説明

校正データ取得方法、加速度センサー出力補正方法及び校正データ取得システム

【課題】ミスアライメント誤差を考慮しつつ、慣性センサーの温度特性を適切に求めるための新たな手法を提案すること。
【解決手段】試験システム1において、加速度センサー520を具備するセンサーモジュール5の特性判定処理が行われる。すなわち、試験装置3において、絶対軸が定められた被検体固定装置340に、加速度センサー520の検出軸の方向を絶対軸方向とするようにセンサーモジュール5が固定される。そして、センサーモジュール5の姿勢及び恒温槽320内部の温度を変化させながら、加速度センサー520の出力値を記録するデータ取得処理が行われる。そして、記録された加速度センサー520の出力値を用いて、補正係数算出装置2により温度依存成分の温度係数及びミスアライメント係数が補正係数として算出される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、校正データ取得方法、加速度センサー出力補正方法及び校正データ取得システムに関する。
【背景技術】
【0002】
いわゆるシームレス測位やモーションセンシング、姿勢制御など様々な分野において、慣性センサーの活用が注目されている。慣性センサーとしては、加速度センサーやジャイロセンサー、圧力センサー、地磁気センサーなどが広く知られている。
【0003】
近年では、多軸の慣性センサーを搭載したセンサーモジュールが開発されている。この多軸のセンサーモジュールは、直交する複数の軸上に慣性センサーが取り付けられ、三次元空間でのセンシングを行うことができるように構成されている。しかし、センサーモジュールに対する慣性センサーの取り付け姿勢が正確でないことに起因して、慣性センサーの出力に取り付け誤差や他軸感度誤差に起因するミスアライメント誤差が含まれ得ることが問題となっていた。
【0004】
かかる問題に鑑み、例えば特許文献1には、センサーモジュールに対する加速度センサーの取り付け誤差を考慮し、加速度センサーにより検出される重力加速度の他軸感度を計算して、加速度センサーの出力値を補正する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10−267651号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
確かに、特許文献1の技術によれば、ミスアライメント誤差は補正できるかもしれない。しかし、慣性センサーの出力には、他の成分も含まれ得る。典型的には、ゼロ点バイアスやスケールファクターといった成分である。ゼロ点バイアスとは、定常的に付加される誤差値を意味し、スケールファクターとは、センサーの感度、すなわち計測すべき入力値の変化に対する出力値の変化の割合を意味する。
【0007】
厄介であるのは、これらの成分が、温度依存性を有することである。これらの成分が温度依存性を有しているため、慣性センサーの出力も温度依存性を有する。そのため、ミスアライメント誤差を考慮するのみでは足りず、慣性センサーの温度特性も考慮しなければ、慣性センサーの出力を正しく補正することはできない。
【0008】
本発明は上述した課題に鑑みて為されたものであり、その目的とするところは、ミスアライメント誤差を考慮しつつ、慣性センサーの温度特性を適切に求めるための新たな手法を提案することにある。
【課題を解決するための手段】
【0009】
以上の課題を解決するための第1の形態は、加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させるとともに、動作環境温度を変化させて、当該加速度センサーの各検出軸の出力値を記録するデータ取得処理を行うことと、前記出力値に基づいて前記加速度センサーの温度依存特性を算出することと、を含む校正データ取得方法である。
【0010】
また、他の形態として、加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させるとともに、動作環境温度を変化させて、当該加速度センサーの各検出軸の出力値を記録するデータ取得処理部と、前記出力値に基づいて前記加速度センサーの温度依存特性を算出する温度依存特性算出部と、を備えた校正データ取得システムを構成してもよい。
【0011】
この第1の形態等によれば、加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させるとともに、動作環境温度を変化させて、当該加速度センサーの各検出軸の出力値を記録する。そして、当該出力値に基づいて加速度センサーの温度依存特性を算出する。
【0012】
加速度センサーは、慣性センサーの一種である。絶対軸方向が定められた環境下で、加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させて各検出軸の出力値を計測・記録することで、当該加速度センサーの検出値(すなわち加速度の検出値)からミスアライメント誤差を分離可能である。また、加速度センサーの動作環境温度を変化させながら出力値を計測・記録する。これにより、加速度センサーの温度特性をも適切に求めることができる。
【0013】
また、第2の形態として、第1の形態の校正データ取得方法であって、前記出力値と前記温度依存特性とを用いて、前記加速度センサーのミスアライメント誤差を算出すること、を更に含む校正データ取得方法を構成してもよい。
【0014】
この第2の形態によれば、加速度センサーの各検出軸の出力値と、算出した加速度センサーの温度依存特性とを用いて、加速度センサーのミスアライメント誤差を算出する。
【0015】
所定の動作環境温度における加速度センサーの各検出軸の出力値と、加速度センサーの温度依存特性とから、温度依存性の成分が分離された加速度を計算することができる。この温度依存性の成分が分離された加速度にはミスアライメント誤差が含まれ得るが、複数の動作環境温度における加速度を利用することで、ミスアライメント誤差を適切に求めることができる。
【0016】
また、第3の形態として、第1又は第2の形態の校正データ取得方法であって、前記温度依存特性を算出することは、姿勢及び動作環境温度を変化させたそれぞれの場合の前記出力値を用いて、前記加速度センサーの検出結果の値に含まれるゼロ点バイアス及びスケールファクターの温度依存特性を算出することを含む、校正データ取得方法を構成してもよい。
【0017】
この第3の形態によれば、姿勢及び動作環境温度を変化させたそれぞれの場合の加速度センサーの出力値を用いて、加速度センサーの検出結果の値に含まれるゼロ点バイアス及びスケールファクターの温度依存特性を算出することができる。
【0018】
また、第4の形態として、第3の形態の校正データ取得方法であって、前記温度依存特性を算出することは、更に、前記加速度センサーの検出結果の値に含まれる二次感度の温度依存特性を算出することを含む、校正データ取得方法を構成してもよい。
【0019】
この第4の形態によれば、ゼロ点バイアス及びスケールファクターの温度依存特性ばかりでなく、加速度センサーの検出結果の値に含まれる二次感度の温度依存特性をも算出することができる。
【0020】
また、第5の形態として、第1〜第4の何れかの形態の校正データ取得方法によって取得された温度依存特性と、動作環境温度とを用いて、前記加速度センサーの出力値を補正する加速度センサー出力補正方法を構成してもよい。
【0021】
さらには、第6の形態として、第2の形態の校正データ取得方法によって取得された温度依存特性と、動作環境温度と、ミスアライメント誤差とを用いて、前記加速度センサーの出力値を補正する加速度センサー出力補正方法を構成してもよい。
【0022】
この第5又は第6の形態によれば、上述した形態の校正データ取得方法によって取得された校正データを用いて、加速度センサーの出力値を正しく補正することができる。
【図面の簡単な説明】
【0023】
【図1】試験システムの機能構成の一例を示す図。
【図2】試験装置の機能構成の一例を示す図。
【図3】センサーモジュールの機能構成の一例を示す図。
【図4】試験データベースのデータ構成の一例を示す図。
【図5】温度係数テーブルのテーブル構成の一例を示す図。
【図6】特性判定処理の流れを示すフローチャート。
【図7】試験処理の流れを示すフローチャート。
【図8】温度係数算出処理の流れを示すフローチャート。
【図9】ミスアライメント係数算出処理の流れを示すフローチャート。
【図10】補正出力処理の流れを示すフローチャート。
【発明を実施するための形態】
【0024】
以下図面を参照して、加速度センサーを具備するセンサーモジュールの試験を行って加速度センサーの校正データを取得する校正データ取得システムとしての試験システムに本発明を適用した実施形態について説明する。但し、本発明を適用可能な実施形態が以下説明する実施形態に限定されるわけではないことは勿論である。
【0025】
1.機能構成
1−1.試験システムの機能構成
図1は、本実施形態における試験システム1の機能構成の一例を示すブロック図である。試験システム1は、加速度センサー520を搭載したモジュールの一種であるセンサーモジュール5(図3参照)の試験(テスト)を行って、当該センサーモジュール5の校正データを取得する校正データ取得システムの一種であり、例えば、補正係数算出装置2と、試験装置3とを備えて構成される。
【0026】
(1)補正係数算出装置2の機能構成
補正係数算出装置2は、センサーモジュール5に搭載された加速度センサー520の出力値を補正するための補正係数を算出する装置である。図1に示すように、補正係数算出装置2は、処理部10と、入力部20と、表示部30と、通信部40と、記憶部50とを備えて構成され、各部がバス60を介して接続されるコンピューターシステムである。
【0027】
処理部10は、記憶部50に記憶されているシステムプログラム等の各種プログラムに従って、補正係数算出装置2の各部や試験装置3を統括的に制御する制御装置であり、CPU(Central Processing Unit)等のプロセッサーを有して構成される。
【0028】
主要な処理ブロックとして、処理部10は、試験プログラム511に従って試験処理を行う試験実行制御部11と、温度係数算出プログラム513に従って温度係数算出処理を行う温度係数算出部13と、ミスアライメント係数算出プログラム515に従ってミスアライメント係数算出処理を行うミスアライメント係数算出部15とを有する。また、温度係数算出部13及びミスアライメント係数算出部15により算出された温度係数及びミスアライメント係数を用いて、補正係数が格納されたテーブルである補正係数テーブル55を作成する補正係数テーブル作成部17を有する。
【0029】
入力部20は、例えばキーボードやボタンスイッチ等により構成される入力装置であり、押下されたキーやボタンの信号を処理部10に出力する。この入力部20の操作により、各種データの入力や、センサーモジュール5の試験開始要求等の各種指示入力がなされる。
【0030】
表示部30は、LCD(Liquid Crystal Display)等により構成され、処理部10から入力される表示信号に基づいた各種表示を行う表示装置である。表示部30には、処理部10により算出されたセンサーモジュール5の補正係数等の情報が表示される。
【0031】
通信部40は、補正係数算出装置2が外部装置との間で有線通信又は無線通信を行うための通信装置である。この機能は、例えば、有線ケーブルを介して通信を行う有線通信モジュールや、無線LANやスペクトラム拡散通信等を行う無線通信モジュール等により実現される。
【0032】
記憶部50は、ROM(Read Only Memory)やフラッシュROM、RAM(Random Access Memory)等の記憶装置(メモリー)によって構成され、補正係数算出装置2のシステムプログラムや、試験機能等の各種機能を実現するための各種プログラム、各種データ等を記憶している。また、各種処理の処理中データ、処理結果などを一時的に記憶するワークエリアを有する。
【0033】
記憶部50には、プログラムとして、処理部10により読み出され、特性判定処理(図6参照)として実行される特性判定プログラム51が記憶されている。また、特性判定プログラム51には、試験処理(図7参照)として実行される試験プログラム511と、温度係数算出処理(図8参照)として実行される温度係数算出プログラム513と、ミスアライメント係数算出処理(図9参照)として実行されるミスアライメント係数算出プログラム515とがサブルーチンとして含まれている。
【0034】
特性判定処理は、センサーモジュール5の特性を判定する処理である。すなわち、処理部10は、センサーモジュール5を試験装置3に様々な姿勢で固定するとともに、試験装置3の温度を変化させて加速度センサー520の各検出軸の出力値を記録するデータ取得処理としての試験処理を行う。そして、試験装置3により取得された試験データを用いて、加速度センサー520の補正係数を算出する処理を行う。
【0035】
本実施形態では、温度依存性を有し、慣性センサーの出力に含まれる成分の温度係数と、ミスアライメント係数との2種類の係数を補正係数と定義する。温度依存性を有し、慣性センサーの出力に含まれる成分には、ゼロ点バイアスやスケールファクター、二次感度といったミスアライメントに依存しないパラメーターが含まれる。
【0036】
ゼロ点バイアスとは、加速度センサー520の出力値に定常的に付加される誤差値を意味する。スケールファクターとは、センサーの感度、すなわち計測すべき入力値の変化に対する出力値の変化の割合を意味する。また、二次感度は、計測すべき入力値の二乗値の変化に対する出力値の変化の割合を意味する。
【0037】
ミスアライメント係数とは、加速度センサー520の検出軸として定められた各検出軸の他の検出軸に対する感度を表す係数である。本実施形態では、加速度センサー520の検出軸を、互いに直交するx軸、y軸及びz軸の3軸(直交3軸)とし、加速度センサー520は各検出軸の加速度を検出するものとする。
【0038】
この場合、ミスアライメント係数として、x軸のy軸に対する感度を表す係数「mxy」と、x軸のz軸に対する感度を表す係数「mxz」と、y軸のx軸に対する感度を表す係数「myx」と、y軸のz軸に対する感度を表す係数「myz」と、z軸のx軸に対する感度を表す係数「mzx」と、z軸のy軸に対する感度を表す係数「mzy」とが定義される。また、各検出軸の自身の軸に対する感度を表す係数として「mxx=myy=mzz=1」が定義される。
【0039】
ここで、加速度センサー520の出力モデルを定式化する。加速度センサー520の出力値「p」は、ゼロ点バイアス「b」、スケールファクター「s」、二次感度「q」及びミスアライメント誤差を含んで、次式(1)でモデル化される。
【数1】

但し、「w」はホワイトノイズである。このホワイトノイズは無視できるほど小さな値であるため、本実施形態では考慮しないこととする。
【0040】
ゼロ点バイアス「b」、スケールファクター「s」及び二次感度「q」は、温度「t」に依存する成分であり、温度「t」によって値が変化する。そのため、本実施形態では、これらの成分のことを「温度依存成分」と称する。
【0041】
温度に依存する成分であることを明確にするため、ゼロ点バイアス「b」、スケールファクター「s」及び二次感度「q」には、それぞれ下付きの添え字「t」を付している。また、式(1)の右辺には温度依存成分が含まれるため、左辺の出力値「p」も温度に依存することになる。そのため、出力値「p」にも下付きの添え字「t」を付している。
【0042】
各温度依存成分は、温度「t」の多項式で、次式(2)〜(4)で近似される。
【数2】

【数3】

【数4】

【0043】
式(2)における「b0,b1,b2,・・・」はゼロ点バイアスの温度の次数に応じた温度係数を示している。同様に、式(3)における「s0,s1,s2,・・・」はスケールファクターの温度の次数に応じた温度係数を示しており、式(4)における「q0,q1,q2,・・・」は二次感度の温度の次数に応じた温度係数を示している。
【0044】
また、式(1)において、「r」はミスアライメント誤差を含む加速度センサー520の各検出軸の加速度の値(この加速度「r」のことを「ミスアライメント誤差を含む加速度」と定義する。)を示しており、次式(5)で定式化される。
【数5】

【0045】
式(5)において、「rx,ry,rz」は、それぞれミスアライメント誤差を含むx軸、y軸及びz軸の加速度を示している。一方、「ax,ay,az」は、それぞれミスアライメント誤差を含まないx軸、y軸及びz軸の加速度を示している。ミスアライメント誤差を含まないということは、加速度センサー520の取り付け誤差や他軸感度誤差を含まない加速度ということであり「加速度の真値」であると言える。また、「M」はミスアライメント係数を成分とするミスアライメント係数行列であり、「Ga」は各検出軸の加速度の真値を成分とする加速度行列である。
【0046】
原理については詳細後述するが、本実施形態では、試験装置3を用いてセンサーモジュール5の試験を行い、その試験データを用いて、上記のモデル式に従って補正係数を算出する。そして、算出した補正係数を格納した補正係数テーブル55を作成し、当該補正係数テーブル55を用いて上記の加速度の真値を求めることで、加速度センサー520の出力値を補正することが本実施形態の目的である。
【0047】
図1の機能ブロックの説明に戻って、記憶部50には、データとして、試験データベース53と、補正係数テーブル55とが格納される。
【0048】
図4は、試験データベース53のデータ構成の一例を示す図である。試験データベース53は、複数の試験データ54(54−1,54−2,54−3,・・・)が蓄積記憶されたデータベースである。試験データ54は、試験装置3を用いて、加速度センサー520の姿勢及び動作環境温度を変化させながら、加速度センサー520の各検出軸の出力値が記録されたデータである。
【0049】
各試験データ54には、試験が行われた温度を表す試験温度541と、当該試験温度541で取得された加速度センサー520の出力値データ543とが対応付けて記憶されている。また、出力値データ543には、加速度センサー520が試験装置3に固定された姿勢を試験姿勢として、各試験姿勢別の各検出軸の出力値のデータが記憶されている。
【0050】
温度係数テーブル553は、各温度依存成分の温度係数が格納されたテーブルであり、そのテーブル構成例を図5に示す。温度係数テーブル553には、加速度センサー520の各検出軸5531と、当該検出軸5531について算出された各温度依存成分の温度係数5533とが対応付けて記憶されている。
【0051】
ミスアライメント係数テーブル555は、ミスアライメント係数が格納されたテーブルであり、例えば式(5)のミスアライメント係数行列「M」が記憶される。
【0052】
(2)試験装置3の機能構成
図2は、試験装置3の機能構成の一例を示すブロック図である。
試験装置3は、少なくとも鉛直方向が正確に位置決めされた(絶対軸が定められた)載置台を絶対平面として有する被検体固定装置340と、ヒーター装置及び冷却装置を有する温度調整部350と、温度センサー360とが恒温槽320内に設置されて構成されている。また、試験装置3は、試験制御装置310を有し、試験制御装置310が、温度調整部350を制御することによって、任意の試験環境温度で被検体を試験することが可能となっている。
【0053】
センサーモジュール5は、被検体固定装置340の載置台に定められた鉛直下方向(絶対軸正方向)を加速度センサー520の何れかの検出軸の方向とする姿勢で固定される。具体的には、x軸正方向を絶対軸正方向とする姿勢(x軸 正)、x軸負方向を絶対軸正方向とする姿勢(x軸 負)、y軸正方向を絶対軸正方向とする姿勢(y軸 正)、y軸負方向を絶対軸正方向とする姿勢(y軸 負)、z軸正方向を絶対軸正方向とする姿勢(z軸 正)、z軸負方向を絶対軸正方向とする姿勢(z軸 負)の合計6姿勢の試験を行うため、これら6姿勢それぞれに応じた姿勢でセンサーモジュール5が固定される。
【0054】
被検体固定装置340は、センサーモジュール5を上述した6姿勢の1つに固定した後、残余の何れかの姿勢に自動的に変位させることが可能な装置であってもよいし、固定した状態で手動で姿勢を変位させる(例えば、載置台の中心に任意の面を下向きにして設置可能な正立方体状の固定具の一側面にセンサーモジュール5を固定し、その固定具の載置台への取り付け向きを変化させる)等の機構を備えた装置としてもよい。
【0055】
温度センサー360は、恒温槽320内部の温度を検出する接触式又は非接触式のセンサーであり、検出した温度を試験制御装置310に出力するように構成されている。
【0056】
試験制御装置310は、処理部10からの指示信号に従って、試験装置3の各部を制御する制御装置であり、CPUやDSP(Digital Signal Processor)等のプロセッサーを有して構成される。試験制御装置310は、恒温槽320内部の温度を処理部10から指示された温度とするように温度調整部350を制御する。また、試験制御装置310はセンサーモジュール5と接続され、試験中の加速度センサー520の出力値を計測・記録するよう構成されている。
【0057】
試験の手順としては、ある1つの姿勢でセンサーモジュール5を被検体固定装置340に固定して、恒温槽320を密閉した後、温度を変化させる。そして、温度が所定の一定温度となった段階で加速度センサー520の試験を行う。試験中は、加速度センサー520の出力値が記録される。これを、全ての温度及び全ての姿勢について行う。
【0058】
1−2.センサーモジュールの機能構成
図3は、センサーモジュール5の機能構成の一例を示すブロック図である。センサーモジュール5は、処理部510と、加速度センサー520と、温度センサー530と、出力部540と、記憶部550とを備えて構成されるモジュールである。
【0059】
処理部510は、記憶部550に記憶されているシステムプログラム等の各種プログラムに従って、センサーモジュール5の各部を統括的に制御する制御装置であり、CPUやDSP等のプロセッサーを有して構成される。
【0060】
加速度センサー520は、直交3軸(x軸,y軸及びz軸)の加速度を検出可能に設計された慣性センサーの一種であり、その検出結果を処理部510に出力する。加速度センサー520は、検出方向の軸がセンサーモジュール5に対する予め定められた方向となるようにセンサーモジュール5に取り付けられる。本実施形態の試験の目的の1つが、この取り付け角度(姿勢)の誤差を判定することである。
【0061】
温度センサー530は、外界の気温を検出する接触式又は非接触式のセンサーであり、検出した温度を処理部510に出力する。
【0062】
出力部540は、処理部510が加速度センサー520の出力値を補正することで得られた補正出力値を外部出力するインターフェース(I/F)部である。但し、試験中においては、例えば補正係数が全てゼロに設定される等して、補正が行われずに加速度センサー520の出力値がそのまま出力される。
【0063】
記憶部550は、ROMやフラッシュROM、RAM等の記憶装置(メモリー)によって構成され、加速度センサー520の出力値を補正出力するためのプログラム等を記憶している。
【0064】
本実施形態では、記憶部550には、プログラムとして、処理部510により読み出され、補正出力処理(図10参照)として実行される補正出力プログラム551が格納されている。また、データとして、補正係数算出装置2により作成された温度係数テーブル553及びミスアライメント係数テーブル555を含む補正係数テーブル55が格納される。
【0065】
2.原理
2−1.補正係数算出の原理
(1)温度依存成分の温度係数の算出
試験温度「t」における加速度センサー520の各検出軸の出力値「pt」は、式(1)に従って次式(6)で定式化される。
【数6】

【0066】
説明を分かり易くするため、例えば「x軸」に着目して考える。試験温度「t」とした状態で、x軸正方向を絶対軸正方向(本実施形態では鉛直下向き)とする姿勢(x軸 正)での加速度センサー520の出力値を「px1t」とし、x軸負方向を絶対軸正方向とする姿勢(x軸 負)での出力値を「px2t」とし、その平均出力値を「px3t」として、「(px1t,px2t,px3t)」と表す。また、絶対軸正方向の重力加速度(鉛直下向きの重力加速度)を「g」とすると、絶対軸負方向の重力加速度は「−g」となり、これらの平均値は「0」である。
【0067】
このとき、式(1)に従って、次式(7)のような連立方程式を立てることができる。
【数7】

但し、(rx1t,rx2t,rx3t)=(g,−g,0)である。x軸正方向を絶対軸正方向とする姿勢や、x軸負方向を絶対軸正方向とする姿勢で加速度センサー520の出力値を取得することにより、ミスアライメント誤差を含まない出力値を取得することができる。
【0068】
式(7)の連立方程式から、次式(8)のように試験温度「t」における温度依存成分の値「bxt,sxt,qxt」を求めることができる。
【数8】

【0069】
なお、ここでは、「(px1t,px2t,px3t)」及び「(rx1t,rx2t,rx3t)=(g,−g,0)」の3パターンの出力値及び重力加速度のサンプルデータを用いて温度依存成分の値を算出するものとして説明したが、サンプルデータのパターン数を増やして計算を行うことも可能である。
【0070】
例えば、y軸及びz軸を固定した状態で、加速度センサー520をx軸周りに回転させるように、載置台を所定の回転速度「n」で回転させる。そして、その場合の加速度センサー520の出力値「px4t」を計測して出力値のサンプルデータに加える。また、この場合における重力加速度のサンプルデータは「g・sinθ」とする。但し、「θ」は回転角であり、載置台の回転速度「n」から求められる角速度「ω=2πn」を積分した値である。
【0071】
載置台を回転させることで、複数種類の出力値及び重力加速度のサンプルデータを取得することができる。この場合、式(7)は過決定方程式となるため、例えば最小二乗法を利用することで、温度依存成分の値を精度良く求めることができる。
【0072】
N通りの試験温度「t=t1,t2,t3,・・・,tN」で試験を行うことで、各温度依存成分それぞれについて、試験温度の異なるN個の温度依存成分の値を取得することができる。すなわち、N個のゼロ点バイアス「bxt1,bxt2,bxt3,・・・,bxtN」と、N個のスケールファクター「sxt1,sxt2,sxt3,・・・,sxtN」と、N個の二次感度「qxt1,qxt2,qxt3,・・・,qxtN」とを取得することができる。
【0073】
ここで、説明を分かり易くするため、例えばゼロ点バイアス「b」に着目して考える。この場合、各試験温度「t=t1,t2,t3,・・・,tN」と、各試験温度におけるゼロ点バイアス値「bxt1,bxt2,bxt3,・・・,bxtN」とを用いて、式(2)に従ってN個の連立方程式を立てることができる。
【0074】
「N」が十分大きければ、式(2)は過決定方程式となるため、例えば最小二乗法を利用して解くことができる。よって、ゼロ点バイアスの温度係数「bx0,bx1,bx2,・・・」を近似的に求めることができる。但し、下付きの添え字について、1番目の添え字は検出軸を、2番目の添え字は温度の次数をそれぞれ示している。
【0075】
同様に、スケールファクター「s」及び二次感度「q」についても、それぞれ式(3)及び(4)に従ってN個の連立方程式を立式する。そして、例えば最小二乗法を利用することで、スケールファクターの温度係数「sx0,sx1,sx2,・・・」及び二次感度の温度係数「qx0,qx1,qx2,・・・」をそれぞれ近似的に求めることができる。
【0076】
分かり易いようにx軸に着目して各温度依存成分の温度係数の算出方法について説明したが、y軸及びz軸についても同様の手順により、各温度依存成分の温度係数を算出することができる。
【0077】
(2)ミスアライメント係数の算出
最初に、ある試験温度「t」に試験温度を固定する。この場合、当該試験温度「t」における各温度依存成分の温度係数を用いて、次式(9)〜(11)に従って当該試験温度「t」における各温度依存成分の値「(bt,st,qt)」を算出することができる。
【数9】

【数10】

【数11】

【0078】
次に、ミスアライメント誤差を含む加速度「r」を算出する。説明を簡単にするため、x軸を絶対軸と一致させた場合に着目して考える。加速度センサー520を、x軸正方向を絶対軸正方向とする姿勢(x軸 正)で固定した場合と、x軸負方向を絶対軸正方向とする姿勢(x軸 負)で固定した場合とのそれぞれについて、加速度センサー520の出力値を計測する。
【0079】
さらに、各々の姿勢(x軸 正,x軸 負)で固定した場合について、加速度センサー520の向きが東西南北それぞれの向きとなるように載置台に対する加速度センサー520の設置向きを変化させ、それぞれの設置向きで計測された出力値の平均値を計算する。設置向きを変えて計測した出力値の平均をとるのは、載置台の傾きに起因する出力値の誤差を排斥するためである。
【0080】
このような条件で計測した出力値の平均値を計算したら、この平均値を「pxt」として、先に算出しておいた試験温度「t」における各温度依存成分の値「(bxt,sxt,qxt)」を用いて、式(1)に従ってミスアライメント誤差を含むx軸の加速度「rx」を逆算する。
【0081】
なお、x軸を絶対軸と一致させた場合に着目して説明したが、y軸及びz軸を絶対軸と一致させた場合についても同様に、加速度センサー520の姿勢及び設置向きを変化させながら出力値を計測し、上記の手順で、ミスアライメント誤差を含むy軸及びz軸の加速度「ry」及び「rz」を逆算する。
【0082】
さて、その一方で、ミスアライメント誤差を含む加速度「r」は、重力加速度「g」を用いて、次のように表すことができる。すなわち、x軸正方向を絶対軸正方向とする姿勢(x軸 正)で加速度センサー520を固定した場合について、ミスアライメント誤差を含む加速度「(rxt,ryt,rzt)」は、絶対軸正方向の重力加速度(鉛直下向きの重力加速度)「g」を用いて、「(rxt,ryt,rzt)=(g,myxg,mzxg)」で表すことができる。
【0083】
一方で、x軸負方向を絶対軸正方向とする姿勢(x軸 負)で加速度センサー520を固定した場合について、ミスアライメント誤差を含む加速度「(rxt,ryt,rzt)」は、絶対軸負方向の重力加速度(鉛直上向きの重力加速度)「−g」を用いて、「(rxt,ryt,rzt)=(−g,−myxg,−mzxg)」で表すことができる。
【0084】
なお、y軸及びz軸を絶対軸と一致させるように加速度センサー520を固定した場合についても同様に、正負の重力加速度「g」及び「−g」を用いて、ミスアライメント誤差を含む角速度「(rxt,ryt,rzt)」を表現することができる。
【0085】
この場合、式(5)に従って連立方程式を立てると、次式(12)が導かれる。
【数12】

【0086】
最終的に、重力加速度「g」と、ミスアライメント誤差を含む加速度「r」とを用いて、ミスアライメント係数行列「M」を、次式(13)のように近似的に求めることができる。
【数13】

【0087】
2−2.加速度センサー520の出力値の補正
次に、加速度センサー520の出力値の補正の原理について説明する。センサーモジュール5において、記憶部50に記憶された温度係数テーブル553を参照して、温度センサー530の検出温度「td」に対応する各温度依存成分の温度係数を読み出す。そして、式(9)〜(11)に従って、検出温度「td」における各温度依存成分の値「(btd,std,qtd)」を算出する。
【0088】
次いで、検出温度「td」における加速度センサー520の出力値「ptd」と、検出温度「td」における各温度依存成分の値「(btd,std,qtd)」とを用いて、式(1)に従ってミスアライメント誤差を含む各検出軸の加速度「r」を逆算する。
【0089】
そして、算出したミスアライメント誤差を含む加速度「r」と、記憶部50のミスアライメント係数テーブル555に格納されているミスアライメント係数行列「M」とを用いて、式(5)に従って加速度の真値「a」を算出し、その値を補正出力値として出力する。
【0090】
3.処理の流れ
3−1.補正係数算出装置2の処理
図6は、記憶部50に記憶されている特性判定プログラム51が処理部10により読み出されて実行されることで、補正係数算出装置2において実行される特性判定処理の流れを示すフローチャートである。
【0091】
最初に、試験実行制御部11は、記憶部50に記憶されている試験プログラム511を読み出して実行することで、試験処理を行う(ステップA1)。その後、温度係数算出部13は、記憶部50に記憶されている温度係数算出プログラム513を読み出して実行することで、温度係数算出処理を行う(ステップA3)。
【0092】
次いで、ミスアライメント係数算出部15が、記憶部50に記憶されているミスアライメント係数算出プログラム515を読み出して実行することで、ミスアライメント係数算出処理を行う(ステップA5)。そして、特性判定処理を終了する。以下、ステップA1〜A5の各処理についてフローチャートを用いて説明する。
【0093】
図7は、試験処理の流れを示すフローチャートである。
先ず、試験実行制御部11は、センサーモジュール5の初期試験姿勢を設定する(ステップB1)。例えば、加速度センサー520のx軸正方向が絶対軸正方向と一致するような姿勢(x軸 正)でセンサーモジュール5を被検体固定装置340に固定させる。そして、試験実行制御部11は、予め定められた各試験温度それぞれについて、ループAの処理を実行する(ステップB3〜B7)。
【0094】
ループAの処理では、試験実行制御部11は、試験制御装置310から試験データ54を取得し、記憶部50の試験データベース53に記憶させる(ステップB5)。そして、試験実行制御部11は、次の試験温度へと処理を移行する。予め定められた全ての試験温度についてステップB5の処理を行った後、試験実行制御部11は、ループAの処理を終了する(ステップB7)。
【0095】
次いで、試験実行制御部11は、予め定められた全ての試験姿勢(例えば6姿勢)についてセンサーモジュール5の試験が終了したか否かを判定し(ステップB9)、まだ終了していないと判定した場合は(ステップB9;No)、試験姿勢を変更する制御を行う(ステップB11)。すなわち、センサーモジュール5の姿勢を自動的に変位させることが可能である場合には試験姿勢を変化させるように試験制御装置310が指示制御する。また、手動で変化させる場合には、センサーモジュール5の姿勢を変える設定を行う。
【0096】
一方、全ての試験姿勢について試験が終了したと判定した場合は(ステップB9;Yes)、試験実行制御部11は、試験処理を終了する。
【0097】
図8は、温度係数算出処理の流れを示すフローチャートである。
先ず、温度係数算出部13は、各試験温度それぞれについて、ループCの処理を実行する(ステップC1〜C9)。
【0098】
ループCの処理では、温度係数算出部13は、当該試験温度「t」についての加速度センサー520の出力値「pt」のサンプルデータを試験データベース53から読み出す(ステップC3)。そして、温度係数算出部13は、出力値「pt」のサンプルデータと、重力加速度のサンプルデータ「(g,−g,0)」とを用いて、当該試験温度における各温度依存成分の値「(bt,st,qt)」を、例えば最小二乗法を利用して算出する(ステップC7)。
【0099】
そして、温度係数算出部13は、次の試験温度へと処理を移行する。全ての試験温度についてステップC3〜C7の処理を行った後、温度係数算出部13は、ループCの処理を終了する(ステップC9)。
【0100】
その後、温度係数算出部13は、各試験温度と、各試験温度における各温度依存成分の値とを用いて、各温度依存成分の温度係数を、例えば最小二乗法を利用して算出する(ステップC11)。そして、温度係数算出部13は、温度係数算出処理を終了する。
【0101】
図9は、ミスアライメント係数算出処理の流れを示すフローチャートである。
先ず、ミスアライメント係数算出部15は、試験温度を選択する(ステップD1)。すなわち、複数の試験温度の中から試験温度を任意に1つ選択する。
【0102】
次いで、ミスアライメント係数算出部15は、ステップD1で選択した試験温度「t」と、温度係数算出処理で算出した各温度依存成分の温度係数とを用いて、各温度依存成分の値「(bt,st,qt)」を算出する(ステップD3)。
【0103】
次いで、ミスアライメント係数算出部15は、ステップD3で算出した各温度依存成分の値「(bt,st,qt)」と、加速度センサー520の出力値「pt」とを用いて、式(1)に従ってミスアライメント誤差を含む加速度「r」を逆算する(ステップD5)。
【0104】
次いで、ミスアライメント係数算出部15は、重力加速度「g」と、ステップD7で算出したミスアライメント誤差を含む加速度「r」とを用いて、例えば最小二乗法を利用してミスアライメント係数を算出する(ステップD7)。そして、ミスアライメント係数算出部15は、ミスアライメント係数算出処理を終了する。
【0105】
特性判定処理が終了すると、補正係数テーブル作成部17は、温度係数算出処理で算出された各温度依存成分の温度係数を検出軸別に対応付けて格納した温度係数テーブル553を作成する。また、ミスアライメント係数算出処理で算出されたミスアライメント係数行列を格納したミスアライメント係数テーブル555を作成する。そして、これらのテーブルを補正係数テーブル55として記憶部50に記憶させる。
【0106】
補正係数テーブル作成部17により作成された補正係数テーブル55は、センサーモジュール5に搭載される。すなわち、試験システム1において、センサーモジュール5の試験及び特性判定が終了すると、当該センサーモジュール5について作成された補正係数テーブル55が、当該センサーモジュール5の記憶部550に書き込まれる。センサーモジュール5は、その後製品として出荷されることになる。
【0107】
3−2.センサーモジュール5の処理
図10は、記憶部550に記憶されている補正出力プログラム551が処理部510により読み出されて実行されることで、センサーモジュール5において実行される補正出力処理の流れを示すフローチャートである。
【0108】
先ず、処理部510は、記憶部550に記憶されている補正係数テーブル55の温度係数テーブル553から、各温度依存成分の温度係数を読み出す(ステップE1)。また、処理部510は、補正係数テーブル55のミスアライメント係数テーブル555からミスアライメント係数を読み出す(ステップE3)。
【0109】
次いで、処理部510は、温度センサー530の検出温度「td」と、ステップE1で読み出した各温度依存成分の温度係数とを用いて、各温度依存成分の値「(btd,std,qtd)」を算出する(ステップE5)。
【0110】
そして、処理部510は、加速度センサー520の出力値「ptd」と、ステップE5で算出した各温度依存成分の値「(btd,std,qtd)」とを用いて、ミスアライメント誤差を含む加速度「r」を逆算する(ステップE7)。
【0111】
次いで、処理部510は、ミスアライメント誤差を含む加速度「r」及びミスアライメント係数行列を用いて、ミスアライメント誤差を補正し(ステップE9)、その補正出力値「a」を出力部540から出力させる(ステップE11)。これら一連の処理を行った後、処理部510は、補正出力処理を終了する。
【0112】
4.作用効果
本実施形態によれば、試験システム1において、加速度センサー520を具備するセンサーモジュール5の特性判定処理が行われる。すなわち、試験装置3において、絶対軸が定められた被検体固定装置340に、加速度センサー520の検出軸の方向を絶対軸方向とするようにセンサーモジュール5が固定される。そして、センサーモジュール5の姿勢及び恒温槽320内部の温度を変化させながら、加速度センサー520の出力値を記録するデータ取得処理が行われる。そして、記録された加速度センサー520の出力値を用いて、補正係数算出装置2により温度依存成分の温度係数及びミスアライメント係数が補正係数として算出される。
【0113】
加速度センサー520は、慣性センサーの一種である。絶対軸方向が定められた試験装置3において、加速度センサー520の各検出軸が絶対軸方向と一致するような姿勢でセンサーモジュール5が固定される。そして、センサーモジュール5の姿勢を変化させて、各姿勢について加速度センサー520の出力値を記録することで、加速度センサー520の検出結果からミスアライメント誤差が分離可能となる。さらに、恒温槽320内部の温度を変化させて、複数の試験温度で同様の試験を行い、ミスアライメント誤差を分離する。そして、加速度センサー520の出力値と、重力加速度とを利用した近似計算を行うことで、温度依存成分の温度係数を適切に算出することができる。
【0114】
また、所定の試験温度と、温度依存成分の温度係数とから、当該試験温度における温度依存成分の値を算出することができる。そして、当該試験温度における加速度センサー520の各検出軸の出力値と、当該試験温度における温度依存成分の値とを用いることで、温度依存性の誤差が分離されたミスアライメント誤差を含む加速度が逆算できる。そして、ミスアライメント誤差を含む加速度と、重力加速度とを利用した近似計算を行うことで、ミスアライメント係数を適切に算出することができる。
【0115】
x軸、y軸、z軸の各検出軸のうちの1軸のみを絶対軸方向と一致させ、出力値を取得すると、その軸に取り付けられた加速度センサーの温度係数を求めることができるが、ミスアライメント係数としては、一部分しか求められない。x軸、y軸、z軸の各検出軸を絶対軸方向と一致させ、各検出軸それぞれの加速度を検出することによって、各軸の温度係数および3軸ミスアライメントのすべての係数(3×3行列)を求めることができる。
【0116】
5.適用例
上述したセンサーモジュール5は、各種の電子機器に搭載して利用することができる。また、センサーモジュール5を電子機器に搭載するのではなく、加速度センサー520を電子機器或いは電子機器内の基板上に搭載することとしてもよい。この場合は、センサーモジュール5に対して試験処理(図7)を含む特性判定処理を行うのではなく、加速度センサー520を搭載した状態の電子機器に対して処理を行うこととする。この際の試験環境温度は、その電子機器の動作温度仕様に応じて定めればより好適である。
【0117】
また、図10の補正出力処理は、センサーモジュール5の処理部510が行うのではなく、電子機器のプロセッサーが行うこととする。すなわち、温度センサーを電子機器に搭載させておき、電子機器のプロセッサーが、加速度センサー520から出力される加速度の出力値を補正する処理を行う。
【0118】
電子機器の具体例としては、例えば携帯型ナビゲーション装置が挙げられる。携帯型ナビゲーション装置において、加速度の出力補正値は、主として位置算出に利用される。この場合は、加速度センサーの他に、ジャイロセンサーを携帯型ナビゲーション装置に搭載させればより好適である。なお、加速度センサー及びジャイロセンサーを具備するセンサーモジュールとして、慣性計測ユニットとして知られるIMU(Inertial Measurement Unit)を搭載させることとしてもよい。
【0119】
携帯型ナビゲーション装置は、加速度センサーの加速度の出力補正値と、ジャイロセンサーの角速度の出力値とを用いて、慣性航法演算処理を行って位置を算出する。具体的には、加速度の出力補正値を積分することで移動速度を算出するとともに、角速度の出力値を積分することで移動方向を算出する。そして、算出した移動速度及び移動方向でなる移動速度ベクトルを用いて、携帯型ナビゲーション装置の位置を随時算出する処理を行う。
【0120】
なお、携帯型ナビゲーション装置が、GPS(Global Positioning System)等の衛星測位システムを利用した位置算出も併せて行うこととしてもよい。この場合は、衛星測位システムを利用して算出した絶対的な位置(絶対位置)と、慣性航法演算処理で算出した相対的な位置(相対位置)とを用いて、最終的な出力位置を決定するようにすれば好適である。
【符号の説明】
【0121】
1 試験システム、 2 補正係数算出装置、 3 試験装置、 5 センサーモジュール、 20 入力部、 30 表示部、 40 通信部、 50 記憶部、 60 バス、 310 試験制御装置、 320 恒温槽、 340 被検体固定装置、 350 温度調整部、 360 温度センサー、 510 処理部、 520 加速度センサー、 530 温度センサー、 540 出力部、 550 記憶部

【特許請求の範囲】
【請求項1】
加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させるとともに、動作環境温度を変化させて、当該加速度センサーの各検出軸の出力値を記録するデータ取得処理を行うことと、
前記出力値に基づいて前記加速度センサーの温度依存特性を算出することと、
を含む校正データ取得方法。
【請求項2】
前記出力値と前記温度依存特性とを用いて、前記加速度センサーのミスアライメント誤差を算出すること、
を更に含む請求項1に記載の校正データ取得方法。
【請求項3】
前記温度依存特性を算出することは、姿勢及び動作環境温度を変化させたそれぞれの場合の前記出力値を用いて、前記加速度センサーの検出結果の値に含まれるゼロ点バイアス及びスケールファクターの温度依存特性を算出することを含む、
請求項1又は2に記載の校正データ取得方法。
【請求項4】
前記温度依存特性を算出することは、更に、前記加速度センサーの検出結果の値に含まれる二次感度の温度依存特性を算出することを含む、
請求項3に記載の校正データ取得方法。
【請求項5】
請求項1〜4の何れか一項に記載の校正データ取得方法によって取得された温度依存特性と、動作環境温度とを用いて、前記加速度センサーの出力値を補正する加速度センサー出力補正方法。
【請求項6】
請求項2に記載の校正データ取得方法によって取得された温度依存特性と、動作環境温度と、ミスアライメント誤差とを用いて、前記加速度センサーの出力値を補正する加速度センサー出力補正方法。
【請求項7】
加速度センサーの各検出軸の方向を絶対軸方向とし、各絶対軸方向それぞれの加速度を検出するように当該加速度センサーの姿勢を変化させるとともに、動作環境温度を変化させて、当該加速度センサーの各検出軸の出力値を記録するデータ取得処理部と、
前記出力値に基づいて前記加速度センサーの温度依存特性を算出する温度依存特性算出部と、
を備えた校正データ取得システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−209001(P2011−209001A)
【公開日】平成23年10月20日(2011.10.20)
【国際特許分類】
【出願番号】特願2010−74982(P2010−74982)
【出願日】平成22年3月29日(2010.3.29)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】