説明

極低温冷凍機

【課題】より効果的に冷凍の効率を高めることができる極低温冷凍機を提供すること。
【解決手段】本発明による極低温冷凍機1は、第一ディスプレーサ2と、第一ディスプレーサ2との間に第一膨張空間3を形成する第一シリンダ4と、第一ディスプレーサ2に連結される第二ディスプレーサ5と、第二ディスプレーサ5との間に第二膨張空間6を形成する第二シリンダ7と、第二ディスプレーサ5の外周面に形成されて第二膨張空間6から螺旋状に延びる螺旋溝8と、螺旋溝8の第一ディスプレーサ2側に連通される絞り部9と、絞り部9を第一膨張空間3側に連通する流路10とを含み、絞り部9は第一膨張空間3よりも常に第二膨張空間6側に位置することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧縮装置から供給される高圧の冷媒ガスを用いて、サイモン膨張を発生させて極低温の寒冷を発生する極低温冷凍機に関する。
【背景技術】
【0002】
例えば特許文献1には、GM冷凍機のピストンとシリンダとの間の隙間のガスに膨張仕事をさせるGM冷凍機が記載されている。この冷凍機は、位相調整機構として機能する直線溝を備えている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】中国特許出願公開第101900447A号明細書
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところが、特許文献1に記載の技術においては、二段式のディスプレーサが往復運動するにあたり、上述した直線溝の高温側部分が一段側の膨張空間に対して進入と退出を繰り返すこととなるため、絞りとしての流路抵抗が変化してしまい、所望の位相調整が困難となって、冷凍の効率を高めることができないという問題があった。
【0005】
本発明は、上記問題に鑑み、より効果的に冷凍の効率を高めることができる極低温冷凍機を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の問題を解決するため、本発明による極低温冷凍機は、
第一ディスプレーサと、当該第一ディスプレーサとの間に第一膨張空間を形成する第一シリンダと、前記第一ディスプレーサに連結される第二ディスプレーサと、当該第二ディスプレーサとの間に第二膨張空間を形成する第二シリンダと、前記第二ディスプレーサの外周面に形成されて前記第二膨張空間から螺旋状に延びる螺旋溝と、当該螺旋溝の前記第一ディスプレーサ側に連通される絞り部と、当該絞り部を前記第一膨張空間側に連通する流路とを含み、前記絞り部は前記第一膨張空間よりも常に前記第二膨張空間側に位置することを特徴とする。
【0007】
ここで、前記極低温冷凍機において
前記流路は前記外周面に前記第二ディスプレーサの軸方向に延びる形態にて形成され、前記流路の前記軸方向に垂直な断面における流路断面積は、前記絞り部の当該絞り部の延在する方向に垂直な断面内の絞り部断面積よりも大きいこととしてもよい。
【0008】
加えて、前記極低温冷凍機において
前記流路断面積は前記絞り部から離れるにつれて連続的に大きくなることとしてもよい。
【0009】
あるいは、前記極低温冷凍機において
前記流路は前記第二ディスプレーサ内に位置する第二蓄冷器に連通することとしてもよい。すなわち、前記流路は前記第二蓄冷器を介して前記第一膨張空間に前記絞り部を連通する。
【0010】
また、前記極低温冷凍機において
前記流路は前記第二ディスプレーサの径方向に延びる形態を有して前記絞り部を兼ねることとしてもよい。
【発明の効果】
【0011】
本発明の極低温冷凍機によれば、前記第二ディスプレーサの外周側のサイドクリアランスをパルス冷凍機に見立てた上で、適切な位相調整を行った上で損失を低減し、冷凍の効率を高めることができる。
【図面の簡単な説明】
【0012】
【図1】本発明に係る実施例1の極低温冷凍機1の一実施形態について示す模式図である。
【図2】実施例1の極低温冷凍機1のサイドクリアランスをパルス冷凍機のパルスチューブと視た場合のフロー図である。
【図3】本発明に係る実施例2の極低温冷凍機1の一実施形態について示す模式図である。
【図4】本発明に係る実施例3の極低温冷凍機1の一実施形態について示す模式図である。
【図5】本発明に係る実施例4の極低温冷凍機1の一実施形態について示す模式図である。
【発明を実施するための形態】
【0013】
以下、本発明を実施するための形態について、添付図面を参照しながら説明する。
【実施例1】
【0014】
本実施例1の極低温冷凍機1は例えばギフォードマクマホン(GM)タイプのものとして構成可能であり、図1に示すように、第一ディスプレーサ2と、第一ディスプレーサ2との間に第一膨張空間3を形成する第一シリンダ4と、第一ディスプレーサ2に連結される第二ディスプレーサ5と、第二ディスプレーサ5との間に第二膨張空間6を形成する第二シリンダ7とを含む。
【0015】
さらに、極低温冷凍機1は、第二ディスプレーサ5の外周面に形成されて第二膨張空間6から螺旋状に延びる螺旋溝8と、螺旋溝8の第一ディスプレーサ2側に連通される絞り部9と、絞り部9を第一膨張空間3側に連通する流路10と、を含み、絞り部9は第一膨張空間3よりも常に第二膨張空間6側に位置するものとしている。
【0016】
第一ディスプレーサ2と第二ディスプレーサ5とはともに円筒状の外周面を有しており、第一ディスプレーサ2の内部には、第一蓄冷器11が配置され、第二ディスプレーサ5に内部には第二蓄冷器12が配置される。第一ディスプレーサ2の高温側よりの部分と第一シリンダ4との間にはシール13が設けられ、第一シリンダ4の上端には圧縮機14、サプライバルブ15、リターンバルブ16からなる吸排気系統を相互に接続する配管のうち給排共通配管が接続されている。
【0017】
第一ディスプレーサ2の上端は図示しない軸部材が結合され第一シリンダ4の上端から突出されており、図示しないクランク機構を介して図示しない駆動用モータに連結されている。軸部材、クランク機構、駆動用モータは第一ディスプレーサ2と第二ディスプレーサ5を軸方向に往復運動させる駆動機構を構成する。
【0018】
第一ディスプレーサ2は下部が開口した有底円筒形状の第一シリンダ4内に収納され、第二ディスプレーサ5は上部が開口した有底円筒形状の第二シリンダ7内に収納されており、第一シリンダ4と第二シリンダ7とは一体的に構成されている。
【0019】
第一シリンダ4、第二シリンダ7は高い強度と低い熱伝導率及び十分なヘリウム遮断能を確保するため例えばステンレス鋼により構成される。第一ディスプレーサ2は、軽い比重と十分な耐摩耗性、比較的高い強度、低い熱伝導率を確保するため、例えば布入りフェノール等により構成される。第二ディスプレーサ5は、例えば外周面に耐摩耗性の高いフッ素樹脂などの皮膜を施した金属製の筒で構成される。第一蓄冷器11は例えば金網等の蓄冷材により構成され、第二蓄冷器12は、例えば鉛球等の蓄冷材をフェルト及び金網により軸方向に挟持することにより構成されている。
【0020】
第二ディスプレーサ5の外周面には、第二膨張空間6に連通する始端を有するとともに螺旋状に第一膨張空間3側に延びる螺旋溝8が形成されており、螺旋溝8は第二ディスプレーサ5の軸方向の中間にて終了する終端を有している。
【0021】
さらにこの螺旋溝8の終端から第二ディスプレーサ5の外周面において軸方向に延びる溝状の絞り部9が形成される。絞り部9は図1中に示す第一ディスプレーサ2と第二ディスプレーサ5が上死点に位置する状態において、第一シリンダ4の底面よりも下側に終端が位置している。この絞り部9の終端からさらに、第一膨張空間3に連通するとともに第二ディスプレーサ5の図1中の頂部に延びる流路10が第二ディスプレーサ5の外周面に形成される。
【0022】
なお、第一膨張空間3よりも常に第二膨張空間6側に絞り部9が位置するとは、絞り部9全体が、第一膨張空間3が最大となる第一ディスプレーサ2が上死点に位置する場合に第一膨張空間3に露出する外周面の露出部分よりも第二膨張空間6側に位置することを指す。つまり、図1において、絞り部9の上端は、第一膨張空間3を画成するシリンダ4の下端部よりも下方に位置している。
【0023】
流路10は第二ディスプレーサ5の外周面に第二ディスプレーサ5の軸方向に延びる形態にて形成されており、流路10の軸方向に垂直な断面における流路断面積A10は、絞り部9の絞り部9の延在する方向に垂直な断面内の絞り部断面積A9(A10>A9)よりも大きく形成される。
【0024】
圧縮機14を動作させてサプライバルブ15を開とすると、サプライバルブ15を介して高圧のヘリウムガスが上述した給排共通配管から第一シリンダ4内に供給され、第一シリンダ4と第一ディスプレーサ2内の第一蓄冷器11を連通する連通路と第一蓄冷器11、第一蓄冷器11と第一膨張空間3とを連通する連通路を介して、第一膨張空間3に供給される。
【0025】
第一膨張空間3に供給された高圧のヘリウムガスは更にその大部分が、第一膨張空間3と第二蓄冷器12とを連通する連通路を介して第二蓄冷器12に供給され、さらに、第二蓄冷器12と第二膨張空間6とを連通する連通路を介して第二膨張空間6に供給される。なお、第一膨張空間3に供給された高圧のヘリウムガスのうち残りの一部分は、流路10、絞り部9の第二ディスプレーサ5の外周面上に構成される経路を介して螺旋溝8内の高圧側に供給される。また、第二膨張空間6に供給された高圧のヘリウムガスのうち一部分は、螺旋溝8内の低圧側に供給される。
【0026】
図2は、螺旋溝8をパルスチューブ型冷凍機のパルス管に見立てた冷媒ガスフロー図である。絞り部9は、給排共通配管とパルス管として機能する螺旋溝8の高温側とを連通する連通路に配置されたオリフィスに対応する。螺旋溝8内の冷媒ガスは、軸方向の略中間に位置する部分が仮想的なガスピストン8Pを構成する。
【0027】
ここで、ガスピストン8Pは、必ず往復運動中螺旋溝8内に収まり、ガスピストン8Pの高温側に高温側空間8Hが存在し、低温側に低温側空間8Lが存在するようにガスピストン8Pの軸方向の長さと位相が調整される。ガスピストン8Pの軸方向の長さと位相は、位相調整機構として機能する絞り部9(オリフィス)の断面積及び全長により調整される。
【0028】
次に、冷凍機の動作を説明する。冷媒ガス供給工程のある時点においては、第一ディスプレーサ2および第二ディスプレーサ5はそれぞれ第一シリンダ4および第二シリンダ7の下死点に位置する。それと同時、またはわずかにずれたタイミングでサプライバルブ15を開とすると、サプライバルブ15を介して高圧のヘリウムガスが給排共通配管から第一シリンダ4内に供給され、第一ディスプレーサ2の上部から第一ディスプレーサ2の内部(第一蓄冷器11)に流入する。第一蓄冷器11に流入した高圧のヘリウムガスは、第一蓄冷材により冷却されながら第一ディスプレーサ2の下部に位置する連通路を介して、第一膨張空間3に供給される。
【0029】
第一膨張空間3に供給された高圧のヘリウムガスは更にその大部分が、図示しない連通路17を介して第二蓄冷器12に供給される。ここで、第二蓄冷器12に供給されない残りのヘリウムガスは、流路10および絞り部9を通じて螺旋溝8に高温側から供給される。このガスは図3における高温側空間8Hに存在するヘリウムガスに対応し、ガスピストン8Pが螺旋溝8から第一膨張空間3に流出することを抑える役割を果たす。ここで、流路10の断面積は絞り部9の断面積と比較して十分に大きいため、ヘリウムガスが流路10を流れるときの抵抗は、絞り部9を流れるときの抵抗と比較して十分に小さい。そのため、第一膨張空間3から高温側空間8Hに流入するヘリウムガスの流入抵抗は、絞り部9の断面積及び全長により調整することができる。
【0030】
第二蓄冷器12に流入した高圧のヘリウムガスは、第二蓄冷器12内で第二蓄冷材に冷却されて第二膨張空間6に供給される。第二膨張空間6に供給された高圧のヘリウムガスのうち一部分は、螺旋溝8内に低温側から供給される。このガスは、図3における低温側空間8L内に存在するヘリウムガスに対応する。
【0031】
ここで、上述のとおり、絞り部9の断面積は、螺旋溝8の断面積と比べて小さいため、高温側空間8Hに流入するヘリウムガスが螺旋溝8に流入する際の流入抵抗は、低温側空間8Lに流入するヘリウムガスが螺旋溝8に流入する際の流入抵抗に比べて大きい。そのため、高温側空間8Hに流入するヘリウムガスのガス量は、低温側空間8Lに流入するヘリウムガスのガス量よりも小さくなり、高温側空間8Hのガスが第二膨張空間6に抜けることは防止される。
【0032】
このようにして、第一膨張空間3、第二膨張空間6、螺旋溝8は、高圧のヘリウムガスで満たされ、サプライバルブ15は閉とされる。この時、第一ディスプレーサ2および第二ディスプレーサ5は、第一シリンダ4及び第二シリンダ7内の上死点に位置する。それと同時、またはわずかにずれたタイミングでリターンバルブ16を開とすると、第一膨張空間3、第二膨張空間6、螺旋溝8の冷媒ガスは減圧され、膨張する。膨張により低温になった第一膨張空間3のヘリウムガスは図示しない第一冷却ステージの熱を吸収し、第二膨張空間6のヘリウムガスは図示しない第二冷却ステージの熱を吸収する。
【0033】
第一ディスプレーサ2及び第二ディスプレーサ5は下死点に向けて移動し、第一膨張空間3、第二膨張空間6の容積は減少する。第二膨張空間6のヘリウムガスは、上述した図示しない連通路、第二蓄冷器12を介して第一膨張空間3内に回収される。ここで、螺旋溝8内の低温側空間8Lのヘリウムガスも、第二膨張空間6を介して回収される。
【0034】
第一膨張空間3内のヘリウムガスは、第一蓄冷器11を介して圧縮機14の吸入側に戻される。その際、第一蓄冷材、第二蓄冷材は、冷媒ガスにより冷却される。この工程を1サイクルとし、冷凍機はこの冷却サイクルを繰り返すことで、第一冷却ステージ、第二冷却ステージを冷却する。
【0035】
上述した本実施例1の極低温冷凍機1によれば、以下のような有利な作用効果を得ることができる。第二ディスプレーサ5と第二シリンダ7とのサイドクリアランスを構成する螺旋溝8内に仮想的なガスピストン8Pを構成して、このガスピストン8Pをサイドクリアランスの低温側と高温側との間のヘリウムガスの通流を防止するシールとして機能させることができる。
【0036】
つまり、仮想的なガスピストン8Pにより、第二ディスプレーサ5の外周面と第二シリンダ7の内周面との間のサイドクリアランスを介してヘリウムガスが相互に移動することを防止して、リーク損失が発生することを防止して冷凍の効率を高めることができる。
【0037】
加えて、この仮想的なガスピストン8Pによりサイドクリアランスをパルスチューブ型冷凍機とみたて、ガスピストン8Pよりも低温側の低温側空間8Lを第三の膨張空間として利用することができるので、これによっても冷凍効率を高めることができる。
【0038】
また、ガスピストン8Pの軸方向の長さと位相を調整する位相調整機構を構成するダブルインレットを、第二ディスプレーサ5の外周面に軸方向に延在する溝状の絞り部9により構成することができるため、位相調整機構をより簡易に構成することができる。さらに、この絞り部9を上述した第一ディスプレーサ2と第二ディスプレーサ5の往復運動に係わらずに常に第一膨張空間3内に入らないようにすることができるため、ダブルインレットとしての流量係数を往復運動の全領域にわたって一定として、位相調整機能を安定させることができる。
【0039】
このように本実施例1においては位相調整機能を安定させることができることから、ガスピストン8Pの長さと位相を安定させて、上述したシール機能も安定させ、リーク損失をより確実に防止するとともに、第三の膨張空間もより確実に確保して冷凍効率を高めることができる。
【0040】
なお、本実施例1の絞り部9は第二ディスプレーサ5の外周面上の軸方向に延びる溝状としているが、これに換えて、流路10の始端から図1中下方に延びて螺旋溝8の終端に連通する孔部とすることもできる。
【実施例2】
【0041】
上述した実施例1の極低温冷凍機1では、高圧ヘリウムガスは第一膨張空間3から螺旋溝8に向けて流路10および絞り部9を通流し、低圧ヘリウムガスは螺旋溝8から第一膨張空間3に通流する。つまり、冷媒ガスがダブルインレットとして機能する絞り部9を双方向に通流する。ここで、高圧ヘリウムガスは低圧ヘリウムガスよりも密度が高いため、低圧ヘリウムガスと比較して流速が小さく、圧力損失が小さい。そのため、1サイクルに絞り部9を通過するガス量は、高圧ヘリウムガスの方が低圧ヘリウムガスよりもわずかに多く、双方向に通流するガス流量の間にアンバランスが生じる。その結果、冷却サイクルを重ねるごとに螺旋溝8の高温側から低温側に向けた定常流れが発生する。この流れは、図2中時計回りの矢印Lに示す二次流れである。
【0042】
本実施例2においては、上述した実施例1における流路10の図3(a)においては一定とした流路10の延在方向における流路断面積A10を、図3(b)に示すように絞り部9から離れるにつれて連続的に大きくなることとしている。なお、図3においては、流路10を第二ディスプレーサ5の径方向から視た幅方向寸法の調整により流路断面積A10を調整しているが、径方向の深さ方向も合わせて調整してもよい。
【0043】
これによれば、図2に示した二次流れの発生を予め妨げる抵抗を流路10の流路断面線A10の縮小によりヘリウムガスの流れに付与することができる。つまり、ヘリウムガスが第一膨張空間3から螺旋溝8に向けて絞り部9を通流する際の流路抵抗を、螺旋溝8から第一膨張空間3にむけて通流する際の絞り部9による流路抵抗よりも大きくすることで、二次流れLの発生を抑制することができる。そのため、二次流れLに伴う熱損失を防止して、冷凍効率を高めることができる。
【実施例3】
【0044】
上述した実施例1及び実施例2においては、流路10を第二ディスプレーサ5の外周面の軸方向に設ける構成を示したが、径方向に設けることもできる。以下それについての実施例3について述べる。
【0045】
本実施例3の極低温冷凍機1は、流路10−1以外の構成は図1に示した実施例1と基本的に同様であるため、共通する構成要素には同一の符号を付し相違点を主に説明する。つまり、図4に示すように、本実施例3の極低温冷凍機1においても、第二ディスプレーサ5の外周面に形成されて第二膨張空間6から螺旋状に延びる螺旋溝8と、螺旋溝8の第一ディスプレーサ2側に連通される絞り部9とを前提として含み、絞り部9を第二蓄冷器12に連通する流路10−1を含み、絞り部9は第一膨張空間3よりも常に第二シリンダ7内部に位置するものとしている。
【0046】
本実施例3においても、絞り部9は第二ディスプレーサ5の外周面において軸方向に延びる溝状を構成しており、絞り部9の上端は図4に示すように、第一シリンダ4の底部つまり第一膨張空間3よりも常に下に位置している。
【0047】
本実施例3においても、上述した実施例1と同様に、第二ディスプレーサ5の外周面と第二シリンダ7の内周面との間のサイドクリアランスを構成する螺旋溝8を、図2に示したようにパルスチューブ型冷凍機と見立てて、螺旋溝8内に仮想的なガスピストン8Pを構成して、流量係数が一定の絞り部9をダブルインレットとして長さと位相と適切に調整することができる。
【0048】
つまりガスピストン8Pにより確実なシール機能を具備させてリーク損失を防止して、冷凍効率を高めることができ、螺旋溝8内の低温側空間8Lを第三の膨張空間として利用して付加的な冷凍を行いこれによっても冷凍効率を高めることができる。
【0049】
また、高温側空間8Hに流入するヘリウムガスは、第二蓄冷器12を介して流入する。そのため、実施例1と比較してより低温に冷却された状態で螺旋溝8に流入することができ、好ましい。
【実施例4】
【0050】
上述した実施例1〜3においては、絞り部9を第二ディスプレーサ5の外周面に対して軸方向に延在させる溝としているが、第二ディスプレーサ5の径方向に延びる孔部により流路を構成して、さらにこの孔部に絞り部の役割を兼ねさせることもできる。以下それについての実施例4について述べる。
【0051】
本実施例4の極低温冷凍機1は、流路10−2が径方向に延びる形態であり絞り部を兼ねること以外の構成は図4に示した実施例3と基本的に同様であるため、共通する構成要素には同一の符号を付し相違点を主に説明する。
【0052】
図5に示すように、本実施例4の極低温冷凍機1においては、第二ディスプレーサ5の外周面に形成されて第二膨張空間6から螺旋状に延びる螺旋溝8と、螺旋溝8の第一ディスプレーサ2側に連通される流路10−2を含む。流路10−2は第二ディスプレーサ5の径方向に延びて第二蓄冷器12に連通し、流路10−2はやはり第一膨張空間3よりも常に第二膨張空間6側に位置しており、第一ディスプレーサ2及び第二ディスプレーサ5の往復運動に係わらず常に第一膨張空間3には露出しないものとしている。
【0053】
なお、本実施例4においては、螺旋溝8の流路10−2に連通される連通部分8Tは、連通部分8Tの延在する方向に垂直な断面内の螺旋溝断面積が流路10−2に近づくにつれて連続的に小さくなることとしている。これにより、連通部分8Tにおけるヘリウムガスの通流を円滑なものとしている。
【0054】
本実施例4においても、上述した実施例1と同様に、第二ディスプレーサ5の外周面と第二シリンダ7の内周面との間のサイドクリアランスを構成する螺旋溝8を、図2に示したようにパルスチューブ型冷凍機と見立てて、螺旋溝8内に仮想的なガスピストン8Pを構成し、さらに絞り部を兼ねる流路10−2をダブルインレットとして長さと位相と適切に調整して、ガスピストン8Pにシール機能を具備させることができる。すなわち、リーク損失を防止して、冷凍効率を高めることができ、螺旋溝8内の低温側空間8Lを第三の膨張空間として利用してこれによっても冷凍効率を高めることができる。
【0055】
また、流路10−2自体が絞り部を兼ねており、絞り部は流量係数を小さくする観点から予め断面積が螺旋溝断面積よりも小さく設定される。つまり、第二蓄冷器12内の第二蓄冷材としての鉛球等の外径に対して流路10−2の内径を小さく設定しておけば、流路10−2の第二蓄冷器12側の開口部から鉛球が入り込むことを防止することができ、鉛球の第二蓄冷器12外への脱落を防止することができる。
【0056】
なお、仮に流路10−2の内径を第二蓄冷材の外径よりも大きくする必要がある場合には、鉛球の径よりも網目の小さい網等の適宜の脱落防止手段を流路10−2の第二蓄冷器12側に設けることにより対応可能である。
【0057】
以上本発明の好ましい実施例について詳細に説明したが、本発明は上述した実施例に制限されることなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形および置換を加えることができる。
【0058】
例えば、上述した極低温冷凍機においては段数が二段である場合を示したが、この段数は三段等に適宜選択することが可能である。
【0059】
実施例では、絞り部9及び流路10が第二ディスプレーサ5の外周面上の軸方向に延びる溝状としているが、これに限られない。例えば、螺旋溝8の延長線上に絞り部9、流路10を形成してもよい。
【産業上の利用可能性】
【0060】
本発明は、サイドクリアランスにおけるリーク損失を低減し、かつ、サイドクリアランスを第三の膨張空間として利用して、冷凍の効率を高める極低温冷凍機に関するものである。
【0061】
本発明によれば、サイドクリアランスをパルスチューブ型冷凍機として利用するにあたり仮想的なガスピストンの軸方向の長さや位相の調整をより確実に行うことができる。
【符号の説明】
【0062】
1 極低温冷凍機
2 第一ディスプレーサ
3 第一膨張空間
4 第一シリンダ
5 第二ディスプレーサ
6 第二膨張空間
7 第二シリンダ
8 螺旋溝
8P ガスピストン
8H 高温側空間
8L 低温側空間
9 絞り部
10 流路(軸方向)
10−1 流路(径方向)
10−2 流路(径方向:絞り部を兼ねる)
11 第一蓄冷器
12 第二蓄冷器
13 シール
14 圧縮機
15 サプライバルブ
16 リターンバルブ

【特許請求の範囲】
【請求項1】
第一ディスプレーサと、当該第一ディスプレーサとの間に第一膨張空間を形成する第一シリンダと、前記第一ディスプレーサに連結される第二ディスプレーサと、当該第二ディスプレーサとの間に第二膨張空間を形成する第二シリンダと、前記第二ディスプレーサの外周面に形成されて前記第二膨張空間から螺旋状に延びる螺旋溝と、当該螺旋溝の前記第一ディスプレーサ側に連通される絞り部と、当該絞り部を前記第一膨張空間側に連通する流路とを含み、前記絞り部は前記第一膨張空間よりも常に前記第二膨張空間側に位置することを特徴とする極低温冷凍機。
【請求項2】
前記流路は前記外周面に前記第二ディスプレーサの軸方向に延びる形態にて形成され、前記流路の前記軸方向に垂直な断面における流路断面積は、前記絞り部の当該絞り部の延在する方向に垂直な断面内の絞り部断面積よりも大きいことを特徴とする請求項1に記載の極低温冷凍機。
【請求項3】
前記流路断面積は前記絞り部から離れるにつれて連続的に大きくなることを特徴とする請求項2に記載の極低温冷凍機。
【請求項4】
前記流路は前記第二ディスプレーサ内に位置する第二蓄冷器に連通することを特徴とする請求項1に記載の極低温冷凍機。
【請求項5】
前記流路は前記第二ディスプレーサの径方向に延びる形態を有して前記絞り部を兼ねることを特徴とする請求項4に記載の極低温冷凍機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−79792(P2013−79792A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2011−221266(P2011−221266)
【出願日】平成23年10月5日(2011.10.5)
【出願人】(000002107)住友重機械工業株式会社 (2,241)