説明

樹脂炭素複合材料

【課題】高い放熱性、電磁波遮蔽性、電気伝導性および強度を有する機能性樹脂材料を提供する。
【解決手段】樹脂中に(a)炭素繊維と(b)黒鉛粉末とが均一に分散された樹脂炭素複合材料であって、当該樹脂炭素複合材料中における(a)の割合が10〜60体積%であり、(b)の割合が10〜60体積%であり、(a)と(b)の総和が20〜80体積%であることを特徴とする樹脂炭素複合材料。(a)の炭素繊維は、ピッチ系炭素繊維およびカーボンナノチューブであることが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高い放熱性、電気伝導性、電磁波遮蔽性および強度を有する樹脂炭素複合材料に関する。
【背景技術】
【0002】
電子機器の分野において、発熱素子の放熱は重要な課題である。また静電気、電磁波が電子機器の故障や誤動作の原因になるため、機器や素子を静電気及び電磁波から保護することも強く求められている。
【0003】
発熱素子の放熱に関しては、例えば熱伝導性に優れた銅若しくはアルミからなるヒートシンクが用いられている。また、発熱素子の実温度上昇と共に、ヒートシンク以外にも、内部に冷却液を装填したヒートパイプを用いることが増加してきている。しかし、上述した銅やアルミ等の金属製のヒートシンクにおいて、放熱性を向上させる場合には、ヒートシンクのフィンを薄くし背を高くする必要がある。この際に渦電流が発生しやすく別途電磁波シールドを行う必要があり、電子機器のコストアップと薄型化を阻む要因となっている。
また、金属の放熱材料は比重が大きいために軽量化を阻む要因ともなっている。さらに、金属は熱伝導性が高く、発熱素子の熱を移動させやすい特徴がある一方、自己放熱性に乏しく、熱を吸収してもそれを放熱しにくいため、発熱素子を冷却させる際には冷却ファンを用いて常にこれら金属製のヒートシンクの表面を冷却させる必要がある。
【0004】
電磁波を遮蔽する電磁波シールド体としては、通常、金属の板、箔、メッシュ、導電性の皮膜、導電性充填剤を混入した複合材、メッキ、蒸着、塗装等による導電性表面処理物が使用されている。
従来、放熱用の部材と電磁波遮蔽用の部材には別のものが用いられていたため、コストが割高になり、製品の薄型化にも支障を来していた。
【0005】
上述した問題を解決するために、電磁波をシールドするとともに、熱伝導性に優れた材料を提供する技術もいくつか見られる。例えば、特許文献1及び特許文献2では、導電性層と絶縁性層および電磁波シールド層からなる多層構造のシートが提案されている。また、特許文献3では樹脂にフェライト粉末及びカーボンナノチューブを少量添加し、熱伝導性と静電気除去効果に優れた熱伝導シートが提案されている。
【0006】
しかし、特許文献1および2のシートでは、多層シートを構成させるために、それぞれの層の密着性が問題となり、少しでも剥離箇所があると、特性が急激に落ちる問題がある。また、それぞれの層を別々に作る必要があるため、肉厚を薄くすることが難しいと共に、複雑形状の製品を作ることが困難であるという問題がある。また、それぞれの層を組み合わせて作る必要があるため、コストアップの要因になる。また、これらシートにおいては金属を用いているため、自己放熱性に乏しく、やはりヒートシンクとの併用が一般的である。また、電磁波をシールドする性質は有するものの、電磁波を吸収する性質は有しないため、筐体の内面の全面に金属材料による導電性表面処理を行う必要があり、コストアップの要因となる。
一方、特許文献3のシートは多層構造を取っていないが、熱伝導率は5W/m・K以下と、ヒートシンクとして使用できるほどの値は示しておらず、放熱効果は十分とは言えない。
【0007】
また、電磁波の遮蔽に関しては広帯域での遮蔽特性が求められているが、特定の周波数で遮蔽性を示す材料は多くあるものの、1MHzから1GHzを越えるような広帯域での遮蔽特性を示す材料を見いだすことは容易ではなく、熱を下げる効果に優れるともに、広帯域での電磁波遮蔽性を示す材料が求められている。
【0008】
また、放熱性に優れたプラスチック複合材料も開発されているが、プラスチック材料は電気伝導性が劣る為に帯電しやすく、静電気により電子部品を破壊することが大きな問題となっている。従来のプラスチック材料に導電物質を表面塗布もしくは練り込むことにより電気伝導性を上げる材料も見受けられるが、体積抵抗率は10Ω・cm程度であり、十分な導電性は得られていない。
【0009】
これに関し、フィラーの充填率を上げることにより、フィラーにより近い特性を持つ樹脂組成物を提供する発明が特許文献4に開示されており、フィラーの一例として黒鉛粉末を使用した樹脂組成物が開示されている。しかしながら、黒鉛粉末を用いた場合には、電気伝導性の高い樹脂組成物が得られると考えられるものの、体積比率で60体積%以上の黒鉛粉末を使用しないと、十分な熱伝導率は得られず、大量の黒鉛粉末により成形体の強度は硬く脆くなるため、衝撃のかかる部位への使用は困難であるという問題がある。
【特許文献1】特開2001−168573号公報
【特許文献2】特開平10−313191号公報
【特許文献3】特開2004−47965号公報
【特許文献4】特開2004−124037号公報
【発明の開示】
【発明が解決しようとする課題】
【0010】
したがって、本発明は、放熱性、電磁波遮蔽性、電気伝導性並びに耐衝撃性に優れた材料を提供することを課題とする。
【課題を解決するための手段】
【0011】
本発明者らは、前記課題を解決するために様々な検討を行った結果、炭素繊維と黒鉛粉末を一定の割合で樹脂に均一に混合することによって、放熱性に優れ、広帯域の電磁波を遮蔽できるとともに、電気抵抗値が低く電気伝導性に優れ、かつ強度が高く耐衝撃性に優れた材料を製造することに成功し、前記課題を解決した。
【0012】
すなわち本発明は、樹脂中に(a)炭素繊維と(b)黒鉛粉末とが均一に分散された樹脂炭素複合材料であって、当該樹脂炭素複合材料中における(a)の割合が10体積%以上60体積%以下であり、(b)の割合が10体積%以上60体積%以下であり、(a)と(b)の総和が20体積%以上80体積%以下であることを特徴とする。
【0013】
炭素繊維および黒鉛粉末はともにカーボン材料であり、熱伝導性と電磁波吸収性に優れている。また、黒鉛粉末は電気伝導性が高く、炭素繊維は、材料の強度を高め、耐衝撃性を向上させることができる。樹脂中に上記割合で黒鉛粉末と炭素繊維を均一に分散させることにより、黒鉛粉末が、炭素繊維の隙間に均一に分散し、炭素繊維と黒鉛粉末の一部が接し、炭素繊維同士が絡み合う事により放熱性及び電気伝導性をさらに高めることができる。
【0014】
前記(a)の炭素繊維は、100W/m・K以上の熱伝導率を有することが好ましい。
また、炭素繊維として、ピッチ系炭素繊維を用いる事で、放熱性をより向上させることが可能であり、さらに、カーボンナノチューブを併用することにより、電磁波遮蔽特性をより向上させることができる。カーボンナノチューブは添加量2〜5%と少量においても効果を発揮する。ピッチ系炭素繊維とカーボンナノチューブを併用する場合、樹脂炭素複合材料中におけるピッチ系炭素繊維の割合は10体積%以上50体積%以下、カーボンナノチューブの割合は0.1体積%以上10体積%以下が好適である。
【0015】
また、黒鉛粉末として、固定炭素量が95%以上の球状黒鉛粉末を用いれば、より放熱性を向上させ、電気抵抗値を低減させることができる。さらに、カーボンブラックを添加することにより、放熱性および電磁波吸収特性をより向上させることができる。この際、樹脂炭素複合材料中における黒鉛粉末の割合が10体積%以上50体積%以下であり、カーボンブラックの割合が0.1体積%以上10体積%以下であることが好ましい。
【0016】
上記の樹脂炭素複合材料からなる成型品は金属に比べて軽量であり、押出成形、射出成形、またはプレス成形することにより、肉厚の薄い製品や複雑形状の製品を一体形成することができる。
【発明の効果】
【0017】
本発明にかかる樹脂炭素複合材料は、優れた放熱性と電磁波遮蔽性を有し、且つ高い導電性と強度を有する。特に本発明にかかる樹脂炭素複合材料は、広帯域で良好な電磁波遮蔽特性を有する。
【発明を実施するための最良の形態】
【0018】
本発明に用いられる樹脂は、熱可塑性樹脂及び熱硬化性樹脂の何れでもよく、熱可塑性樹脂ではポリオレフィン系樹脂、ポリアミド系樹脂、エラストマー系(スチレン系,オレフィン系,PVC系,ウレタン系,エステル系,アミド系)樹脂、アクリル系樹脂、エンジニアリングプラスチック等が用いられる。特にポリエチレン、ポリプロピレン、ナイロン樹脂、ABS樹脂、アクリル樹脂、エチレンアクリレート樹脂、エチレン酢酸ビニル樹脂、ポリスチレン樹脂、ポリフェニレンサルファイド樹脂、ポリカーボネート樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂、液晶ポリマーが選ばれる。中でも耐熱性及び柔軟性からナイロン樹脂、ポリエステルエラストマー樹脂、ポリアミドエラストマー樹脂、ABS樹脂、ポリプロピレン樹脂、ポリフェニレンサルファイド樹脂、液晶ポリマーが好適である。
また、熱硬化性樹脂にはエポキシ樹脂、メラミン樹脂、フェノール樹脂、シリコーン樹脂、ウレタン樹脂等が用いられる。なかでも、耐熱性及び柔軟性からエポキシ樹脂、シリコーン樹脂及びウレタン樹脂が好適である。
これら樹脂には分散剤、潤滑剤、可塑剤を添加してもよく、とくに分散剤に脂肪酸系エステルを用いる事により、炭素繊維及び黒鉛粉末の充填率を増加させ、特性を向上させることができる。
【0019】
黒鉛粉末としては球状黒鉛粉末、鱗片状黒鉛粉末を用いることができる。特に球状の黒鉛粉末が好適である。また、固定炭素量が95%以上の黒鉛粉末を用いることにより、放熱性及び電気特性をより向上させることができる。黒鉛粉末の平均粒子径は0.1μm以上100μm以下のものが好ましい、平均粒子径が0.1μmよりも小さくなると比表面積が増えるため樹脂中に添加できる量が少なくなり、100μmよりも大きくなると粉末間の隙間が大きくなり、自己放熱性が低下する。特に特性の面からは、好ましい平均粒子径は0.3μm以上50μm以下、より好ましくは0.5μm以上40μm以下、さらに好ましくは1μm以上20μm以下である。本明細書中において、粉末の平均粒子径とは、レーザー回折式粒度分布測定装置により測定した平均粒子径を意味する。
本発明の樹脂炭素複合材料に含まれる黒鉛粉末は1種類であっても、複数種であってもよく、材料中に占める黒鉛粉末の割合は、総量で10〜60体積%が好ましい。10体積%未満では、放熱性、電磁波吸収特性に効果が見られず、60体積%を超えると、成形体強度が低下し脆くなる。より好ましくは、10〜50体積%であり、とくに好ましくは15〜40%である。
【0020】
さらに、黒鉛粉末に加えて直径がナノメートルサイズのカーボンブラックを併用することが好ましい。カーボンブラックを添加することにより、炭素間の接触面積を増やすことが可能となることで、さらなる放熱性の向上、電磁波吸収特性の向上が可能となる。
カーボンブラックとしては、導電性の高いケッチェンブラックが特に好ましい。好ましいケッチェンブラックの平均粒子径は1nm〜100nmであり、さらに好ましい平均粒子径は10nm〜50nmである。
【0021】
本発明にかかる炭素繊維は、熱伝導率100W/m・K以上(より好ましくは500W/m・K以上)であることが好ましい。高い熱伝導率を保持するためには、直径が1μm以上50μm以下(より好ましくは直径が3μm以上20μm以下)であって、平均長さが0.05mm以上30mm以下の炭素繊維を用いることが好ましい。特に、平均長さが0.1mm以上25mm以下(より好ましくは平均長さが0.3mm以上10mm以下)の炭素繊維を用いることが好ましい。また炭素繊維にはPAN系炭素繊維とピッチ系炭素繊維があるが、本発明にかかる樹脂炭素複合材料では、ピッチ系炭素繊維、ピッチ系超高弾性率炭素繊維が好ましい。ピッチ系炭素繊維を用いる事で、放熱性をより向上させることが可能となる。なお、本発明においてピッチ系超高弾性率炭素繊維とは、引っ張り弾性率が500GPa以上のピッチ系炭素繊維を指す。
さらに、前記ピッチ系炭素繊維(ピッチ系超高弾性率炭素繊維を含む)に加えて、直径がナノメートルサイズの糸状(チューブ形状を含む)のカーボンナノ材料を併用することが好ましい。好ましいカーボンナノ材料の例としてカーボンナノチューブ又は気相成長カーボン繊維を挙げることができる。前記糸状カーボンナノ材料の好ましい長さは1μm以上50μm以下、このましい直径は、5nm以上100nm以下である。
なお、本明細書中において、炭素繊維のうち、直径がナノメートルサイズ(1〜999nm)のものを「カーボンナノ材料」と呼ぶ。
ピッチ系炭素繊維やカーボンナノチューブ等の長さは、電子顕微鏡によって測定することができ、直径も電子顕微鏡によって測定することができる。平均直径・平均長さは電子顕微鏡写真を画像解析して平均値を算出することによって求めることができる。
【0022】
また、炭素繊維、黒鉛粉末と樹脂との表面の濡れ性を向上させるために、これら炭素繊維及び黒鉛粉末に樹脂コーティング、カップリング処理を行うと、分散性の向上並びに材料強度の向上が期待できる。特に樹脂コーティングはエポキシ樹脂、ポリアミド樹脂が好適であり、カップリング処理についてはシラン系カップリング処理、チタネート系カップリング処理が好適である。
【0023】
本発明の材料中における、炭素繊維と黒鉛粉末の好ましい比率は80:20〜20:80、より好ましい比率は75:25〜25:75、特に好ましい比率は70:30〜30:70である。
【0024】
熱可塑性樹脂と黒鉛粉末及び炭素繊維との混合分散は加熱混練機、多軸押出機及び加熱ロール等を用いて行うことができる。また、熱硬化性樹脂を母材に用いた場合はミキサー、真空混合機、多軸押出機等を用いることができる。
得られた材料は射出成形、シート成形、押出成形若しくはプレス成形により所望する形状の成型品を作成することができる。得られた成型品は炭素繊維を含有するため強度が強く、また、黒鉛粉末を多く含むため、成形時に炭素繊維が一方向に配向することを防ぎ、材料の均等な強度向上と均質な熱伝導性及び電磁波吸収を実現することが可能となる。
成形方法では特に射出成形法を用いることにより、銅、アルミを原料とするものと比較して、三次元複雑形状の成形体を寸法精度良く、低温で成型することが可能である。また、銅、アルミをダイカスト法で成型する場合と比較して、バリが少ない、肉厚1mm以下の三次元形状の成型品を容易に成型できる。
【0025】
アルミに匹敵する放熱性を持つ材料を得るためには、樹脂の量は材料全体の60体積%以下であることが好ましい。好ましい樹脂の量は材料全量の30〜60体積%であり、より好ましくは40〜55体積%、特に好ましくは45〜50体積%である。特に樹脂量を50体積%以下にまで低減することで、金属性の放熱材料に匹敵する成形材料を得ることができる。黒鉛粉末の平均粒子径が小さすぎると、樹脂の添加量を増やす必要が生じるため、黒鉛粉末の平均粒子径は0.1〜100μmが好ましい。
特に、平均粒子径1μm〜40μmの球形の黒鉛粉末を細密充填できるように計算して配合し、これに炭素繊維を添加する事で、樹脂量を50体積%以下にまで低減することが可能となり、金属性の放熱材料に匹敵する成形材料を得ることができる。また、炭素繊維がこの細密充填された黒鉛粉末の中でランダムに存在することで、シート成形、射出成形、押し出し成形で生じる炭素繊維の配向を低減できることで、炭素繊維を用いた成形体に生じやすい放熱効果の方向依存性を低減させ、併せて電気抵抗を下げることが可能となり、また均質な電磁波吸収効果を得ることができる。
【0026】
本発明にかかる樹脂炭素複合材料は、放熱材料、電磁波遮蔽材料として用いられてきた金属材料と比較して、密度が1.5〜1.8g/cm程度と小さいことから、金属材料を本発明による材料に置き換えることで、アルミと比較して40%、銅と比較して80%程度の軽量化を達成できる。
また、炭素繊維と黒鉛粉末が均一に分散することにより、耐衝撃性に優れた成形材料を提供することが出来る。
【0027】
以下、実施例に基づき、本発明の材料を詳細に説明する。
【実施例】
【0028】
[樹脂炭素複合材料の調製]
実施例に用いた材料の配合を表1に示す。用いる樹脂をあらかじめ0.5Lの加熱混練機で、ポリブチレンテレフタレート(PBT)の場合には260℃、ナイロン樹脂(PA)の場合には250℃及びポリフェニレンサルファイド(PPS)樹脂の場合には330℃に設定して10分間混合し十分溶融させた後に黒鉛粉末及び炭素繊維を徐々に添加して1時間加熱混練を行い、取り出した塊をシート状にした後、粉砕機にかけて成形材料とした。
得られた成形材料を型締め力20トンの射出成形機を用いて、電気抵抗値の測定及び放熱特性の測定に関しては35mm×35mm×厚み2mmの成形体を製造してこれを用いた。電磁波遮蔽性の測定には100mm×100mm×厚み1.5mmの成形体を製造してこれを用いた。曲げ強度、曲げ弾性率の測定には長さ100mm、幅5mmの短冊状試験片を作成し、万能試験機を用いて測定を行った。
比較例についても同様の手順により成形体を作成した。
【0029】
実施例および比較例において用いた原料は次の通りである。
黒鉛粉末には、平均粒子径10μmの球状黒鉛粉末(固定炭素量98%)を用いた。
カーボンブラックには平均粒子径40nmのケッチェンブラックEC−600JDを用いた。
炭素繊維には、ピッチ系炭素繊維である三菱化学産資株式会社のK6371T:140W/m・K(平均長さ:6.3mm、収束剤[エポキシ樹脂]添着率2wt%)、ピッチ系超高弾性炭素繊維である三菱化学産資株式会社のK223HG:700W/m・K(平均長さ:6mm、収束剤無添加)、カーボンナノチューブであるナノカーボンテクノロジーズ株式会社の多層カーボンナノチューブ(平均長さ:約20μm)を用いた。
【0030】
[特性の測定]
電磁波の測定に関してはアドバンテスト製、スペクトラムアナライザR3132を用いて1MHz〜1GHzの電磁波遮蔽特性を測定した。表中に示す電磁波遮蔽性は透過損失であり、対応する樹脂のみで作製したシートにおける透過量を基準値とし、実施例あるいは比較例のシートにおける透過量の減少値を示す。
放熱特性の測定については下記に示す方法により測定を行った。幅15mm、厚み2mm、長さ100mmの銅板を、熱源を使用して80℃まで温度を上げて、30分均熱を確認した後、試料(35mm角、2mm厚)を前記銅板の上に置いて、試料から5mm後方の銅板の30分後の温度を測定した。
電気抵抗値は四探針法式の測定器(三菱化学(株)製直流四端子法測定装置)を用いて測定した。
曲げ強度、曲げ弾性率の測定については、曲げ試験片を作成しJISK7171に準じて試験を行った。
【0031】
実施例の結果を表1に、比較例の結果を表2に示す。
【表1】

【0032】
【表2】

【0033】
測定結果から、本発明にかかる材料は何れも、30分後の銅板の温度が71℃以下と放熱性に優れ、且つ1MHz〜1GHzの間に於いて電磁波遮蔽性が−30dB前後と広帯域で優れた電磁波遮蔽性を示すことが確認された。なお、銅板を同条件で測定した場合には放熱特性は71℃、アルミニウムでは73℃となり、本発明にかかる材料が、アルミ、銅と同程度以上の放熱特性(吸熱効果)を有することが分かった。
電気抵抗値においても、全ての実施例において体積固有抵抗値は3Ω・cm以下であり、特に実施例3および6〜9では、1Ω・cm未満と、樹脂成形材料としては非常に低い値を示した。これにより、本発明にかかる樹脂炭素複合材料が高い電気伝導度を有することが分かる。
また、曲げ強度、曲げ弾性率に関しても、従来のプラスチック複合材料と遜色のない結果が得られた。
【0034】
これに対し、黒鉛粉末のみを樹脂と混練した材料の場合(比較例1)は、曲げ強度100以下、曲げ弾性率10以下と低くなり、そのため衝撃強度も低く、1m程度の落下テストで成形体は容易に破壊した。また、電気抵抗値も10Ω・cm台と実施例に比べて高かった。
また、カーボンブラックのみを樹脂と混練した材料の場合(比較例4および5)は、平均粒子径が非常に小さく表面積が大きいため、樹脂の添加量を60体積%以下にして成形材料を作製することが困難であった。また、電気伝導性には優れるものの、成形体の曲げ強度はいずれも100以下、曲げ弾性率は比較例4で10以下となり、十分な強度が得られなかった。
【0035】
他方、ピッチ系炭素繊維のみを樹脂と混練した材料の場合(比較例2)は、繊維が嵩高く、樹脂の添加量を60体積%より少なくして成形材料を作製することが困難であった。また、得られた成形体は、強度には優れるものの、電気抵抗値は10Ω・cm台と高く、電気伝導性に劣った。
また、カーボンナノチューブのみを樹脂と混練した材料の場合(比較例3)は、カーボンナノチューブが非常に嵩高く、樹脂の添加量を60体積%以下にして成形材料を作製することが困難であった。また、カーボンナノチューブを均一に分散させることが困難であるため、成形体の曲げ強度は100以下と低かった。また、電気抵抗値は10Ω・cm台と高く、電気伝導性に劣った。
【0036】
また、黒鉛粉末と炭素繊維を樹脂と混練した材料であっても、炭素繊維の量が10体積%未満の材料の場合(比較例6)は、曲げ強度に劣った。
【0037】
さらに、上記比較例1〜6はいずれも、放熱特性はアルミニウム(73℃)より劣り、電磁波遮蔽性も−15dB以下と低く、実施例と比べて明らかに放熱特性および電磁波遮蔽性が劣っていた。
【0038】
以上の結果から、本発明にかかる樹脂炭素複合材料は、放熱性に優れ、高い電磁波遮蔽性を持ち、電気抵抗値が低く、高強度で衝撃性にも強い樹脂炭素複合材料であることが分かる。
なお、銅板は赤外線をほとんど発しないため、赤外線サーモグラフィーでデータを取ると、実温度に比べて測定温度がはるかに低くなるが、本発明にかかる材料では、サーモグラフィーの温度と実温度がほぼ一致するため、熱放射率がほぼ1に近いことが確認された。このため、本発明にかかる材料の放熱特性(相手の熱を下げる効果[吸熱効果])は、熱放射による自己放熱性(自分の熱を発散させる効果)の高さに起因すると考えられる。
また、炭素繊維および黒鉛粉末は、電磁波吸収特性に優れるため、本発明にかかる樹脂炭素複合材料は、電磁波遮蔽性だけでなく、電磁波吸収性にも優れていると考えられる。なお、電磁波を試料に入射させた場合、入射量=反射量+吸収量+透過量の関係が成り立つが、電磁波遮蔽性が高いとは、透過量が小さいことを意味し、電磁波吸収性が高いとは透過量が小さいだけでなく、反射量が小さいことを意味する。したがって、電磁波吸収性が高いと考えられる本発明にかかる樹脂炭素複合材料は、反射干渉による弊害を防ぐことも可能である。
【産業上の利用可能性】
【0039】
本発明にかかる材料は、高い放熱性、電磁波遮蔽性、電気伝導性を有するため、従来複数の部品が用いられていたものを一体化することができ、また、強度にも優れるため製品の薄型化を図ることができる。また、本発明にかかる材料は、広帯域での電磁波遮蔽性を有するため、電磁波遮蔽のみを目的として使用するにも好適である。例えば、近年の通信技術の発達により、携帯電話、パソコン、ゲーム機等から発生する電磁波が人体に悪影響を及ぼす可能性が指摘されているが、本発明はこのような電磁波からの保護を目的として使用することもできる。また、金属と比較して軽量であるため、従来使用されてきた金属材料を本発明による材料に置き換えることで、40%程度の軽量化を図ることが可能となる。

【特許請求の範囲】
【請求項1】
樹脂中に(a)炭素繊維と(b)黒鉛粉末とが均一に分散された樹脂炭素複合材料であって、材料中における(a)の割合が10〜60体積%であり、(b)の割合が10〜60体積%であり、(a)と(b)の総和が20〜80体積%であることを特徴とする樹脂炭素複合材料。
【請求項2】
前記(a)の炭素繊維が、100W/m・K以上の熱伝導率を有することを特徴とする、請求項1に記載の樹脂炭素複合材料。
【請求項3】
前記(a)の炭素繊維が、ピッチ系炭素繊維およびカーボンナノチューブであることを特徴とする、請求項1または2に記載の樹脂炭素複合材料。
【請求項4】
前記(a)の炭素繊維が、ピッチ系炭素繊維およびカーボンナノチューブであり、前記樹脂炭素複合材料中におけるピッチ系炭素繊維の割合が10〜50体積%であり、カーボンナノチューブの割合が0.1〜10体積%であることを特徴とする、請求項1〜3のいずれか1項に記載の樹脂炭素複合材料。
【請求項5】
前記(b)の黒鉛粉末が、固定炭素量95%以上の球状黒鉛粉末であることを特徴とする、請求項1〜4のいずれか1項に記載の樹脂炭素複合材料。
【請求項6】
さらにカーボンブラックを含み、前記樹脂炭素複合材料中における黒鉛粉末の割合が10〜50体積%であり、カーボンブラックの割合が0.1〜10体積%であることを特徴とする、請求項1〜5のいずれか1項に記載の樹脂炭素複合材料。
【請求項7】
前記ピッチ系炭素繊維の平均長さが0.05mm〜30mmであり、前記黒鉛粉末の平均粒子径が0.1μm〜100μmであることを特徴とする、請求項3〜6のいずれか1項に記載の樹脂炭素複合材料。
【請求項8】
請求項1〜7のいずれか1項に記載の樹脂炭素複合材料を押出成形、射出成形またはプレス成形することにより製造されたことを特徴とする成型品。

【公開番号】特開2009−144000(P2009−144000A)
【公開日】平成21年7月2日(2009.7.2)
【国際特許分類】
【出願番号】特願2007−320775(P2007−320775)
【出願日】平成19年12月12日(2007.12.12)
【出願人】(000107619)スターライト工業株式会社 (62)
【Fターム(参考)】