−アミノフェニル)スルフィド、1,1−ビス(4−アミノフェニル)シクロヘキサン、4,4’−ジアミノジフェニルメタン、3,3’−ジアミノジフェニルメタン、3,3’−ジアミノベンゾフェノン、4,4’−ジアミノ−3,3’−ジメチルジフェニルメタン、4−(フェニルジアゼニル)ベンゼン−1,3−ジアミン、1,5−ジアミノナフタレン、1,3−フェニレンジアミン、2,4−ジアミノトルエン、2,6−ジアミノトルエン、1,8−ジアミノナフタレン、1,3−ジアミノプロパン、1,3−ジアミノペンタン、2,2−ジメチル−1,3−プロパンジアミン、1,5−ジアミノペンタン、2−メチル−1,5−ジアミノペンタン、1,7−ジアミノヘプタン、N,N−ビス(3−アミノプロピル)メチルアミン、1,3−ジアミノ−2−プロパノール、ジエチレングリコールビス(3−アミノプロピル)エーテル、m−キシリレンジアミン、テトラエチレンペンタミン、1,3−ビス(アミノメチル)シクロヘキサン、ベンゾグアナミン、2,4−ジアミノ−1,3,5−トリアジン、2,4−ジアミノ−6−メチル−1,3,5−トリアジン、6−クロロ−2,4−ジアミノピリミジン、2−クロロ−4,6−ジアミノ−1,3,5−トリアジン等が挙げられる。これらのポリアミンにホスゲン、トリホスゲン又はチオホスゲンを反応させて、ポリイソシアネート又はポリイソチオシアネート(以下、ポリイソ(チオ)シアネートと称す)を合成し、マクロモノマーの原料として用いても良く、これらのポリアミンを鎖伸長剤として用いても良い。
【0063】
マクロモノマーを合成する際、アミノ基とヒドロキシル基の反応性の差を利用することにより、定序性の高いマクロモノマー合成することが出来る。このため、マクロモノマーは少なくとも1つのウレタン結合を有することが好ましい。ウレタン結合は、ヒドロキシル基とイソシアネート基との反応で得ることが出来るが、ヒドロキシル基を有する化合物としては、ポリオール、アミノアルコール、アミノフェノール、アルキルアミノフェノール等を挙げることができる。好ましくはポリオール又はアミノアルコールであり、更に好ましくはアミノアルコールである。
【0064】
ポリオールは、分子内に少なくとも2つ以上のヒドロキシル基を有する化合物であり、好ましくはジオールである。ポリオールとして、例えば、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、ポリエチレングリコール、ポリテトラメチレングリコール、1,4−シクロヘキサンジメタノール、ペンタエリスリトール、3−メチル−1,5−ペンタンジオール、ポリ(エチレンアジペート)、ポリ(ジエチレンアジペート)、ポリ(プロピレンアジペート)、ポリ(テトラメチレンアジペート)、ポリ(ヘキサメチレンアジペート)、ポリ(ネオペンチレンアジペート)等を挙げることができる。
【0065】
アミノアルコールは、分子内にアミノ基とヒドロキシル基を有する化合物であり、例えば、アミノエタノール、3−アミノ−1−プロパノール、2−(2−アミノエトキシ)エタノール、2−アミノ−1,3−プロパンジオール、2−アミノ−2−メチル−1,3−プロパンジオール、1,3−ジアミノ−2−プロパノール等を挙げることができる。又、これらのヒドロキシル基を有する化合物は、鎖伸長剤として用いても良い。
【0066】
マクロモノマーは、ウレア結合、チオウレア結合、ウレタン結合、エステル結合、エーテル結合の他に、アミド結合、カーボネート結合等を有していても良い。
【0067】
マクロモノマーは、分子量として400〜10,000を有するが、逐次合成の段階で2量体や3量体が生成するため、分子量分布を有していても良い。分子量とは、ゲルパーミエーションクロマトグラフィー(以下「GPC」と称す。)の測定によって得られる重量平均分子量であり、好ましくは400〜5000であり、更に好ましくは400〜3000である。分子量分布は、1.0〜6.0が好ましく、更に好ましくは1.0〜4.0であり、特に好ましくは1.0〜3.0である。
【0068】
なお、分子量及び分子量分布の測定は、下記の方法・条件等に準拠して行うことができる。
【0069】
溶媒 :30mM LiBr in N−メチルピロリドン
装置 :HLC−8220GPC(東ソー(株)製)
カラム :TSKgel SuperAWM−H×2本(東ソー(株)製)
カラム温度:40℃
試料濃度 :1.0g/L
注入量 :40μl
流量 :0.5ml/min
校正曲線 :標準ポリスチレン:PS−1(Polymer Laboratories社製)Mw=580〜2,560,000までの9サンプルによる校正曲線を使用した。
【0070】
本発明においては、マクロモノマーを重合することにより、圧電特性を有する樹脂組成物が得られるため、マクロモノマー末端の少なくとも一方が、イソシアナート基、活性水素を有する基、ビニル基、アクリロイル基又はメタアクリロイル基であることが好ましい。活性水素を有する基としては、アミノ基、ヒドロキシル基、カルボキシル基、イミノ基又はチオール基が挙げられるが、好ましくは、アミノ基、ヒドロキシル基又はカルボキシル基であり、更に好ましくは、アミノ基又はヒドロキシル基である。
【0071】
マクロモノマー又は重合した樹脂組成物の配向性を向上させるために、前記一般式4〜6のように分子内に大きな双極子モーメントを有する化合物と重合させることが好ましい。
【0072】
マクロモノマー又は重合した樹脂組成物の配向性を向上させるために、マクロモノマーの部分構造として、少なくとも1つの芳香族縮環構造を有することが好ましい。芳香族縮環構造としては、例えば、ナフタレン構造、キノリン構造、アントラセン構造、フェナンスレン構造、ピレン構造、トリフェニレン構造、ペリレン構造、フルオランテン構造、インダセン構造、アセナフチレン構造、フルオレン構造、フルオレン−9−オン構造、カルバゾール構造、テトラフェニレン構造、及び、これらの構造にさらに縮環した構造(例えば、アクリジン構造、ベンゾアントラセン構造、ベンゾピレン構造、ペンタセン構造、コロネン構造、クリセン構造等)等が挙げられる。
【0073】
好ましい芳香族縮環構造としては、下記一般式(ACR1)〜(ASR4)の構造が挙げられる。
【0074】
【化7】

【0075】
一般式(ACR1)において、R11及びR12は、各々独立に水素原子、又は置換基を表し、置換基としては、例えば炭素数1〜25のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基等)、アリール基(フェニル基等)、複素環基(ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、アルコキシ基(メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基等)、アシルオキシ基(アセチルオキシ基、プロピオニルオキシ基等)、アルコキシカルボニル基(メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(フェニルオキシカルボニル基等)、スルホンアミド基(メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、カルバモイル基(アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、カルボキシル基、ヒドロキシル基等を挙げることができる。好ましくは、水素原子、ヒドロキシル基、カルボキシル基、アルコキシ基、アシルオキシ基又はアルキル基であり、更に好ましくは、水素原子、アルキル基、ヒドロキシル基又アシルオキシ基であり、特に好ましくは水素原子又はアルキル基である。
【0076】
なお、アスタリスク(*)は、結合点を表す。
【0077】
一般式(ACR2)において、X2は、酸素原子、N−R23、C−R24を表し、R23としては、水素原子、ヒドロキシル基、アルコキシ基、アルキル基、アミノ基を表し、好ましくはヒドロキシル基又はアルコキシ基である。R24は、アルキル基、アリール基又は複素環基を表すが、好ましくはアルキル基又はアリール基であり、特に好ましくは、アルキル基である。
【0078】
なお、アスタリスク(*)は、結合点を表す。
【0079】
一般式(ACR3)において、X3は、窒素原子又はN+−R33を表し、R33は、アルキル基又はアリール基を表す。X3がN+の場合は、電荷を中和するためのカウンターイオンを有していても良く、カウンターイオンとしては、Cl-、Br-、I-、BF4-等が挙げられる。
【0080】
なお、アスタリスク(*)は、結合点を表す。
【0081】
一般式(ACR4)において、アスタリスク(*)は、結合点を表す。
【0082】
これらの芳香族縮環構造は、置換基を有しても良く、置換基としては、ハロゲン原子、炭素数1〜25のアルキル基(メチル基、エチル基、プロピル基、イソプロピル基、tert−ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基等)、ハロゲン化アルキル基(トリフルオロメチル基、パーフルオロオクチル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基等)、アルキニル基(プロパルギル基等)、グリシジル基、アクリレート基、メタクリレート基、アリール基(フェニル基等)、複素環基(ピリジル基、チアゾリル基、オキサゾリル基、イミダゾリル基、フリル基、ピロリル基、ピラジニル基、ピリミジニル基、ピリダジニル基、セレナゾリル基、スリホラニル基、ピペリジニル基、ピラゾリル基、テトラゾリル基等)、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子、フッ素原子等)、アルコキシ基(メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、シクロペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(フェノキシ基等)、アルコキシカルボニル基(メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基等)、アリールオキシカルボニル基(フェニルオキシカルボニル基等)、スルホンアミド基(メタンスルホンアミド基、エタンスルホンアミド基、ブタンスルホンアミド基、ヘキサンスルホンアミド基、シクロヘキサンスルホンアミド基、ベンゼンスルホンアミド基等)、スルファモイル基(アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、フェニルアミノスルホニル基、2−ピリジルアミノスルホニル基等)、ウレタン基(メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、フェニルウレイド基、2−ピリジルウレイド基等)、アシル基(アセチル基、プロピオニル基、ブタノイル基、ヘキサノイル基、シクロヘキサノイル基、ベンゾイル基、ピリジノイル基等)、カルバモイル基(アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、フェニルアミノカルボニル基、2−ピリジルアミノカルボニル基等)、アミド基(アセトアミド基、プロピオンアミド基、ブタンアミド基、ヘキサンアミド基、ベンズアミド基等)、スルホニル基(メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、フェニルスルホニル基、2−ピリジルスルホニル基等)、アミノ基(アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、アニリノ基、2−ピリジルアミノ基等)、シアノ基、カルボキシル基、ヒドロキシル基等を挙げることができる。又これらの基は更にこれらの基で置換されていてもよい。又、置換基が複数ある場合、同じでも異なっていても良く、互いに結合して縮環構造を形成しても良い。好ましくは、水素原子、ハロゲン原子、アミド基、アルキル基又はアリール基であり、更に好ましくは、水素原子、ハロゲン原子、アミド基又はアルキル基であり、特に好ましくは水素原子、ハロゲン原子又はアルキル基である。
【0083】
以下に、好ましい芳香族縮環構造の具他例を挙げるが、本発明はこれに限定されない。
【0084】
【化8】

【0085】
【化9】

【0086】
〈マクロモノマーの合成〉
マクロモノマーは、活性水素を有する化合物を出発原料とし、ポリイソ(チオ)シアネートと活性水素を有する化合物を交互に縮合させていく方法、ポリイソ(チオ)シアネートを出発原料とし、活性水素を有する化合物とポリイソ(チオ)シアネートを交互に縮合させていく方法で合成することができる。
【0087】
活性水素を有する化合物は、前述で挙げた、末端にヒドロキシル基又はアミノ基を有するアルキル基で置換されたウレア化合物、ポリアミン、ポリオール、アミノアルコール、アミノフェノール、アルキルアミノフェノール等が挙げられる。出発原料としては、末端にヒドロキシル基又はアミノ基を有するアルキル基で置換されたウレア化合物又はポリアミンが好ましく、芳香族縮環構造を有するポリアミンが更に好ましい。交互に縮合させていく工程に用いる場合は、アミノアルコール又はポリオールが好ましい。
【0088】
ポリイソ(チオ)シアネートを出発原料とした場合、出発原料としては、芳香族縮環構造を有するポリイソ(チオ)シアネートが好ましい。活性水素を有する化合物と縮合させて、末端に活性水素を有する化合物合成しても良く、特開平5−115841号公報に記載の方法で、ジアミンを形成させても良い。
【0089】
又、末端に活性水素を有するマクロモノマーに、3−クロロ−1−ブテン、アリルクロライド、塩化アクリロイル又は塩化メタアクリロイル等を反応させることにより、末端にビニル基、アクリロイル基又はメタアクリロイル基を有するマクロモノマーを合成することが出来る。
【0090】
ポリイソ(チオ)シアネートと活性水素を有する化合物の反応において、末端の少なくとも一方をイソシアネート基とする場合、ポリイソ(チオ)シアネートは活性水素を有する化合物に対する使用量は、1倍モル〜10倍モルが好ましく、更に好ましくは1倍モル〜5倍モルであり、更に好ましくは1〜3倍モルである。
【0091】
ポリイソ(チオ)シアネートと活性水素を有する化合物の反応において、末端の少なくとも一方を活性水素とする場合、活性水素を有する化合物はポリイソ(チオ)シアネートに対する使用量は、1倍モル〜10倍モルが好ましく、更に好ましくは1倍モル〜5倍モルであり、更に好ましくは1〜3倍モルである。
【0092】
縮合させる反応温度は、できるだけ低い方が好ましく、−40〜60℃、好ましくは−20〜30℃であり、より好ましくは−10〜10℃である。また、反応温度は、反応開始から終了まで一定の温度で行なってもよく、初期に低温で行ないその後、温度上げてもよい。
【0093】
反応に用いる溶媒は、目的の樹脂組成物が高極性であることと、重合を効率的に進行させるため、高極性溶媒を用いる必要がある。例えば、DMF(N,N−ジメチルホルムアミド)、DMAc(N,N−ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、NMP(N−メチルピロリドン)等の高極性非プロトン溶媒を選択することが好ましいが、反応基質及び目的物が良好に溶解しさえすればシクロヘキサン、ペンタン、ヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素類、THF(テトラヒドロフラン)、ジエチルエーテル、エチレングリコールジエチルエーテル等のエーテル類、アセトン、メチルエチルケトン、4−メチル−2−ペンタノン等のケトン類、プロピオン酸メチル、酢酸エチル、酢酸ブチル等のエステル類などの溶媒であってもよく、これらを混合して用いてもよい。
【0094】
ウレタン結合生成を効率よく進行させるため、N,N,N’,N’−テトラメチル−1,3−ブタンジアミン、トリエチルアミン、トリブチルアミンなどの三級アルキルアミン類、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]ウンデ−7−エンなどの縮環アミン類、DBTL、テトラブチルスズ、トリブチルスズ酢酸エステルなどのアルキルスズ類等、公知のウレタン結合生成触媒を用いることができる。
【0095】
触媒の使用量は、効率のよい反応及び反応操作を考慮して、モノマー基質に対して0.1〜30mol%用いるのが好ましい。
【0096】
マクロモノマーは、縮合工程毎に単離を行っても良く、ワンポットで合成しても良いが、末端が活性水素を有する化合物を形成時に単離精製を行うことが好ましい。
【0097】
マクロモノマーの精製は、如何なる手段を用いても良いが、再沈による精製が好ましい。再沈の方法は、特に限定されないが、マクロモノマーを良溶媒に溶解した後、貧溶媒に滴下して析出させる方法が好ましい。
【0098】
ここで言う「良溶媒」とは、マクロモノマーが溶解する溶媒であれば、如何なる溶媒でも構わないが、好ましくは極性溶媒であり、具体的には、DMF(N,N−ジメチルホルムアミド)、DMAc(N,N−ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、NMP(N−メチルピロリドン)等の高極性非プロトン溶媒を挙げることができる。
【0099】
又、「貧溶媒」とは、マクロモノマーが溶解しない溶媒であれば、如何なる溶媒でも構わないが、シクロヘキサン、ペンタン、ヘキサン等の脂肪族炭化水素類、ベンゼン、トルエン、クロロベンゼン等の芳香族炭化水素類、ジエチルエーテル、エチレングリコールジエチルエーテル等のエーテル類、プロピオン酸メチル、酢酸エチル、酢酸ブチル等のエステル類、メタノール、エタノール、プロパノール等のアルコール類を挙げることができる。
【0100】
以下に、マクロモノマーの具他例を挙げるが、本発明はこれに限定されない。
【0101】
【化10】

【0102】
【化11】

【0103】
【化12】

【0104】
【化13】

【0105】
【化14】

【0106】
【化15】

【0107】
【化16】

【0108】
【化17】

【0109】
【化18】

【0110】
【化19】

【0111】
【化20】

【0112】
【化21】

【0113】
【化22】

【0114】
【化23】

【0115】
【化24】

【0116】
【化25】

【0117】
【化26】

【0118】
(マクロモノマーの合成例)
〈合成例1:マクロモノマー(M−8)の合成〉
窒素雰囲気下、9H−フルオレン−2,7−ジイソシアネート 85.27gをTHF850mlに溶解し、0℃で2−クロロ−4,6−ジアミノ−1,3,5−トリアジン 5.0gをTHF50mlに溶解し、ゆっくりと滴下した。滴下終了後、0℃で1時間攪拌した後、室温で更に2時間攪拌を行った。反応溶液中の溶媒を減圧濃縮で2/3留去した後、酢酸エチル−ヘプタンの混合溶媒を用いて再沈し、上澄みをデカントで除去した後、減圧乾燥を行うことにより、マクロモノマー(M−8)を20.0g得た。1H−NMRにより、目的物であることを確認した。
【0119】
〈合成例2:マクロモノマー(M−15)の合成〉
ジエチルアミン40gとTHF50mlを混合し、THF50mlに溶解した9H−フルオレン−2,7−ジイソシアネート 20gを室温で滴下した。滴下終了後、室温で1時間攪拌した後、析出物をろ取し、THFで洗浄を行った。
【0120】
続いて、得られた化合物 30gと2,2−ジメチル−1,3−プロパンジアミン 180gを混合し、120℃で加熱を行った。留出物を除去し、留出物が無くなったところで、減圧条件下で留出物が無くなるまで減圧留去を行った。得られた残渣をTHFで洗浄し、十分に乾燥させることにより、1,1’−(9H−フルオレン−2,7−ジイル)ビス(3−(3−アミノ−2,2−ジメチルプロピル)ウレア)を得た。
【0121】
窒素雰囲気下、p−イソシアネートベンジルイソシアネート 7gをジメチルスルホキシド70mlに溶解し、反応溶液を0℃に冷却した。ジメチルスルホキシド30mlに溶解した1,1’−(9H−フルオレン−2,7−ジイル)ビス(3−(3−アミノ−2,2−ジメチルプロピル)ウレア) 3gをゆっくりと滴下し、滴下終了後、0℃で1時間攪拌を行った。徐々に温度を上昇させ、室温で1時間反応を行った後、酢酸エチルを用いて再沈を行った。上澄みをデカントで除去した後、減圧乾燥を行うことにより、マクロモノマー(M−15)を6.5g得た。GPC測定による重量平均分子量は810であり、分子量分布は1.6であった。
【0122】
〈合成例3:マクロモノマー(M−31)の合成〉
窒素雰囲気下、9H−フルオレン−2,7−ジイソシアネート5.0gをTHF50mlに溶解し、0℃でTHF30mlに溶解した3−アミノプロパノール3.2gをゆっくりと滴下した。滴下終了後、0℃で1時間攪拌し、溶液(A)を得た。
【0123】
1,3−フェニレンジイソシアネート13.0gをTHF65mlに溶解し、反応溶液を70℃に加温しながら、溶液(A)を滴下した。滴下終了後、70℃で5時間攪拌した後、反応液の溶媒量を減圧下で3/2まで濃縮した。残渣に酢酸エチル−ヘプタンの混合液を加えて攪拌し、デカントで上澄みを除去し、減圧乾燥させることにより、マクロモノマー(M−31)を12.5g得た。GPC測定による重量平均分子量は750であり、分子量分布は2.0であった。
【0124】
〈合成例4:マクロモノマー(M−35)の合成〉
窒素雰囲気下、9H−フルオレン−2,7−ジイソシアネート5.0gをTHF50mlに溶解し、室温でTHF30mlに溶解した2−(2−アミノエトキシ)エタノール10.0gをゆっくりと滴下した。滴下終了後、室温で3時間攪拌した。残渣を濃縮後、再結晶を行うことにより、マクロモノマー(M−35)を9.2g得た。1H−NMRにより、目的物であることを確認した。
【0125】
(溶媒)
本発明で重合時に使用し得る溶媒としては、一般的に高分子材料合成に使用されている溶媒が使用でき、テトラヒドロフラン、アセトン、メチルエチルケトン、酢酸エチル、塩化メチレン、クロロホルム、トルエン、ヘキサンなどを挙げることができるがこの限りではない。
【0126】
(有機圧電膜)
本発明に係る有機圧電膜は、上記高分子材料等を主たる構成成分として、蒸着重合法、溶融法、流延法など従来公知の種々の方法で作製することができる。
【0127】
本発明においては、有機圧電膜の作製方法として、基本的には、上記高分子材料等の溶液を基板上に塗布し、乾燥して得る方法、又は上記高分子材料の原料化合物を用いて従来公知の蒸着重合法や溶液重合塗布法などにより高分子膜を形成する方法を採用することができる。
【0128】
蒸着重合法の具体的方法・条件については、特開平7−258370号公報、特開平5−311399号公報、及び特開2006−49418号公報に開示されている方法等が参考となる。
【0129】
溶液重合塗布法の具体的方法・条件については、従来公知の種々の方法等に従って行うことができる。例えば、原料の混合溶液を基板上に塗布し、減圧条件下である程度乾燥後(溶媒を除去した後)、加熱し、熱重合し、その後又は同時に分極処理をして有機圧電膜を形成する方法が好ましい。
【0130】
なお、圧電特性を上げるには、分子配列を揃える処理を加えることが有用である。手段としては、延伸製膜、分極処理などが挙げられる。
【0131】
延伸製膜の方法については、種々の公知の方法を採用することができる。例えば、上記有機高分子材料をエチルメチルケトン(MEK)などの有機溶媒に溶解した液をガラス板などの基板上に流延し、常温にて溶媒を乾燥させ、所望の厚さのフィルムを得て、このフィルムを室温で所定の倍率の長さに延伸する。当該延伸は、所定形状の有機圧電膜が破壊されない程度に一軸・ニ軸方向に延伸することができる。延伸倍率は2〜10倍、好ましくは2〜6倍である。
【0132】
(分極処理)
本発明の有機圧電材料は、コロナ放電により分極処理を施される際、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されることが好ましい。
【0133】
当該分極処理は、水・酸素に起因する材料表面の酸化を防ぎ、圧電性を損なわないため等の理由から、窒素もしくは希ガス(ヘリウム、アルゴン等)気流下、質量絶対湿度が0.004以下の環境中で施される態様が好ましい。特に窒素気流下が好ましい。
【0134】
また、前記第1面上に接するように設置された平面電極を含む有機圧電材料、もしくは第2の面側に設けられた円柱状のコロナ放電用電極の少なくとも一方が、一定の速度で移動しながらコロナ放電が施されることが好ましい。
【0135】
なお、本願において、「質量絶対湿度」とは、乾き空気の質量mDA[kg]に対して湿り空気中に含まれる水蒸気(water vapor)の質量がmw[kg]であるとき、下記式で定義される比SH(Specific humidity)をいい、単位は[kg/kg(DA)]で表される(DAはdry air の略)。但し、本願においては、当該単位を省略して表現する。
【0136】
(式):SH=mw/mDA[kg/kg(DA)]
ここで、水蒸気を含む空気を「湿り空気」といい、湿り空気から水蒸気を除いた空気を「乾き空気(dry air)」という。
【0137】
なお、窒素もしくは希ガス(ヘリウム、アルゴン等)気流下での質量絶対湿度の定義は、上記の空気の場合に準じ、乾き気体の質量mDG[kg]に対して湿り気体に含まれる水蒸気の質量がmw[kg]であるとき、上記式に準じて定義される比SHをいい、単位は[kg/kg(DG)]で表される(DGはdry gasの略)。但し、本願においては、当該単位を省略して表現する。
【0138】
また、「設置」とは、予め別途作製された既存の電極を有機圧電材料面上に接するように設け置くこと、又は電極構成材料を有機圧電材料面上に蒸着法等により付着させ、当該面上において電極を形成することをいう。
【0139】
なお、本発明の有機圧電材料により形成される有機圧電膜は、その形成過程において電場中で形成されること、すなわち、当該形成過程において分極処理を施すことが好ましい。このとき磁場を併用しても良い。
【0140】
本発明に係るコロナ放電処理法では、市販の高電圧電源と電極からなる装置を使用して処理することができる。
【0141】
放電条件は、機器や処理環境により異なるので適宜条件を選択することが好ましいが、高電圧電源の電圧としては正電圧・負電圧ともに1〜20kV、電流としては1〜80mA、電極間距離としては、0.5〜10cmが好ましく、印加電界は、0.5〜2.0MV/mであることが好ましい。分極処理中の有機圧電材料もしくは有機圧電膜は、50〜250℃が好ましく、70〜180℃がより好ましい。
【0142】
コロナ放電に使用する電極としては、分極処理を均一に施すために、上記のように円柱状の電極を用いることを要する。
【0143】
なお、本願において、円柱状の電極の円の直径は、0.1mm〜2cmであることが好ましい。当該円柱の長さは、分極処理を施す有機圧電材料の大きさに応じて適切な長さにすることが好ましい。例えば、一般的には、分極処理を均一に施す観点から、5cm以下であることが好ましい。
【0144】
これらの電極は、コロナ放電を行う部分では張っていることが好ましく、それらの両端に一定の加重をかける、もしくは一定の加重をかけた状態で固定するなどの方法で実現できる。
【0145】
また、これらの電極の構成材料としては、一般的な金属材料が使用可能だが、特に金、銀、銅が好ましい。
【0146】
前記第1の面上に接するように設置する平面電極は、均一な分極処理を行うためには有機圧電材料に均一に密着していることが好ましい。すなわち平面電極が施された基板上に有機高分子膜または有機圧電膜を形成した後にコロナ放電を行うことが好ましい。
【0147】
(基板)
基板としては、本発明に係る有機圧電体膜の用途・使用方法等により基板の選択は異なる。本発明においては、ポリイミド、ポリアミド、ポリイミドアミド、ポリエチレンテレフタラート(PET)、ポリエチレンナフタレート(PEN)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート樹脂、シクロオレフィンポリマーのようなプラスチック板又はフィルムを用いることができる。また、これらの素材の表面をアルミニウム、金、銅、マグネシウム、珪素等で覆ったものでもよい。またアルミニウム、金、銅、マグネシウム、珪素単体、希土類のハロゲン化物の単結晶の板又はフィルムでもかまわない。また基板自体使用しないこともある。
【0148】
(超音波振動子)
本発明に係る超音波振動子は、本発明の有機圧電材料を用いて形成した有機圧電膜を用いたことを特徴とする。当該超音波振動子は、超音波送信用振動子と超音波送信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)に用いられる超音波受信用振動子とすることが好ましい。
【0149】
なお、一般に、超音波振動子は膜状の圧電材料からなる層(又は膜)(「圧電膜」、「圧電体膜」、又は「圧電体層」ともいう。)を挟んで一対の電極を配設して構成され、複数の振動子を例えば1次元配列して超音波探触子が構成される。
【0150】
そして、複数の振動子が配列された長軸方向の所定数の振動子を口径として設定し、その口径に属する複数の振動子を駆動して被検体内の計測部位に超音波ビームを収束させて照射すると共に、その口径に属する複数の振動子により被検体から発する超音波の反射エコー等を受信して電気信号に変換する機能を有している。
【0151】
以下、本発明に係る超音波受信用振動子と超音波送信用振動子それぞれについて詳細に説明する。
【0152】
〈超音波受信用振動子〉
本発明に係る超音波受信用振動子は、超音波医用画像診断装置用探触子に用いられる超音波受信用圧電材料を有する振動子であって、それを構成する圧電材料が、本発明の有機圧電材料を用いて形成した有機圧電膜を用いたことを特徴とする。
【0153】
なお、超音波受信用振動子に用いる有機圧電材料ないし有機圧電膜は、厚み共振周波数における比誘電率が10〜50であることが好ましい。比誘電率の調整は、当該有機圧電材料を構成する化合物が有する前記置換基R、CF2基、CN基のような極性官能基の数量、組成、重合度等の調整、及び上記の分極処理によって行うことができる。
【0154】
〈超音波送信用振動子〉
本発明に係る超音波送信用振動子は、上記受信用圧電材料を有する振動子との関係で適切な比誘電率を有する圧電体材料により構成されることが好ましい。また、耐熱性・耐電圧性に優れた圧電材料を用いることが好ましい。
【0155】
超音波送信用振動子構成用材料としては、公知の種々の有機圧電材料及び無機圧電材料を用いることができる。
【0156】
有機圧電材料としては、上記超音波受信用振動子構成用有機圧電材料と同様の高分子材料を用いることできる。
【0157】
無機材料としては、水晶、ニオブ酸リチウム(LiNbO3)、ニオブ酸タンタル酸カリウム[K(Ta,Nb)O3]、チタン酸バリウム(BaTiO3)、タンタル酸リチウム(LiTaO3)、又はチタン酸ジルコン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウムストロンチウム(BST)等を用いることができる。尚、PZTはPb(Zr1nTin)O3(0.47≦n≦1)が好ましい。
【0158】
〈電極〉
本発明に係る圧電(体)振動子は、圧電体膜(層)の両面上又は片面上に電極を形成し、その圧電体膜を分極処理することによって作製されるものである。有機圧電材料を使用した超音波受信用振動子を作製する際には、分極処理を行う際に使用した前記第1面の電極をそのまま使用してもよい。当該電極は、金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、銅(Cu)、ニッケル(Ni)、スズ(Sn)などを主体とした電極材料を用いて形成する。
【0159】
電極の形成に際しては、まず、チタン(Ti)やクロム(Cr)などの下地金属をスパッタ法により0.02〜1.0μmの厚さに形成した後、上記金属元素を主体とする金属及びそれらの合金からなる金属材料、さらには必要に応じ一部絶縁材料をスパッタ法、蒸着法その他の適当な方法で1〜10μmの厚さに形成する。これらの電極形成はスパッタ法以外でも微粉末の金属粉末と低融点ガラスを混合した導電ペーストをスクリーン印刷やディッピング法、溶射法で形成することもできる。
【0160】
さらに、圧電体膜の両面に形成した電極間に、所定の電圧を供給し、圧電体膜を分極することで圧電素子が得られる。
【0161】
(超音波探触子)
本発明に係る超音波探触子は、超音波送信用振動子と超音波受信用振動子を具備する超音波医用画像診断装置用探触子(プローブ)であり、受信用振動子として、本発明に係る上記超音波受信用振動子を用いることを特徴とする。
【0162】
本発明においては、超音波の送受信の両方をひとつの振動子で担ってもよいが、より好ましくは、送信用と受信用で振動子は分けて探触子内に構成される。
【0163】
送信用振動子を構成する圧電材料としては、従来公知のセラミックス無機圧電材料でも、有機圧電材料でもよい。
【0164】
本発明に係る超音波探触子においては、送信用振動子の上もしくは並列に本発明の超音波受信用振動子を配置することができる。
【0165】
より好ましい実施形態としては、超音波送信用振動子の上に本発明の超音波受信用振動子を積層する構造が良く、その際には、本発明の超音波受信用振動子は他の高分子材料(支持体として上記の比誘電率が比較的低い高分子(樹脂)フィルム、例えば、ポリエステルフィルム)の上に添合した形で送信用振動子の上に積層してもよい。その際の受信用振動子と他の高分子材料と合わせた膜厚は、探触子の設計上好ましい受信周波数帯域に合わせることが好ましい。実用的な超音波医用画像診断装置および生体情報収集に現実的な周波数帯から鑑みると、その膜厚は、40〜150μmであることが好ましい。
【0166】
なお、当該探触子には、バッキング層、音響整合層、音響レンズなどを設けても良い。また、多数の圧電材料を有する振動子を2次元に並べた探触子とすることもできる。複数の2次元配列した探触子を順次走査して、画像化するスキャナーとして構成させることもできる。
【0167】
(超音波医用画像診断装置)
本発明に係る上記超音波探触子は、種々の態様の超音波診断装置に用いることができる。例えば、図1に示すような超音波医用画像診断装置において好適に使用することができる。
【0168】
図1は、本発明の実施形態の超音波医用画像診断装置の主要部の構成を示す概念図である。この超音波医用画像診断装置は、患者などの被検体に対して超音波を送信し、被検体で反射した超音波をエコー信号として受信する圧電体振動子が配列されている超音波探触子(プローブ)を備えている。また当該超音波探触子に電気信号を供給して超音波を発生させるとともに、当該超音波探触子の各圧電体振動子が受信したエコー信号を受信する送受信回路と、送受信回路の送受信制御を行う送受信制御回路を備えている。
【0169】
更に、送受信回路が受信したエコー信号を被検体の超音波画像データに変換する画像データ変換回路を備えている。また当該画像データ変換回路によって変換された超音波画像データでモニタを制御して表示する表示制御回路と、超音波医用画像診断装置全体の制御を行う制御回路を備えている。
【0170】
制御回路には、送受信制御回路、画像データ変換回路、表示制御回路が接続されており、制御回路はこれら各部の動作を制御している。そして、超音波探触子の各圧電体振動子に電気信号を印加して被検体に対して超音波を送信し、被検体内部で音響インピーダンスの不整合によって生じる反射波を超音波探触子で受信する。
【0171】
なお、上記送受信回路が「電気信号を発生する手段」に相当し、画像データ変換回路が「画像処理手段」に相当する。
【0172】
上記のような超音波診断装置によれば、本発明の圧電特性及び耐熱性に優れかつ高周波・広帯域に適した超音波受信用振動子の特徴を生かして、従来技術と比較して画質とその再現・安定性が向上した超音波像を得ることができる。
【実施例】
【0173】
以下、実施例を挙げて本発明を説明するが、本発明はこれらに限定されない。
【0174】
実施例1
《有機圧電膜1〜8を用いた超音波振動子の作製》
真空処理室内に前述のポリイミド基板を取り付け、4,4’−メチレンビス(2−クロロアニリン)と4,4’−ジフェニルメタンジイソシアナートの蒸着重合を行い、5μm(50000Å)の膜厚を有する蒸着重合膜1を作製した。このときの条件は、前記ジアミン化合物は95±3℃、前記イソシアナート化合物は70±3℃、基板には厚さ20μmで表面にアルミニウムを蒸着させ平面電極(第1面)を形成させたものを使用し、基板温度は25℃、蒸着処理室内は1.0×10-3Paであった。次にこの膜を取り出し、140℃で10分間、高圧電源装置と銅製で径が1mmである円柱状のコロナ放電用電極を使用して、窒素気流下、絶対湿度0.003の環境下、2.0MV/mの電界中で、コロナ放電用の電極を一定速度で膜の上空を往復運動させながらコロナ放電分極処理を行い、その後得られた有機圧電膜1のコロナ放電処理を行った面側の表面に蒸着によりアルミニウム電極を施し、超音波振動子1を得た。
【0175】
また超音波振動子2〜8の作製においても、表1,表2の条件の下、超音波振動子1と同様に作製した。
【0176】
《有機圧電膜9〜15を用いた超音波振動子の作製》
0.5Lの四つ口セパラブルフラスコに、滴下装置、温度計、窒素ガス導入管、攪拌装置及び還流冷却管を付し、さらにモノマーとして2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン16.7gと4,4’−メチレンビス(2−クロロフェニルイソシアナート)16.0gを脱水した0℃のテトラヒドロフラン250gを添加し、氷浴下、1時間重合した。その後殿物を濾取し、0℃に調温したアセトンで洗浄した。濾物を減圧乾燥して有機高分子材料7を30.1g得た。その後、有機高分子材料9を10g計りとり、N−メチルピロリドン90gに溶解させた。その後、平らなガラス基板上に乾燥膜厚5μmになるよう本溶液を塗布し、乾燥させ、有機高分子膜を作製した。次にこの膜を取り出し、前記の超音波振動子の作製法と同様にコロナ放電処理を行い、アルミニウム電極を施し、超音波振動子9を得た。
【0177】
また超音波振動子9〜15の作製においても、表1,表2の条件の下、超音波振動子9と同様に作製した。
【0178】
《比較膜1〜6を用いた超音波振動子の作製》
有機圧電膜1〜8を用いた超音波振動子の作製法に記載の蒸着重合膜1を140℃で10分間、高圧電源装置と剣山電極を用い、大気中、絶対湿度0.007の環境下、2.0MV/mの電界中でコロナ放電分極処理を行い、その後得られた膜のコロナ放電処理を行った面側の表面に蒸着によりアルミニウム電極を施し、比較超音波振動子1を得た。
【0179】
また比較超音波振動子2〜6の作製においても、表1,表2の条件のもと、有機圧電膜1〜8を用いた超音波振動子の作製、比較超音波振動子1と同様に作製した。
【0180】
《作製した膜の評価》
得られた超音波振動子1〜15、比較超音波振動子1〜6の評価は、Nano−R2/I2クローズドループ・リニアスキャナ搭載多機能AFM(PACIFIC NANOTECHNOLOGY社製)とFCE−1型強誘電体特性評価システム(東陽テクニカ社製)で圧電性を測定した。
【0181】
上記評価結果を表1,表2に示す。
【0182】
【表1】

【0183】
【表2】

【0184】
表1,表2に示した結果から明らかなように、本発明に係る実施例では、圧電性が比較例に比べ優れていることが分かる。
【0185】
[実施例2]
(探触子の作製と評価)
〈送信用圧電材料の作製〉
成分原料であるCaCO3、La23、Bi23とTiO2、及び副成分原料であるMnOを準備し、成分原料については、成分の最終組成が(Ca097La003)Bi401Ti415となるように秤量した。次に、純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて8時間混合し、十分に乾燥を行い、混合粉体を得た。得られた混合粉体を、仮成形し、空気中、800℃で2時間仮焼を行い仮焼物を作製した。次に、得られた仮焼物に純水を添加し、純水中でジルコニア製メディアを入れたボールミルにて微粉砕を行い、乾燥することにより圧電セラミックス原料粉末を作製した。微粉砕においては、微粉砕を行う時間および粉砕条件を変えることにより、それぞれ粒子径100nmの圧電セラミックス原料粉末を得た。それぞれ粒子径の異なる各圧電セラミックス原料粉末にバインダーとして純水を6質量%添加し、プレス成形して、厚み100μmの板状仮成形体とし、この板状仮成形体を真空パックした後、235MPaの圧力でプレスにより成形した。次に、上記の成形体を焼成した。最終焼結体の厚さは20μmの焼結体を得た。なお、焼成温度は、それぞれ1100℃であった。1.5×Ec(MV/m)以上の電界を1分間印加して分極処理を施した。
【0186】
〈受信用積層振動子の作製〉
前記実施例1において作製した超音波振動子1と厚さ50μmのポリエステルフィルムをエポキシ系接着剤にて貼り合わせた積層振動子を作製した。その後、上記と同様に分極処理をした。
【0187】
次に、常法に従って、上記の送信用圧電材料の上に受信用積層振動子を積層し、かつバッキング層と音響整合層を設置し超音波探触子を試作した。
【0188】
なお、比較例として、上記受信用積層振動子の代わりに、ポリフッ化ビニリデン共重合体のフィルム(有機圧電体膜)のみを用いた受信用積層振動子を上記受信用積層振動子に積層した以外、上記超音波探触子と同様の探触子を作製した。
【0189】
次いで、上記2種の超音波探触子について受信感度と絶縁破壊強度の測定をして評価した。
【0190】
なお、受信感度については、5MHzの基本周波数f1を発信させ、受信2次高調波f2として10MHz、3次高調波として15MHz、4次高調波として20MHzの受信相対感度を求めた。受信相対感度は、ソノーラメディカルシステム社(Sonora Medical System,Inc:2021Miller Drive Longmont,Colorado(0501 USA))の音響強度測定システムModel805(1〜50MHz)を使用した。
【0191】
絶縁破壊強度の測定は、負荷電力Pを5倍にして、10時間試験した後、負荷電力を基準に戻して、相対受信感度を評価した。感度の低下が負荷試験前の1%以内のときを良、1%を超え10%未満を可、10%以上を不良として評価した。
【0192】
上記評価において、本発明に係る受信用圧電(体)積層振動子を具備した探触子は、比較例に対して約1.2倍の相対受信感度を有しており、かつ絶縁破壊強度は良好であることを確認した。すなわち、本発明の超音波受信用振動子は、図1に示したような超音波医用画像診断装置に用いる探触子にも好適に使用できることが確認された。
【図面の簡単な説明】
【0193】
【図1】超音波医用画像診断装置と超音波探触子の構成を示す概念図
【図2】超音波医用画像診断装置の外観構成図
【符号の説明】
【0194】
1 受信用圧電材料(膜)
2 支持体
3 送信用圧電材料(膜)
4 バッキング層
5 電極
6 音響レンズ
S 超音波医用画像診断装置
S1 超音波医用画像診断装置の本体
S2 超音波探触子
S3 操作入力部
S4 表示部

【特許請求の範囲】
【請求項1】
コロナ放電により分極処理を施された有機圧電材料であって、当該有機圧電材料の第1の面上に接するように平面電極を設置し、かつ前記第1の面に対向する第2の面側に円柱状のコロナ放電用電極を設置して、コロナ放電による分極処理が施されたことを特徴とする有機圧電材料。
【請求項2】
前記分極処理が、窒素もしくは希ガス気流下、質量絶対湿度が0.004以下の環境中で、施されたことを特徴とする請求項1に記載の有機圧電材料。
【請求項3】
前記分極処理が、前記第1の面上に接するように設置された平面電極を含む有機圧電材料、もしくは第2の面側に設けられた円柱状のコロナ放電用電極の少なくとも一方が、一定の速度で移動しながらコロナ放電が施されたことを特徴とする請求項1又は2に記載の有機圧電材料。
【請求項4】
前記有機圧電材料が、有機高分子材料を用いて形成されたことを特徴とする請求項1〜3のいずれか一項に記載の有機圧電材料。
【請求項5】
前記有機圧電材料が、ウレア結合もしくはチオウレア結合を有する化合物を構成成分として含有することを特徴とする請求項1〜4のいずれか一項に記載の有機圧電材料。
【請求項6】
前記ウレア結合もしくはチオウレア結合を有する化合物が、下記一般式(1)〜(3)で表される化合物もしくはこれらの化合物の誘導体を原料として形成されたことを特徴とする請求項5に記載の有機圧電材料。
【化1】

(式中、R11及びR12は、各々独立に水素原子、アルキル基、3〜10員の非芳香族環基、アリール基、またはヘテロアリール基を表し、これらの基は更に置換基を有しても良い。R21〜R26は、各々独立に水素原子、アルキル基、電子吸引性基を表す。)
【化2】

(式中、R13は、各々独立にカルボキシル基、ヒドロキシ基、メルカプト基、アミノ基を表し、これらの活性水素は、更にアルキル基、3〜10員の非芳香族環基、アリール基、またはヘテロアリール基等で置換されてもよく、また、R13は、カルボニル基、スルホニル基、チオカルボニル基、スルホン基を表し、これらの置換基は、水素原子、アリール基、またはヘテロアリール基を結合する。R21〜R26は上記一般式(5)のR21〜R26と同義の基を表す。)
【化3】

(式中、Yは、各々独立にケト基、オキシム基、置換ビニリデン基を表し、R21〜R26は、上記一般式(1)のR21〜R26と同義の置換基を表す。)
【請求項7】
前記ウレア結合もしくはチオウレア結合を有する化合物が、分子量が400〜10,000であるマクロモノマーを原料として形成されたことを特徴とする請求項5又は6に記載の有機圧電材料。
【請求項8】
請求項1〜7のいずれか一項に記載の有機圧電材料により形成されたことを特徴とする有機圧電膜。
【請求項9】
請求項8に記載の有機圧電膜を用いたことを特徴とする超音波振動子。
【請求項10】
超音波送信用振動子と超音波受信用振動子を具備する超音波探触子であって、請求項9に記載の超音波振動子を超音波受信用振動子として用いたことを特徴とする超音波探触子。
【請求項11】
電気信号を発生する手段と、前記電気信号を受けて超音波を被検体に向けて送信し、前記被検体から受けた反射波に応じた受信信号を生成する複数の振動子が配置された超音波探触子と、前記超音波探触子が生成した前記受信信号に応じて、前記被検体の画像を生成する画像処理手段とを有する超音波医用画像診断装置において、前記超音波探触子として、請求項10に記載の超音波探触子を用いたことを特徴とする超音波医用画像診断装置。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2009−177048(P2009−177048A)
【公開日】平成21年8月6日(2009.8.6)
【国際特許分類】
【出願番号】特願2008−15964(P2008−15964)
【出願日】平成20年1月28日(2008.1.28)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】