説明

有機電界発光素子

【課題】本発明の課題は、マルチフォトン素子における発光の取り出し効率が向上し、高輝度発光が得られる有機電界発光素子を提供することである。
【解決手段】一対の電極間に膜厚方向に複数の発光層を有し、該発光層からの発光の取り出し側に光の半透過性且つ半反射性の金属電極を有することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高輝度発光が得られる有機電界発光素子に関し、さらに指向性に優れ、輝度ムラの少ない発光を示す有機電界発光素子に関する。
【背景技術】
【0002】
電流を通じることによって励起され発光する薄膜材料を用いた有機電界発光素子が知られている。有機電界発光素子は、低電圧で高輝度の発光が得られるために、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い潜在用途を有し、それらの分野でデバイスの薄型化、軽量化、小型化、および省電力のなどの利点を有する。このため、将来の電子ディスプレイ市場の主役としての期待が大きい。しかしながら、実用的にこれらの分野で従来ディスプレイに代わって用いられるためには、発光輝度と色調、広い使用環境条件下での耐久性、安価で大量生産性など多くの技術改良が課題となっている。
【0003】
発光輝度は、用途によってはさらに高い輝度が要求されている。輝度を高める手段として、発光素子の量子効率を高めることはもちろんのこと、発光を効率良く外部に取り出す手段の改良も多方面より試みられている。
輝度を高める手段として、複数の発光層を積層したマルチフォトン素子が提案されている(例えば、特許文献1参照。)。発光層と補助層を含む単位発光層を電荷発生層で接続した構成を有し、各単位発光層で発生した発光を合成して強い輝度を得ることが意図された。さらに、複数の単位発光層から発光が互い干渉したり、電極での反射光が干渉し互いに強度を弱めあうことを防止するために、光散乱剤を加えることも開示されている。しかしながら、各発光層で発生した光が別の発光層を透過する過程で吸収および散乱されるためのロスがさらに多くなり、十分に積層による光の合成効果を得るに至らなかった。
一方、発光を電極間で互いに強度を強めあうように発光層と電極間距離を制御し、多重干渉を起こさせることによって、高輝度で指向性の強い発光を得る試みが開示されている(例えば、特許文献2参照。)。しかしながら、単一の発光層の構成であって、輝度の高い発光を得るには限界があった。
【特許文献1】特開2003−272860号公報
【特許文献2】特開2004−127795号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は、マルチフォトン素子構造であって、取り出し効率を高め、高輝度発光が得られる有機電界発光素子を提供することを課題とする。さらに指向性に優れ、輝度ムラの少ない高輝度発光を示す有機電界発光素子を提供することを課題とする。
【課題を解決するための手段】
【0005】
本発明の上記課題は、下記の手段によって解決する事を見出された。
<1> 一対の電極間に膜厚方向に複数の発光層を有し、該発光層からの発光の取り出し側に光の半透過性且つ半反射性の金属電極を有することを特徴とする有機電界発光素子。
<2> 前記発光層の最大発光位置を該層の発光位置とした時、前記複数の発光層の発光位置が互いに下記式(1)で表される光学的距離Dを満たす関係にあることを特徴とする<1>に記載の有機電界発光素子:
式(1) D=mλ/2
(式中、λは発光スペクトルにおける極大波長、mは正の整数を表す。)。
<3> 前記半透過性且つ半反射性の金属電極の光透過率が20%以上70%以下であり、光反射率が30%以上80%以下であることを特徴とする<1>または<2>に記載の有機電界発光素子。
<4> 前記半透過性且つ半反射性の金属材料が白金、金、銀、クロム、タングステン、アルミニウム、マグネシウム、カルシウム、およびナトリウムの単体もしくは合金より選ばれる金属材料であることを特徴とする<1>〜<3>のいずれか1項に記載の有機電界発光素子。
<5> 前記半透過性且つ半反射性の金属電極の積層方向の厚みが5nm以上50nm以下であることを特徴とする<1>〜<4>のいずれか1項に記載の有機電界発光素子。
<6> 前記発光層の単層の積層方向の厚みが5nm以上100nm以下であることを特徴とする<1>〜<5>のいずれか1項に記載の有機電界発光素子。
<7> 前記複数の発光層が、互いに電気絶縁性電荷発生層によって隔離されていることを特徴とする<1>〜<6>のいずれか1項に記載の有機電界発光素子。
<8> 前記複数の発光層からの発光の少なくとも1つは燐光であることを特徴とする<1>〜<7>のいずれか1項に記載の有機電界発光素子。
【発明の効果】
【0006】
本発明により、マルチフォトン素子における発光の取り出し効率が向上し、高輝度発光が得られる有機電界発光素子が提供される。さらに指向性に優れ、輝度ムラの少ない高輝度発光を示す有機電界発光素子が提供される。
【発明を実施するための最良の形態】
【0007】
本発明の有機電界発光素子(以下、有機EL素子と呼ぶ場合がある。)は、一対の電極間に膜厚方向に複数の発光層を有し、該発光層からの発光の取り出し側に光の半透過性且つ半反射性の金属電極を有することを特徴とする。
好ましくは、本発明の有機EL素子は、前記発光層の最大発光位置を該層の発光位置とした時、前記複数の発光層の発光位置が互いに下記式(1)で表される光学的距離Dを満たす関係にある。
式(1) D=mλ/2
式中、λは発光スペクトルにおける極大波長、mは正の整数を表す。
好ましくは、前記半透過性且つ半反射性の金属電極の光透過率が20%以上70%以下であり、光反射率が30%以上80%以下である。
好ましくは、前記半透過性且つ半反射性の金属材料が白金、金、銀、クロム、タングステン、アルミニウム、マグネシウム、カルシウム、およびナトリウムの単体もしくは合金より選ばれる金属材料である。
好ましくは、前記半透過性且つ半反射性の金属電極の積層方向の厚みが5nm以上50nm以下である。前記発光層の単層の積層方向の厚みは、好ましくは、5nm以上100nm以下である。
好ましくは、前記複数の発光層が、互いに電気絶縁性電荷発生層によって隔離されている。
好ましくは、前記複数の発光層からの発光の少なくとも1つは燐光である。
【0008】
次に、本発明の有機電界発光素子について詳細に説明する。
(構成)
本発明の有機電界発光素子における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている構成を一つの単位として、該単位が複数積層されている態様が好ましい。更に、正孔輸送層と発光層との間に正孔輸送性中間層、及び/又は発光層と電子輸送層との間に、電子輸送性中間層を有する。また、陽極と正孔輸送層との間に正孔注入層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。各単位構成の間には絶縁性電荷発生層を配することが好ましい。
【0009】
本発明における陽極および陰極の少なくとも一方は光取り出し面にあって、発光層で発光した光に対して半透過性かつ半反射性である。
本発明における半透過反射性金属の反射率および透過率は、下記の測定方法によって測定される。
(測定機器)
一般に市販されている分光光度計(例えば、日立製作所(株)製U−4100型分光光度計)。
(測定方法)
反射率:ガラス基板上に半透過反射性金属を成膜し、基板の法線方向に対して5度の入射角で測定光を入射し、−5度の反射角の反射光を検出する。反射光量÷入射光量で反射率が求まる。
透過率:上記と同様のサンプルに、基板の法線方向から光を入射し(入射角0度)、法線方向(出射角0度)に出射した光を検出する。出射光量÷入射光量で透過率が求まる。
上記方法で反射率を測定したとき、本願における半透過反射性金属は、発光スペクトルの極大波長において、30%以上80%以下の範囲にある。好ましくは40%以上
70%以下である。
上記方法で透過率を測定したとき、本願における半透過反射性金属は、発光スペクトルの極大波長において、20%以上70%以下の範囲にある。好ましくは30%以上
60%以下である。
【0010】
本発明の有機電界発光素子における有機化合物層の好適な単位構成は、陽極側から順に、少なくとも、(1)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)を有する態様、(2)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)を有する態様、(3)正孔注入層、正孔輸送層(正孔注入層と正孔輸送層は兼ねても良い)、正孔輸送性中間層、発光層、電子輸送性中間層、電子輸送層、及び電子注入層(電子輸送層と電子注入層は兼ねても良い)を有する単位である。
【0011】
上記正孔輸送性中間層は、発光層への正孔注入を促進する機能、及び電子をブロックする機能の少なくとも一方を有することが好ましい。
また、上記電子輸送性中間層は、発光層への電子注入を促進する機能、及び正孔をブロックする機能の少なくとも一方を有することが好ましい。
更に、上記正孔輸送性中間層及び上記電子輸送性中間層の少なくとも一方は、発光層で生成する励起子をブロックする機能を有することが好ましい。
上記の正孔注入促進、電子注入促進、正孔ブロック、電子ブロック、励起子ブロックといった機能を有効に発現させるためには、該正孔輸送性中間層および該電子輸送性中間層は、発光層に隣接していることが好ましい。
【0012】
上記の電気絶縁性電荷発生層は、好ましくは1.0×10Ω・cm以上の比抵抗を有する電気的絶縁層であり、電流を通じることにより層内で酸化還元反応を起こし、ラジカルカチオンとラジカルアニオンを発生し得る層である。
尚、各層は複数の二次層に分かれていてもよい。
【0013】
次に、本発明の発光素子を構成する要素について、詳細に説明する。
【0014】
(有機化合物層の形成)
本発明の有機電界発光素子において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、またはスプレー法等いずれによっても好適に形成することができる。
【0015】
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。
【0016】
正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用でき、具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、または五塩化アンチモンなどのルイス酸化合物を好適に用いることができる。
【0017】
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、またはトリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フレーレンなどを好適に用いることができる。
具体的にはヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
【0018】
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンが特に好ましい。
【0019】
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。
電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。該使用量が、正孔輸送材料に対して0.01質量%未満のときには、本発明の効果が不十分であるため好ましくなく、50質量%を超えると正孔輸送能力が損なわれるため好ましくない。
【0020】
正孔注入層、正孔輸送層の材料としては、具体的には、ピロール誘導体、カルバゾール誘導体、ピラゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、有機シラン誘導体、またはカーボン等を含有する層であることが好ましい。
【0021】
正孔注入層、正孔輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0022】
前記発光層に隣接したキャリア輸送層が正孔輸送層であるとき、該正孔輸送層のIp(HTL)は前記発光層中に含有されるドーパントのIp(D)より小さいことが駆動耐久性の点で好ましい。
正孔輸送層におけるIp(HTL)は、後述するIpの測定方法により測定することができる。
【0023】
また、正孔輸送層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、発光効率の点から10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−3cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
該キャリア移動度は、前記発光層のキャリア移動度の測定方法と同様の方法により測定した値を採用する。
また、該正孔輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性、発光効率の観点から好ましい。
【0024】
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極から電子を注入する機能、電子を輸送する機能、陽極から注入され得た正孔を障壁する機能のいずれかを有している層である。
【0025】
電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属などが好適に用いられる。
特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。
【0026】
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。該使用量が、電子輸送層材料に対して0.1質量%未満のときには、本発明の効果が不十分であるため好ましくなく、99質量%を超えると電子輸送能力が損なわれるため好ましくない。
【0027】
電子注入層、電子輸送層の材料としては、具体的には、ピリジン、ピリミジン、トリアジン、イミダゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
【0028】
電子注入層、電子輸送層の厚さは、特に限定されるものではないが、駆動電圧低下、発光効率向上、耐久性向上の観点から、厚さが1nm〜5μmであることが好ましく、5nm〜1μmであることが更に好ましく、10nm〜500nmであることが特に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
前記発光層に隣接したキャリア輸送層が電子輸送層であるとき、該電子輸送層のEa(ETL)は前記発光層中に含有されるドーパントのEa(D)より大きいことが駆動耐久性の点で好ましい。
【0029】
該Ea(ETL)は、後述するEaの測定方法と同様の方法により測定した値を用いる。
また、電子輸送層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、発光効率の点から10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−3cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
また、該電子輸送層のキャリア移動度は、前記発光層のキャリア移動度より大きいことが駆動耐久性の観点から好ましい。該キャリア移動度は、前記正孔輸送層の測定方法と同様に行った。
本発明における発光素子のキャリア移動度において、正孔輸送層、電子輸送層、及び発光層におけるキャリア移動度としては、(電子輸送層≧正孔輸送層)>発光層であることが、駆動耐久性の点で好ましい。
バッファー層に含有されるホスト材料としては、後述する正孔輸送性ホストまたは電子輸送性ホストを好適に用いることができる。
【0030】
(発光層)
本発明においては発光層は複数有するが、ここではその単層について説明する。複数有する場合は、以下に説明する単層の構成の中より好ましく選択して組合わせて用いることが出来る。
発光層は、電界印加時に、陽極、正孔注入層、正孔輸送層または正孔輸送性バッファー層から正孔を受け取り、陰極、電子注入層、電子輸送層または電子輸送性バッファー層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含む。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。発光層が複数の場合であっても、発光層の各層に、少なくとも一種の発光性ドーパントと複数のホスト化合物とを含有することが好ましい。
また、発光層の単層の厚さは、駆動電圧を下げるため、一般的に100nm以下であることが好ましく、5nm〜100nmであることが更に好ましい。
【0031】
本発明における発光層に含有する発光性ドーパントと複数のホスト化合物としては、一重項励起子からの発光(蛍光)が得られる蛍光発光性ドーパントと複数のホスト化合物との組み合せでも、三重項励起子からの発光(燐光)が得られる燐光発光性ドーパントと複数のホスト化合物との組み合せでもよいが、中でも、発光効率の観点から、燐光発光性ドーパントと複数のホスト化合物との組み合せであることが好ましい。
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。
【0032】
《発光性ドーパント》
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
本発明における発光性ドーパントは、更に前記ホスト化合物との間で、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
【0033】
《燐光発光性ドーパント》
前記燐光性の発光性ドーパントとしては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
【0034】
錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、酢酸配位子など)、アルコラト配位子(例えば、フェノラト配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子であり、より好ましくは、含窒素ヘテロ環配位子である。
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
【0035】
これらの中でも、発光性ドーパントの具体例としては、例えば、US 6303238 B1、US6097147、WO 00/57676、WO 00/70655、WO 01/08230、WO 01/39234 A2、WO 01/41512 A1、WO 02/02714 A2、WO 02/15645 A1、WO 02/44189 A1、特開2001−247859、特願2000−33561、特開2002−117978、特願2001−248165、特開2002−235076、特願2001−239281、特開2002−170684、EP 1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特願2005−75340、特願2005−75341等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい(2)の関係を満たす発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、Ce錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、Re錯体であり、中でも金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、Re錯体が好ましい。
【0036】
《蛍光発光性ドーパント》
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、ペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
【0037】
これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。
【0038】
【化1】

【0039】
【化2】

【0040】
【化3】

【0041】
上記の中でも、本発明で用いる発光性ドーパントとしては、発光効率、耐久性の観点からD−2、D−3、D−4、D−5、D−6、D−7、D−8、D−9、D−10、D−11、D−12、D−13、D−14、D−15、D−16、D−21、D−22、D−23、またはD−24が好ましく、D−2、D−3、D−4、D−5、D−6、D−7、D−8、D−12、D−14、D−15、D−16、D−21、D−22、D−23、またはD−24がより好ましく、D−21、D−22、D−23、またはD−24が更に好ましい。
【0042】
発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜30質量%含有されるが、耐久性、発光効率の観点から1質量%〜15質量%含有されることが好ましく、2質量%〜12質量%含有されることがより好ましい。
【0043】
発光層の厚さは、特に限定されるものではないが、通常、1nm〜500nmであるのが好ましく、中でも、発光効率の観点で、5nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。
【0044】
(ホスト材料)
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
【0045】
《正孔輸送性ホスト》
本発明の有機層に用いられる正孔輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.1eV以上6.3eV以下であることが好ましく、5.4eV以上6.1eV以下であることがより好ましく、5.6eV以上5.8eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが1.2eV以上3.1eV以下であることが好ましく、1.4eV以上3.0eV以下であることがより好ましく、1.8eV以上2.8eV以下であることが更に好ましい。
【0046】
このような正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、カルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマチオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及び、それらの誘導体等が挙げられる。
中でも、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体が好ましく、特に分子内にカルバゾール骨格および/または芳香族第三級アミン骨格を複数個有するものが好ましい。
このような正孔輸送性ホストとしての具体的化合物としては、例えば下記のものが挙げられるが、これらに限定されるものではない。
【0047】
【化4】

【0048】
【化5】

【0049】
【化6】

【0050】
《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.2eV以下であることがより好ましく、2.8eV以上3.1eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
【0051】
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
【0052】
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
【0053】
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
【0054】
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる。)、
【0055】
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
【0056】
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076、特開2004−214179、特開2004−221062、特開2004−221065、特開2004−221068、特開2004−327313等に記載の化合物が挙げられる。
【0057】
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができるが、これらに限定されるものではない。
【0058】
【化7】

【0059】
【化8】

【0060】
【化9】

【0061】
電子輸送層ホストとしては、E−1〜E−6、E−8、E−9、E−21、またはE−22が好ましく、E−3、E−4、E−6、E−8、E−9、E−10、E−21、またはE−22がより好ましく、E−3、E−4、E−21、またはE−22が更に好ましい。
【0062】
本発明における発光層において、発光性ドーパントとして燐光発光性ドーパントを用いたとき、該燐光発光性ドーパントの最低三重項励起エネルギーT1(D)と前記複数のホスト化合物の最低励起三重項エネルギーのうち最小のもの前記T1(H)minとが、T1(H)min>T1(D)の関係を満たすことが色純度、発光効率、駆動耐久性の点で好ましい。
【0063】
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上85質量%以下であることが好ましい。
【0064】
また、発光層におけるキャリア移動度は、一般的に、10−7cm・V−1・s−1以上10−1cm・V−1・s−1以下であり、中でも、発光効率の点から10−6cm・V−1・s−1以上10−1cm・V−1・s−1以下が好ましく、10−5cm・V−1・s−1以上10−1cm・V−1・s−1以下が更に好ましく、10−4cm・V−1・s−1以上10−1cm・V−1・s−1以下が特に好ましい。
【0065】
該発光層のキャリア移動度は、後述の前記キャリア輸送層のキャリア移動度より小さいことが発光効率、駆動耐久性の観点から好ましい。
該キャリア移動度は、Time of Flight法により測定し、得られた値をキャリア移動度とした。
【0066】
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明においては、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層は、特に限定されるものではないが、具体的には、BAlq等のアルミニウム錯体、トリアゾール誘導体、ピラザボール誘導体等を含有することができる。
また、正孔ブロック層の厚さは、駆動電圧を下げるため、一般的に50nm以下であることが好ましく、1nm〜50nmであることが好ましく、5nm〜40nmであることが更に好ましい。
【0067】
(絶縁性電荷発生層)
本発明における電荷発生層は、異なる2種類の物質の積層体又は混合層からなり、該2種類の物質間で酸化還元反応によるラジカルカチオンとラジカルアニオンからなる電荷移動錯体が形成しており、該電荷移動錯体中のラジカルカチオン状態とラジカルアニオン状態が、電圧印加時にそれぞれ陰極方向と陽極方向へ移動することにより、前記電荷発生層の陰極側に接する発光ユニットへホールを注入し、電荷発生層の陽極側に接する発光ユニットへ電子を注入することができる。
好ましくは、電荷発生層が (a)イオン化ポテンシャルが5.7eVより小さく、ホール輸送性すなわち電子供与性を有する有機化合物と、(b)(a)の有機化合物と酸化還元反応による電荷移動錯体を形成しうる無機物質又は有機物質と、からなる積層体又は混合層からなり、前記(a)成分と(b)成分との間で酸化還元反応による電荷移動錯体が形成している。
好ましくは、(a)成分がアリールアミン化合物であり、一般式(I)で表される。
【0068】
【化10】

【0069】
式中、Ar1、Ar2及びAr3は、それぞれ独立に置換基を有してよい芳香族炭化水素基を表わす。より好ましくは、(a)成分である有機化合物が、ガラス転移点が90℃以上であるアリールアミン化合物である。
(a)成分であるアリールアミン化合物の具体例は、α−NPD、TNATA、スピロ−TAD又はスピロ−NPBが挙げられる。
電荷発生層を構成する(b)成分の無機物質は、好ましくは金属酸化物であり、より好ましくは金属ハロゲン化物である。該金属酸化物の具体例として、V(5酸化バナジウム)又はRe(7酸化レニウム)が挙げられる。
これらの無機物質は、抵抗加熱蒸着法、電子ビーム蒸着法又はレーザービーム蒸着法によって成膜されているのが好ましい。特に好ましくは、無機物質はスパッタ法によって成膜されており、該スパッタ法に使用されるスパッタ装置は、所定距離隔てて対向配置した一対のターゲットの各々の周辺の前方に電子を反射する反射電極を設けるとともに、磁界発生手段により各ターゲットの周辺部の近傍にその面に平行な部分を有する平行磁界を形成した対向ターゲット式スパッタ装置である。
電荷発生層を構成する(b)成分の有機物質は、少なくとも1個のフッ素を置換基として有し、電子注入性すなわち電子受容性を有する化合物、または少なくとも1個のシアノ基を置換基として有し、電子注入性すなわち電子受容性を有する化合物が好ましい。電荷発生層を構成する(b)成分の有機物質の具体例として、テトラフルオロ−テトラシアノキノジメタン(4F−TCNQ)が挙げられる。
【0070】
(電極)
本発明における陽極電極および陰極電極は、発光を取り出す面をどちらにするかによって、反射率の高い鏡面とするか、前述の半反射性半透過性とされる。通常、ボトムエミッション型と呼ばれる素子構成では、陽極面が発光取り出し面であって、トップエミッション型と呼ばれる素子構成では、陰極面が発光取り出し面である。
【0071】
電極を半反射性半透過性に調整する手段
電極の反射率の制御は、本発明の範囲内になるように厚みを制御することによって行うことができる。
電極の透過率の制御は、本発明の範囲内になるように厚みを制御することによって行うことができる。
半反射性半透過性電極を構成する材料としては、白金,金,銀,クロム,タングステンあるいはアルミニウムなどの仕事関数の高い金属元素の単体または合金が挙げられ、該電極の積層方向の厚みは5nm以上50nm以下が好ましい。合金材料としては、例えば、銀を主成分とし、0.3質量%〜1質量%のパラジウム(Pd)と、0.3質量%〜1質量%の銅(Cu)とを含むAgPdCu合金が挙げられる。
【0072】
1)陽極
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有する。
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられ、仕事関数が4.0eV以上の材料が好ましい。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
【0073】
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
【0074】
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
【0075】
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
【0076】
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。
【0077】
2)陰極
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有する。
【0078】
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられ、仕事関数が4.5eV以下のものが好ましい。具体例としてはアルカリ金属(たとえば、Li、Na、K、またはCs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
【0079】
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
【0080】
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
【0081】
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。
例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
【0082】
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
【0083】
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
【0084】
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
【0085】
(基板)
本発明においては基板を用いることができる。用いられる基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
【0086】
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
【0087】
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
【0088】
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
【0089】
(保護層)
本発明において、有機EL素子全体は、保護層によって保護されていてもよい。
保護層に含まれる材料としては、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであればよい。
その具体例としては、In、Sn、Pb、Au、Cu、Ag、Al、Ti、またはNi等の金属、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、またはTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、またはCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
【0090】
保護層の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、または転写法を適用できる。
【0091】
(封止)
さらに、本発明の有機電界発光素子は、封止容器を用いて素子全体を封止してもよい。
また、封止容器と発光素子の間の空間に水分吸収剤又は不活性液体を封入してもよい。水分吸収剤としては、特に限定されることはないが、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、および酸化マグネシウム等を挙げることができる。不活性液体としては、特に限定されることはないが、例えば、パラフィン類、流動パラフィン類、パーフルオロアルカンやパーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤、塩素系溶剤、シリコーンオイル類が挙げられる。
【0092】
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜40ボルト)、又は直流電流を印加することにより、発光を得ることができる。
【0093】
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書、等に記載の駆動方法を適用することができる。
【0094】
(本発明の有機電界発光素子の用途)
本発明の有機電界発光素子は、表示素子、ディスプレイ、バックライト、電子写真、照明光源、記録光源、露光光源、読み取り光源、標識、看板、インテリア、または光通信等に好適に利用できる。
【実施例】
【0095】
以下に、本発明の有機電界発光素子の実施例について説明するが、本発明はこれら実施例により限定されるものではない。
【0096】
実施例1
厚さ0.7mmのガラス基板を2−プロパノール中で超音波洗浄後、20分間UV−オゾン処理を行った。その後、真空蒸着によって陽極として銀を15nm蒸着した後、順次有機層を重ね蒸着して、下記構成の2段の発光ユニットを有する積層体を作成した。
<素子構成>
ガラス基板/Ag(15nm)/2−TNATA+33質量%V(20nm)/2−TNATA+0.1質量%F4−TCNQ(110nm)/NPD(10nm)/CBP+5質量%tbppy(20nm)/BAlq(10nm)/Alq(20nm)/LiF(0.5nm)/Al(1.5nm)/2−TNATA+33質量%V(20nm)/2−TNATA+0.1質量%F4−TCNQ(43nm)/NPD(10nm)/CBP+5質量%tbppy(20nm)/BAlq(10nm)/Alq(32nm)/LiF(0.5nm)/Al(100nm)
・2−TNATA+V、2−TNATA+F4−TCNQ、およびCBP+tbppy(発光層)などの+は2つの化合物を共蒸着したことを意味する。
【0097】
マスク成膜により50mm×50mmの発光エリアを形成した。
得られた素子の発光波長は460nmであった。
発光位置間の距離は、光学的距離D=mλ/2=1×460/2=230(nm)と本発明による好ましい距離とした。
実膜厚dは屈折率nをn=1.84として、d=D÷n=230÷1.84=125(nm)であった。
【0098】
上記素子のAgを陽極、Alを陰極として250mA(10mA/cm)の駆動電流で駆動させ、コニカミノルタ製輝度計CS−1000型にて発光エリアの中央部および外周部のELスペクトル強度を測定した。発光のシャープさは、ELスペクトルのピーク強度の1/2強度におけるスペクトル幅を評価基準とした。スペクトル幅が小さいほどシャープなスペクトルとなる。表1にELスペクトルのピーク波長、ピーク強度と1/2強度でのスペクトル幅を示した。
【0099】
比較例1
実施例1の陽極の銀15nmをITO(100nm)に変更する以外は実施例1と同様に積層体を作成した。
得られた素子を実施例1と同様に評価した。結果を表1に示す。実施例1に比べて中央部と外周部の強度差が大きく輝度ムラが大であった。また、スペクトル幅は実施例1よりも大きく、シャープなスペクトルは得られなかった。
【0100】
比較例2
実施例1の発光ユニット数を1段に変更する以外は実施例1と同様に成膜した。
<素子構成>
ガラス基板/Ag(15nm)/2−TNATA+33質量%V(20nm)/2−TNATA+0.1質量%F4−TCNQ(110nm)/NPD(10nm)/CBP+5質量%tbppy(20nm)/BAlq(10nm)/Alq(32nm)/LiF(0.5nm)/Al(100nm)
得られた素子を実施例1と同様に評価した。結果を表1に示す。比較例1と2の素子は実施例1に比べてピーク強度が低下した。また、比較例1と2の素子は、実施例1の素子に比べて中央部と外周部の輝度差が大きく、ムラが大であった。さらに、スペクトル幅が大きく、シャープなスペクトルは得られなかった。
【0101】
実施例2
実施例1の総膜厚を変更しないで発光層間の距離を125nmから170nmに変更した。
<素子構成>
ガラス基板/Ag(15nm)/2−TNATA+33質量%V(20nm)/2−TNATA+0.1質量%F4−TCNQ(65nm)/NPD(10nm)/CBP+5質量%tbppy(20nm)/BAlq(10nm)/Alq(20nm)/LiF(0.5nm)/Al(1.5nm)/2−TNATA+33質量%V(20nm)/2−TNATA+0.1質量%F4−TCNQ(88nm)/NPD(10nm)/CBP+5質量%tbppy(20nm)/BAlq(10nm)/Alq(32nm)/LiF(0.5nm)/Al(100nm)
【0102】
得られた素子を実施例1と同様に評価した。結果を表1に示す。実施例1に比べてややピーク強度が低下したが比較例に比べて発光スペクトルがシャープな発光が得られた。
【0103】
前記の発光素子に用いた化合物の構造を下記に示す。
【0104】
【化11】

【0105】
【表1】


【特許請求の範囲】
【請求項1】
一対の電極間に膜厚方向に複数の発光層を有し、該発光層からの発光の取り出し側に光の半透過性且つ半反射性の金属電極を有することを特徴とする有機電界発光素子。
【請求項2】
前記発光層の最大発光位置を該層の発光位置とした時、前記複数の発光層の発光位置が互いに下記式(1)で表される光学的距離Dを満たす関係にあることを特徴とする請求項1に記載の有機電界発光素子:
式(1) D=mλ/2
(式中、λは発光スペクトルにおける極大波長、mは正の整数を表す。)。
【請求項3】
前記半透過性且つ半反射性の金属電極の光透過率が20%以上70%以下であり、光反射率が30%以上80%以下であることを特徴とする請求項1または請求項2に記載の有機電界発光素子。
【請求項4】
前記半透過性且つ半反射性の金属材料が白金、金、銀、クロム、タングステン、アルミニウム、マグネシウム、カルシウム、およびナトリウムの単体もしくは合金より選ばれる金属材料であることを特徴とする請求項1〜請求項3のいずれか1項に記載の有機電界発光素子。
【請求項5】
前記半透過性且つ半反射性の金属電極の積層方向の厚みが5nm以上50nm以下であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機電界発光素子。
【請求項6】
前記発光層の単層の積層方向の厚みが5nm以上100nm以下であることを特徴とする請求項1〜請求項5のいずれか1項に記載の有機電界発光素子。
【請求項7】
前記複数の発光層が、互いに電気絶縁性電荷発生層によって隔離されていることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機電界発光素子。
【請求項8】
前記複数の発光層からの発光の少なくとも1つは燐光であることを特徴とする請求項1〜請求項7のいずれか1項に記載の有機電界発光素子。

【公開番号】特開2007−157629(P2007−157629A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−354668(P2005−354668)
【出願日】平成17年12月8日(2005.12.8)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】