説明

構造およびシステムの変更のための非ラインオブサイトリバースエンジニアリング

構造および/またはシステム内の隠れた物体を分析することによって構造および/またはシステムの変更の設計の前段階として構造および/またはシステムの物理的寸法および構成を測定する方法およびシステムが提供される。この方法は、変更の準備のために変更の前に構造および/またはシステムにアクセスするステップと、x線後方散乱ユニットを用いて構造および/またはシステムを走査するステップと、x線後方散乱ユニットからデータを収集し、そのデータを組合せて2D、2Dパノラマおよび/または3Dデータセットに再構築するステップと、データセットから、隠れた物体の表面および構造を生成するステップと、隠れた物体の表面および構造を構造および/またはシステムの既存の座標系に結び付けて3Dモデルを作成するステップとを含む。

【発明の詳細な説明】
【技術分野】
【0001】
発明の背景
この発明は、構造および/またはシステムの変更の設計の前段階として構造および/またはシステムの物理的寸法および構成を測定することに関し、特に、X線後方散乱技術を利用して隠れた物体を分析することによって構造および/またはシステムの物理的寸法および構成を測定することに関する。
【背景技術】
【0002】
構造および/またはシステム、特に軍用機および民間機の変更の巨大市場が存在する。変更設計者が直面する最大の課題は、航空機などの所与の構造および/またはシステムの幾何学的構成がはっきり分からないことである。しばしば、レガシーデータ(図面、計画、設備据付)は製品の現在の構成を測定するには不十分であるため、構造および/またはシステムに配置される新たなシステムを再設計するためには多大な費用がかかる。
【0003】
航空機を変更するために構成を測定する従来の方法は、デジタル写真、パノラマカメラ、およびラインオブサイトリバースエンジニアリング(line of sight reverse engineering)技術を用いることであった。これらの方法は、航空機へのアクセスが限られているために問題を限定的にしか解決できていない。変更のための時間枠は比較的短い。現在、設計者は、構造および/またはシステムを部分的に分解できるのを待ってからでないと、隠れた物体の幾何学的構成のラインオブサイトリバースエンジニアリング測定/確認を行うことができない。
【発明の開示】
【発明が解決しようとする課題】
【0004】
このため、構造および/またはシステム内の隠れた物体の幾何学的規定データを収集する必要性は高い。非ラインオブサイトリバースエンジニアリング(non line of sight reverse engineering)方法を用いると、航空機の解体(interred)後に生じる現在のエンジニアリングリードタイムを大幅に減少させることができる。したがって、必要とされているのは、変更を設計する前に構造の一部を取外す必要のない、変更を設計する際に使用するための構造および/またはシステムの幾何学的構成を測定するための方法およびシステムである。
【課題を解決するための手段】
【0005】
本発明の要約
この発明の1つの局面においては、構造および/またはシステム内の隠れた物体を分析することによって構造および/またはシステムの変更の設計の前段階として構造および/またはシステムの物理的寸法および構成を測定する方法が提供される。この方法は、変更の準備のために変更の前に構造および/またはシステムにアクセスするステップと、x線後方散乱ユニットを用いて構造および/またはシステムを走査するステップと、x線後方散乱ユニットからデータを収集し、そのデータを組合せて2D、2Dパノラマおよび/または3Dデータセットに再構築するステップと、データセットから、隠れた物体の表面および構造を生成するステップと、隠れた物体の表面および構造を構造および/またはシステムの既存の座標系に結び付けて3Dモデルを作成するステップとを含む。
【0006】
この発明の他の局面においては、変更のために構造および/またはシステム内の隠れた物体を分析するための検査システムが提供される。このシステムは、隠れた物体について
のデータを収集するためのX線後方散乱システムと、データを組合せて2D、2Dパノラマおよび/または3Dデータセットに再構築し、データセットから表面および構造を生成するための計算システムと、構造の物体および/またはシステムの表面を表示するための、計算システムに接続されるディスプレイとを含む。
【発明を実施するための最良の形態】
【0007】
本発明の性質を早く理解できるようにこの簡単な要約を提供した。添付の図面と関連した本発明の好ましい実施例の以下の詳細な説明を参照することによって、本発明のより完全な理解が得られ得る。
【0008】
この発明の上記の特徴および他の特徴を、好ましい実施例の図面を参照して説明する。図面では、同一のコンポーネントは同一の参照番号を有する。例示される実施例は例示のためであり、本発明を限定するためではない。
【0009】
好ましい実施例の詳細な説明
以下の詳細な説明は、本発明を実行するのに最善であると現在考えられるモードについてのものである。本発明の範囲は添付の請求項によって最もよく定義されるため、本説明は限定的に解釈されるべきではなく、単に本発明の一般原理を例示するためになされる。
【0010】
この発明に従って、構造および/またはシステムの隠れた物体を分析することによって非ラインオブサイトリバースエンジニアリングを用いて構造および/またはシステムの物理的寸法および構成を測定する方法が提供される。この発明の方法は航空機を用いて実現されるが、当業者であれば、本明細書中で説明される原理および教示内容が、発電所、処理工場、精製所、ならびに自動車、船、ヘリコプター、および列車を含むがこれらに限定されない輸送システムなどの、隠れた物体を有するさまざまな構造および/またはシステムに適用され得ることを認識するであろう。
【0011】
図1を参照して、構造および/またはシステム102の隠れた物体を分析することによって非ラインオブサイトリバースエンジニアリングを用いて構造および/またはシステム102の物理的寸法および構成を測定する方法を用いるシステム100のブロック図が示される。システム100は従来のX線後方散乱技術を利用して、航空機などの構造および/またはシステム102の隠れた物体の2D、2Dパノラマおよび3D幾何学的情報を捕捉し、表示する。構造および/またはシステム102は、従来のX線後方散乱ユニットを用いて検査される。
【0012】
X線後方散乱ユニットはX線を電子的に発生し、検査中の物体および/またはシステムから散乱したX線光子からデータ104を捕捉することによって物体および/またはシステムを調べ、医療用X線と同様の特徴的な影状の画像を生成する。技師はX線後方散乱ユニットを用いて、変更が予定されている航空機の内部を走査する。走査は、航空機の壁の後ろの隠れた物体を「見る」改良されたX線後方散乱機器を用いて航空機の内側または外側のいずれかからなされる。X線後方散乱機器は、構造および/またはシステムの内部、たとえば構造および/またはシステム内の設置通路を移動可能なように改良される。さらに、機器は、複数の画像を撮影して2D、2Dパノラマおよび/または3Dモデルを捕捉し得、かつ飛行機内の座席または他の物体を回避できるように1つよりも多くの位置を有し得るように改良される。(走査が内側からの場合、透過ビームは外板を貫通する必要がないため、X線エネルギはより低くてもよい。)正確な寸法および奥行き情報を補完するために、X線発射の領域内に既知の寸法および/または奥行きの基点が配置され得る。収集データを2D、2Dパノラマおよび/または3Dデータセットに再構築するためのパラメータとして、現行の構造および/またはシステム規定情報が用いられ得る。
【0013】
X線後方散乱ユニット(または「システム」)は、X線源が航空機の内側からX線を出射するように、航空機の内側に通路を敷設し、通路上にこのシステムを据えることによって利用され得る。X線のいくらかは後方散乱することになり、検出器は散乱したX線を捕らえ、パネルを外すことなく航空機の内部の画像を生成する。代替的に、航空機が十分に大きい場合は、X線後方散乱検査システムをバンなどの乗物内に配置し、乗物を航空機に直接乗り入れてもよい。
【0014】
データ104は、航空機に沿った少なくとも1つの位置から、および航空機に対する少なくとも1つの向きから取られる。次にデータは、従来の2Dソフトウェア108を有する計算システム106に送られ、2Dソフトウェア108は、重ね合わせアルゴリズムを利用して航空機の物体の表面の投影2D画像を発生する。1つの代替肢では、従来の2Dソフトウェア108からの2D画像104が、従来の2Dパノラマ画像作成ソフトウェア108cを用いてともに繋ぎ合わされて、球形の没入型画像を作成する。代替的に、3D前処理ソフトウェア108aが、収集データ104と、3D点データを、隠れた物体を規定する3D表面にデジタル的に再構築する従来の3Dソフトウェア108bとから、構造および/またはシステムの3Dデータ点集合を構築する。最後に、発生されたデータはデータベース112に格納され、データ収集者が閲覧するため、モニタまたは液晶ディスプレイなどの表示装置110上に表示される。
【0015】
典型的に、すべての物体および/またはシステムの相対的場所とともに航空機自体のケーブル布線、配線、配管および構造が表示される。散乱したX線からのエネルギ情報を用いて、材料種類(すなわちアルミニウム対プラスチック管)および場合によってはシステム内容(すなわち送水線対空気)さえも区別することもできる。
【0016】
図2は、この発明の好ましい実施例において利用される典型的な計算システム106(ホストコンピュータまたはシステムとも称され得る)のブロック図を示す。計算システム106は、システムバス204Bに接続される中央処理装置(「CPU」)(またはマイクロプロセッサ)202を含む。ランダムアクセスメインメモリ(「RAM」)204がシステムバス204Bに結合され、CPU202に、発生された画像を格納するためのメモリ記憶装置206へのアクセスを与える。プログラム命令を実行する際、CPU202はそれらのプロセスステップをRAM204に格納し、RAM204から出た格納プロセスステップを実行する。
【0017】
ホストシステム106は、ネットワークインターフェイス206を介して(およびネットワーク接続(図示せず)を通して)コンピュータネットワーク(図示せず)に接続する。1つのそのようなネットワークはインターネットであり、これは、ホストシステム106がアプリケーション、コード、文書および他の電子情報をダウンロードすることを可能にする。
【0018】
起動命令シーケンスまたは基本入出力オペレーティングシステム(BIOS)シーケンスなどの不変命令シーケンスを格納するために、読出専用メモリ(「ROM」)208が設けられる。
【0019】
入出力(「I/O」)装置インターフェイス204Aは、ホストシステム200が、たとえばキーボード、ポインティングデバイス(「マウス」)、モニタ、プリンタ、モデムなどのさまざまな入出力装置に接続することを可能にする。I/O装置インターフェイス204Aは簡略化のため単一のブロックとして示されているが、異なる種類のI/O装置とインターフェイス接続するための複数のインターフェイスを含み得る。
【0020】
本発明は図2に示される計算システム106のアーキテクチャに限定されないことに注
目すべきである。応用/業務環境の種類に基づいて、計算システム106のコンポーネントはより多くても少なくてもよい。たとえば、計算システム106はセットトップボックス、ラップトップ型コンピュータ、ノートブック型コンピュータ、デスクトップシステムまたは他の種類のシステムであってもよい。
【0021】
図3を参照して、この発明の好ましい実施例に従った、航空機の隠れた物体を分析することによって非ラインオブサイトリバースエンジニアリングを用いて航空機の物理的寸法および構成を測定するステップを図示するフローチャートが示される。この方法は、X線後方散乱撮像される航空機へのアクセスが提供されるステップS300で始まる。ステップS302において、X線後方散乱ユニットを用いて航空機の壁および天井が走査される。典型的に、データ収集には1から5日間だけアクセスするだけでよい。データ収集の完了後、予定された変更まで航空機は運用に戻される。ステップS304においてデータが収集される。ステップS305における1つの代替肢では、従来の2Dソフトウェア108からの2D画像104が、PanoweaverおよびIpixなどの従来の2Dパノラマ画像作成ソフトウェア108cを用いてともに繋ぎ合わされて、球形の没入型画像を作成し得る。代替的に、ステップS306において、計算システム106内の3Dソフトウェア108aを用いて、収集データ104から構造および/またはシステムの3Dデータ点集合が構築される。
【0022】
次に、ステップS308において、たとえばInnovmetric PolyworksまたはRaindrop Geomagicなどの従来の3Dソフトウェア108bが、3D点データを、隠れた物体を規定する3D表面にデジタル的に再構築する。最後に、ステップS310において、3D表面が構造および/またはシステム基準座標系に変換される。発生された3D表面は次に、それらを他のモデルと組合せて複雑な構造および/またはシステムの3DのCADモデルを形成することによって、従来のエンジニアリングデータのように用いられ得る。設計技術者は隠れた構造の3Dモデルを用いて、ハードウェアおよびシステムの工程(routing)および設置を計画する。いったん航空機が変更できるようになると、費用のかかる再設計を必要とせずに、壁および遮音/断熱材(insulation)が航空機から取外され、ハードウェアが最初に設計されたように設置される。モデルは、いずれかの将来の変更用にデータベースに保存される。
【0023】
再構築後方散乱X線によって生成される3D画像はさまざまな方法で生成可能であり、これらの方法は、(1)いくつかの既知の向きから来る散乱したX線を収集するようにコリメータを向けること、(2)特定の方向から来るX線を登録するようにのみ平行化された複数の検出器を用いること、(3)フライングスポット検出器、(4)2D走査システム(AS&E z-backscatterシステムなど)をグレードアップして、光源および扇形コリメータが異なる方向に向いた状態で航空機の長さに沿って走査すること、ならびに(5)光源および扇形コリメータの向きを変化させつつ航空機に複数回照射すること(making multiple passes of the aircraft)を含むが、これらに限定されない。
【0024】
この発明を特定の実施例を参照して説明したが、これらの実施例は例示的なものに過ぎず限定的なものではない。この開示および以下の請求項に鑑みて、この発明の多くの他の適用例および実施例が明らかになるであろう。
【図面の簡単な説明】
【0025】
【図1】この発明の1つの局面に従った、構造および/またはシステムの隠れた物体を分析することによって非ラインオブサイトリバースエンジニアリングを用いて構造および/またはシステムの物理的寸法および構成を測定する方法を用いるシステムの最上位のブロック図である。
【図2】この発明の1つの局面において利用される典型的な計算システムの内部アーキテクチャのブロック図である。
【図3】この発明の1つの局面に従った、構造および/またはシステムの隠れた物体を分析することによって非ラインオブサイトリバースエンジニアリングを用いて構造および/またはシステムの物理的寸法および構成を測定するステップを図示するフローチャートの図である。

【特許請求の範囲】
【請求項1】
構造および/またはシステム内の隠れた物体を分析することによって構造および/またはシステムの変更の設計の前段階として構造および/またはシステムの物理的寸法および構成を測定する方法であって、
変更の準備のために変更の前に構造および/またはシステムにアクセスするステップと、
x線後方散乱ユニットを用いて前記構造および/またはシステムを走査するステップと、
前記x線後方散乱ユニットからデータを収集し、前記データを組合せて2D、2Dパノラマおよび/または3Dデータセットに再構築するステップと、
前記データセットから、隠れた物体の表面および構造を生成するステップと、
前記隠れた物体の前記表面および構造を前記構造および/またはシステムの既存の座標系に結び付けて3Dモデルを作成するステップとを備える、方法。
【請求項2】
前記構造および/またはシステムは航空機である、請求項1に記載の方法。
【請求項3】
前記構造および/またはシステムは自動車である、請求項1に記載の方法。
【請求項4】
前記構造および/またはシステムは建物である、請求項1に記載の方法。
【請求項5】
前記構造および/またはシステムは船またはヘリコプターである、請求項1に記載の方法。
【請求項6】
前記構造および/またはシステムは発射台、発電所、オイルリグ、または精油所である、請求項1に記載の方法。
【請求項7】
データ収集のための前記構造および/またはシステムへのアクセスは、前記構造および/またはシステムを運用に戻す必要性によって制限される、請求項1に記載の方法。
【請求項8】
前記変更は、前記構造および/またはシステムが変更できるようになる前に完全に設計される、請求項1に記載の方法。
【請求項9】
前記変更は、ハードウェアの工程および設置を含む、請求項1に記載の方法。
【請求項10】
収集された前記データは、2D、2Dパノラマおよび/または3D幾何学的情報データである、請求項1に記載の方法。
【請求項11】
前記構造および/またはシステムは内側から走査される、請求項1に記載の方法。
【請求項12】
前記構造および/またはシステムは外側から走査される、請求項1に記載の方法。
【請求項13】
前記データは、前記構造および/またはシステムに沿った少なくとも1つの位置から取られる、請求項1に記載の方法。
【請求項14】
前記データは、前記構造および/またはシステムに対する少なくとも1つの向きから取られる、請求項1に記載の方法。
【請求項15】
正確な寸法および奥行き情報を補完するために、前記構造および/またはシステム内に既知の寸法および/または奥行きの基点が任意で配置される、請求項1に記載の方法。
【請求項16】
変更のために構造および/またはシステム内の隠れた物体を分析するための検査システムであって、
隠れた物体についてのデータを収集するためのX線後方散乱システムと、
前記データを組合せて2D、2Dパノラマおよび/または3Dデータセットに再構築し、前記データセットから表面および構造を生成するための計算システムと、
前記構造および/またはシステムの前記物体および/またはシステムの前記表面を表示するための、前記計算システムに接続されるディスプレイとを備える、システム。
【請求項17】
前記X線後方散乱ユニットによって収集された前記データは、2D、2Dパノラマおよび3D幾何学的情報である、請求項16に記載のシステム。
【請求項18】
前記構造および/またはシステムの既存の図面が、収集された前記データセットから2D、2Dパノラマおよび/または3Dモデルを作成するためのパラメータとして用いられる、請求項17に記載のシステム。
【請求項19】
収集された前記データを将来の使用のために格納するための、前記計算システムに接続されるデータベースをさらに備える、請求項18に記載のシステム。
【請求項20】
前記変更は、ハードウェアの工程および設置を含む、請求項16に記載のシステム。
【請求項21】
正確な寸法および奥行き情報を補完するために、前記構造および/またはシステム内に既知の寸法および/または奥行きの基点が任意で配置される、請求項16に記載のシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公表番号】特表2009−526326(P2009−526326A)
【公表日】平成21年7月16日(2009.7.16)
【国際特許分類】
【出願番号】特願2008−554372(P2008−554372)
【出願日】平成19年2月9日(2007.2.9)
【国際出願番号】PCT/US2007/003466
【国際公開番号】WO2007/095085
【国際公開日】平成19年8月23日(2007.8.23)
【出願人】(500520743)ザ・ボーイング・カンパニー (773)
【氏名又は名称原語表記】The Boeing Company
【Fターム(参考)】