説明

欠陥検査方法及び欠陥検査装置

【課題】撮像時に表面の形状が不規則に変化した場合であっても、欠陥部分以外を欠陥として誤認識することがない技術を提供する。
【解決手段】(A):可撓性のあるシート状物品等を搬送しながら撮像すると、搬送時の変形によって画像に濃度むらが生じていることがある。そこで画像全体を2つの検査領域A1,A2に分け、検査領域A1内で濃度の最頻値(150)を求め、この最頻値より低い濃度の画素を抽出して隣接する画素を結合する。結合画素を処理エリアADとし、その中で濃度の最大値(100)を求める。(B):そして、最頻値と最大値との比(150/100)で処理エリアAD内の濃度を階調補正し、形状変化の影響を除去した上で欠陥検査を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被検査物を撮像して得た画像を用いて表面の欠陥を検査することができる欠陥検査方法及び欠陥検査装置に関するものである。
【背景技術】
【0002】
従来、この種の欠陥検査方法又は欠陥検査装置に関して、例えば表面に近似合同模様が存在する被検査物のように、場所によって輝度階調が変化する場合であっても、表面模様の輝度変化より輝度変化レベルの小さい欠陥を検出可能とするために階調補正を行う先行技術が知られている(例えば、特許文献1参照。)。
【0003】
すなわちこの先行技術は、被検査物を撮像して得た画像中の小領域内で輝度データ値を平均化し、小領域を数画素分ずらしながら平均値を用いて小領域間の相互相関係数データ処理を行うことで、画像全体を階調補正するものである。このため先行技術によれば、相互相関係数データ処理により、撮像画像に映った近似合同模様に基づく輝度変化が消去され、代わりに近似合同模様に基づく輝度変化よりも小さい輝度変化が相互相関係数データ間の偏差として現れることになる。したがって原理的には、この偏差が現れた部位を欠陥部位として判断することが可能になる。
【特許文献1】特開2006−92401号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら上述した先行技術では、小領域を細かく(例えば1画素ずつ)ずらしながら画像全体について網羅的に演算処理を行っているため、それだけ長い処理時間を必要とする上、ハードウェアにかかる負荷が大きくなるという問題がある。
【0005】
また、可撓性を有する被検査物(例えばシート状物品)については、撮像時の弛みやうねり等の影響で画像の一部分の濃度が不規則な形状で大きく変化している場合がある。しかしながら、先行技術の手法では既知の規則的な表面模様に対応した矩形パターンの小領域だけで階調補正を行っているため、不規則な形状で濃度変化している領域については階調補正することができず、その結果、被検査物の変形によって生じた濃度変化領域を欠陥として誤認識してしまうおそれがある。
【0006】
そこで本発明は、演算処理に要する時間を短縮化することができ、また、撮像時に表面の形状が不規則に変化した場合であっても、欠陥部分以外を欠陥として誤認識することがない技術の提供を課題としたものである。
【課題を解決するための手段】
【0007】
上記の課題を解決するため、本発明は以下の解決手段を採用する。
【0008】
第1に本発明は、以下の工程から構成される欠陥検査方法である。
(1)取得工程
この工程は、被検査物を撮像した画像を取得する工程である。なお取得する画像は、この工程の前に撮像して保存されていたものでもよいし、この工程で撮像したものであってもよい。
【0009】
(2)算出工程
この工程では、上記(1)の取得工程で取得した画像を構成する画素から濃度の代表値を求める。この代表値には、例えば統計処理を通じて算出した最頻値を用いることができる。
【0010】
(3)形成工程
この工程では、取得した画像の中から上記の代表値よりも低い濃度を有する画素を抽出し、互いに隣接する画素同士を結合して処理領域を形成する。例えば、撮像時に被検査物の表面形状が変化していた場合、欠陥でないにもかかわらず部分的な濃度むらが画像の中に形成されることがある。このような濃度むらは、画像内の濃度の代表値よりも濃度が低い領域として現れる。したがって、代表値よりも濃度が低い画素を抽出し、さらに隣接する画素同士を連結していくことで、画像内で濃度むらを生じている領域を特定することが可能になる。
【0011】
(4)補正工程
この工程では、上記(3)の形成工程で形成した処理領域が規定面積より大きい場合、その中に含まれる全ての画素の濃度を階調補正する。ここで「規定面積」は、表面に生じる欠陥を撮像した場合の面積よりも大きい面積を想定しており、処理領域の面積が規定面積より大きければ、それは欠陥部分ではなく表面形状の変化によるものであると判断することができる。したがって、規定面積より大きい処理領域については、その全画素の濃度を階調補正することで、表面形状の変化による影響を取り除くことができる。これに対して規定面積より小さい面積しかない場合、その処理領域は表面形状の変化によるものではなく、純粋に表面の欠陥部分であると判断できるため、ここでは階調補正を行わない。
【0012】
(5)判断工程
この工程では、取得した画像のうち処理領域については補正後の濃度に基づいて欠陥の有無を判断し、その他の領域については原濃度に基づいて欠陥の有無を判断する。これにより、表面形状の変化によって濃度変化が生じた部分については、これを処理領域として階調補正を行った上で欠陥の有無が判断されるため、欠陥部分として誤認識されることはない。
【0013】
第2に本発明の欠陥検査方法は、各工程において以下の内容を追加することができる。
すなわち、(4)の補正工程では、(2)の算出工程で求めた代表値と処理領域内に含まれる画素の濃度の最大値との比を補正係数として階調補正を行うことができる。
【0014】
処理領域が表面形状の変化によるものである場合、少なくともその中で濃度が最大となる画素を基準として処理領域内の階調を全体的に引き上げることで、表面形状の変化による濃度低下の影響を取り除くことができる。これにより、処理領域を含む画像全体の濃度むらを平滑化し、誤検出を確実に防止することができる。
【0015】
第3に本発明の欠陥検査方法において、上記(1)の取得工程で取得した画像を複数の検査領域に分割する分割工程をさらに有するものとする。この場合、上記(2)の算出工程では、取得した画像のうち、先の分割工程で複数に分割されたいずれか1つの検査領域を構成する画素から代表値を求めるものとする。また上記(3)の形成工程では、検査領域の中から抽出した画素同士を結合して処理領域を形成する。そして上記(5)の判断工程では、予め定められた閾値と個々の画素の濃度とを比較して欠陥の有無を判断し、その際、処理領域内の画素については、検査領域内での代表値と取得した画像を構成する全ての画素から求めた濃度の代表値との比を補正係数として閾値を補正するものとする。
【0016】
例えば、画像全体の中に複合的な表面形状の変化による影響が生じていた場合、画像全体に濃度むらが複数段階(例えば3段階)にわたって現れることがある。すなわち、画像全体に大きく分けて比較的濃度が高い領域と低い領域があり、さらに濃度が低い領域の一部に一段と濃度が低い領域がある場合を想定する。このような場合、画像全体を比較低濃度が高い領域と低い領域に分けて検査領域を設定しておき、その上で検査領域ごとに処理領域を形成することでより正確な階調補正が可能となる。
【0017】
一方、検査領域を分けた場合、比較的濃度が低い領域内では欠陥部分の濃度も全体的に引き上げられることから、場合によっては階調補正が行き過ぎとなり、欠陥閾値を超えてしまう可能性がある。そこで本発明では、検査領域内での濃度の代表値と画像全体でみた濃度の代表値との比を用いて閾値を補正している。これにより、階調補正を行った処理領域については検査のハードルを下げることで、欠陥部分の見逃しを防止することができる。
【0018】
このため第4に本発明の欠陥検査方法は、上記の分割工程で複数に分割された検査領域のそれぞれについて、算出工程から前記判断工程までを繰り返し実行するものとする。
【0019】
これにより、複数に分割した検査領域のそれぞれについて処理領域の階調補正を行いながら、取得した画像全体に対して適正な欠陥検査を行うことができる。
【0020】
第5に本発明は、欠陥検査装置を提供する。この欠陥検査装置は、第1〜第3に挙げた欠陥検査方法を実行することができる。
【0021】
すなわち欠陥検査装置は、被検査物を撮像して画像を生成する画像生成手段と、画像生成手段により生成された画像を構成する画像から濃度の代表値を求める算出手段と、画像の中から代表値よりも低い濃度を有する画素を抽出し、互いに隣接する画素同士を結合して処理領域を形成する形成手段と、処理領域が規定面積より大きい場合、その中に含まれる全ての画素の濃度を階調補正する補正手段と、画像のうち処理領域については補正後の濃度に基づいて欠陥の有無を判断し、その他の領域については原濃度に基づいて欠陥の有無を判断する判断手段とを備えるものである。
【0022】
本発明の欠陥検査装置によれば、例えば多数の被検査物を順に撮像して画像を生成しつつ、この生成した画像を用いて順に演算処理を行って欠陥の有無を判断したり、あるいは、長尺な被検査物を連続的に撮像して画像を生成し、適宜に分割した画像を用いて順に演算処理を行って欠陥の有無を判断したりする手順を流れ作業で行うことができる。したがって、例えば製造ライン上で大量生産される被検査物を順に検査したり、長尺なシート状物品を連続的に検査したりする作業を効率化し、その品質管理の向上に寄与するといった有用性を得ることができる。
【発明の効果】
【0023】
以上のように欠陥検査方法及び欠陥検査装置によれば、画像内に被検査物の表面形状の変化による濃度むら部分が含まれていても、これを欠陥部分として誤認識することなく、高精度に欠陥部分を検出することができる。また、画像全体を細かく分けて補正処理を行う必要がないので、それだけ演算処理に要する時間を短縮し、ハードウェアの処理負荷を軽減することができる。
【発明を実施するための最良の形態】
【0024】
以下、本発明の実施形態について図面を参照しながら説明する。
図1は、欠陥検査装置10の構成例を概略的に示した図である。欠陥検査方法は、この欠陥検査装置10を用いて実現することができる。ここでは先ず、欠陥検査装置10の構成列について説明する。
【0025】
欠陥検査装置10は、例えば搬送機構としてベルトコンベア12を備えている。このベルトコンベア12は、無端状の搬送ベルト12aをコンベアローラ12bの回転に伴って一定方向に周回走行させながら、その搬送面上に載置した被検査物(以下、「ワーク」と称する。)Wを搬送ベルト12aの走行方向に搬送する。なおベルトコンベア12は、その動力として図示しないモータを備えている。
【0026】
ここで被検査物(検査対象)となるワークWは、例えば可撓性の高いシート状物品であり、このようなワークWはロールから繰り出されてベルトコンベア12上を長手方向に搬送されている。このためベルトコンベア12には、両端のコンベアローラ12b上にピンチローラ12cが設置されており、ワークWはこれらピンチローラ12cとコンベアローラ12との間に挟み込まれた状態でロールから繰り出され、そしてベルトコンベア12上を搬送されている。このときワークWは、搬送ベルト12aに支えられて水平に拡がった状態に保持される。なお、搬送ベルト12aの内周位置には、例えば搬送ベルト12aともにワークWを水平に保つためのガイド板(図示されていない)が配置されていてもよい。
【0027】
各コンベアローラ12bは、図示されていないモータ等の駆動源から動力を受け、一定速度で同じ方向(図1でみて時計回り方向)に回転する。ベルトコンベア12の終端から送出されたワークWは、例えば図示されていない巻き取り位置で再びロール状に巻き取られる。なお、ここでは長尺なシート状のワークWを挙げているが、ワークWは薄板状のシート物品であってもよい。
【0028】
ベルトコンベア12には、例えば一方のコンベアローラ12bにロータリエンコーダ14が連結されている。ロータリエンコーダ14は、例えば伝動ベルト16を介してコンベアローラ12bの回転に伴って駆動され、一定の回転角度ごとにパルス信号を発生させる。
【0029】
欠陥検査装置10は撮像機器としてのラインセンサ18を備えており、このラインセンサ18は、ベルトコンベア12の上方に設置されている。ラインセンサ18には、一定の幅で直線状に配列された多数の撮像素子が内蔵されている。なお、ラインセンサ18に用いるイメージセンシングデバイスには、例えばCCDイメージセンサ、CMOSイメージセンサ等の半導体方式の他に、電子管方式の撮像管等も使用可能である。また、ラインセンサ18の前面(受光面の前方)には、ワークW表面からの反射光を撮像素子に結像させるレンズ20が設置されている。
【0030】
また欠陥検査装置10は、ワークWの表面を照らす光源として照明器具22を備えている。この照明器具22もまたベルトコンベア12の上方に設置されており、照明器具22とラインセンサ18及びレンズ20とは、図1中の撮像位置(主走査線)を挟んで互いに対極に位置している。照明器具22には、例えば冷陰極管、放電管、白熱ランプ等の各種の照明灯を用いることができる。
【0031】
欠陥検査装置10は、これら機械的要素の他に演算処理部24を備えている。演算処理部24は、中央演算処理装置(CPU)や記憶装置(ROM,RAM)、入出力インタフェース(I/O)等を有した電子計算機を用いて構成されている。電子計算機の例としては、汎用のパーソナルコンピュータ、ワークステーション等を挙げることができる。演算処理部24には、上記のロータリエンコーダ14からパルス信号が入力されるとともに、ラインセンサ18から画像信号が入力されるものとなっている。演算処理部24は、これら入力信号に基づいて画像データの各種処理を行う。なお、演算処理部24で行われる処理についてはさらに後述する。
【0032】
図2は、ラインセンサ18によりワークWが撮像される過程を示した斜視図である。ラインセンサ18は、その主走査線LがワークW表面の幅方向(横断方向)に位置付けられており、照明器具22は、この主走査線L上を中心として照明光を発している。ワークWの搬送に伴い、主走査線Lの位置でワークWの表面から反射された光はレンズ20を経てラインセンサ18の撮像素子に結像される。
【0033】
図3は、演算処理部24の構成をより詳細に示すブロック図である。演算処理部24は、その構成要素として入力部30、データ処理部32、データ記憶部34、欠陥検出部36及び出力部38を備えるほか、これらの動作を制御するCPU40を備えている。以下、それぞれの構成要素について説明する。なお、ここではCPU40とは別にデータ処理部32及び欠陥検出部36を設けた例を挙げているが、これらデータ処理部32や欠陥検出部36の機能はCPU40のリソースを用いて実現してもよい。また、ここで図示とともに挙げた構成はあくまで好ましい一例であり、演算処理部24には他の構成を採用することもできる。
【0034】
入力部30には、入力インタフェースを介してラインセンサ18からの画像信号及びロータリエンコーダ14からのパルス信号が入力される。入力部30は、入力されるパルス信号を参照しながら画像信号(アナログ信号)を必要に応じて減衰調整し、A/D変換してデータ処理部32に伝送する機能を有する。
【0035】
データ処理部32は、伝送された画像信号を1ライン分の画像データ(ラスタデータ)の形式で処理する。このとき1ライン中の各画素には、例えばグレースケールの濃度値(0〜255階調)が割り当てられる。またデータ処理部32は、1ライン中に含まれる各画素に対してカラムアドレスを付与するとともに、1ラインごとにローアドレスを付与する。
【0036】
データ処理部32で処理された1ラインごとの画像データは、データバス42を介してデータ記憶部34に転送される。データ記憶部34には一定の記憶領域が確保されており、この記憶領域には、画像データに付与されるローアドレス及びカラムアドレスにそれぞれ対応したメモリアドレスが割り当てられている。転送された画像データ(0〜255の濃度値)は、それぞれ対応するメモリアドレスのメモリセル(1バイト分)に書き込まれる。
【0037】
欠陥検出部36は、データバス42を介してデータ記憶部34にアクセスし、記憶領域から画像データを読み出して欠陥の検査処理を行う。また欠陥検出部36は、欠陥の検査結果データをデータ記憶部34に書き込むとともに、必要に応じて検査結果データを出力部38に転送する。なお、欠陥検出部36が行う検査処理の具体的な態様についてはさらに後述する。
【0038】
出力部38は、上記のように検査結果データを出力するほか、必要に応じて撮像された画像データ(ワークWの画像)を出力する。データの出力先は、例えば図示しない画像表示装置や、他の汎用コンピュータ、記録媒体等である。これにより、画像表示装置に検査結果を表示してオペレータが画面上で欠陥を視認したり、あるいは、画面上にワークWの表面画像を表示し、その画像をオペレータが視認したりすることができる。
【0039】
その他、特に図示していないが、演算処理部24はデータ補正部を備えていてもよい。データ補正部は、データ記憶部34に記憶された画像データを読み出し、その補正処理を行う。補正処理は、例えばベルトコンベア12による搬送速度の周期的な変化による濃淡むらの補正や、室内照明のフリッカ等による濃度差の変化を補正する目的で行われる。またこのようなデータ補正部の機能は、CPU40のリソースを用いて実現してもよい。
【0040】
〔画像データの生成〕
演算処理部24において、画像データの生成は例えば以下のプロセスを通じて行われる。すなわち演算処理部24は、ロータリエンコーダ14からパルス信号の入力があると、ラインセンサ18を用いて1ライン分の撮画(撮像)を実行する。これにより、ラインセンサ18では各撮像素子がアクティブ(露光状態)となり、主走査線Lからの反射光強度に基づいて画像信号が生成される。次にパルス信号の入力があると、演算処理部24は1ライン分の撮画を終了する。ここまでの処理を経ると、1ライン分の画像データが生成される。
【0041】
演算処理部24は、1ライン分の画像データ生成プロセスを1回終了すると、また改めて次回の画像データ生成プロセスを繰り返し、これらを複数ライン分だけ蓄積して1単位の画像データを生成する。本実施形態のようにワークWが長尺品である場合、画像データ生成プロセスは、例えばワークWを長手方向に分割して行ってもよい。
【0042】
すわなち、ワークWの一側縁部には例えば等間隔でレジマーク(図示していない)が付されており、また欠陥検査装置10には、図1,2に示されていないレジマークセンサを備えている。そして、このレジマークセンサにより主走査線Lの直前(搬送方向でみて上流位置)でレジマークが検出されると、演算処理部24は上記の画像データプロセスを開始する。そして、レジマークセンサにより次のレジマークを検出すると、演算処理部24はそこで1単位分の画像データ生成プロセスを終了し、続けて次の画像データ生成プロセスを開始する。このとき生成された1単位ごと画像データは、例えばレジマーク番号と対応付けてデータ記憶部34に記録される。
【0043】
〔濃度変化の態様〕
図4は、画像形成プロセス中における各種要因から画像濃度に変化が生じる態様を示した斜視図である。以下、濃度変化の態様について説明する。
【0044】
〔ワークの変形による影響〕
図4中(A):例えば、ワークWが搬送方向に波打つような変形(うねり)を生じた場合を想定する。この場合、照明角度と撮像角度との関係から、主走査線L上でラインセンサ18に向かって強く光を反射する明領域R1が生じたり、逆に反射光量が低下する暗領域R2が生じたりすることがある。またワークWの端が部分的に弛みを生じることで、さらに暗領域R2内でも特に反射光量が落ち込む暗領域R3が生じることもある。
【0045】
図4中(B):また上記の例とは別に、ワークWが搬送方向に変形を生じていなくても、端部分に弛みが生じることで、同じく暗領域R3が生じることもある。
【0046】
〔表面模様の影響〕
図4中(C):ワークWそのものが変形していなかったとしても、例えばワークWの表面に絵柄模様PTが付されていた場合を想定する。このような場合、ワークWの変形に起因した明暗の領域は生じないが、絵柄模様PTの有無によって画像全体の濃度に差が生じる。
【0047】
いずれにしても、明領域R1では全体的に画像濃度が高くなり、逆に暗領域R2,R3や絵柄模様PTの部分では画像濃度が低下する。また弛みなどの変形が生じた場合、特に不規則なパターンで暗領域R3が生じることになる。本実施形態の欠陥検査装置10は画像データ内に不規則な濃度変化が生じた場合であっても、これを欠陥部分として誤認識することを回避するため以下の欠陥検査処理を行っている。また本実施形態の欠陥検査処理を適用することで、暗領域R2,R3内や絵柄模様PT内に欠陥が存在していた場合であっても、その欠陥を高精度に検出することが可能になる。以下、欠陥検査処理の詳細について説明する。また以下の説明により、欠陥検査方法を実現するための各工程の内容が明らかとなる。
【0048】
〔欠陥検査方法〕
図5は、演算処理部24において実行される欠陥検査プロセスの手順例を示したフローチャートである。以下、各手順を追って欠陥検査プロセスの概要を説明する。
【0049】
ステップS10:先ず欠陥検出部36は、データ記憶部34から画像データを取得(データ取り込み)する(取得工程)。このとき取得する画像データは、例えば上記のようにワークWの一定長さ分に相当する二次元画像の全画素についてである。
【0050】
ステップS11:欠陥検出部36は、取得した画像全体を複数(例えば2〜3つ)の検査エリアに分割する(分割工程)。検査エリアの分割は主に、画像の副走査方向(ワークWの搬送方向)について行うことができる。なお、検査エリアの分割例については別の図面を参照しながら後述する。
【0051】
ステップS12:欠陥検出部36は、今回の検査対象とする検査エリア内の画素から濃度の最頻値(代表値)Dfreqを算出する(算出工程)。なお、検査エリアの分割と最頻値Dfreqの算出については、具体例を挙げて後述する。
【0052】
ステップS14:次に欠陥検出部36は、今回の検査対象である検査エリア内の画素から濃度の最大値Dfmaxを算出する。この最大値Dfmaxの算出についても具体例を挙げて後述する。
【0053】
ステップS16:欠陥検出部36は、今回の検査エリア内に含まれる画素について、先のステップS12で求めた最頻値Dfreqよりも濃度値Dが低い画素を抽出する。なお画素の抽出は、例えばメモリ空間における画素の座標(例えばX−Yアドレス)を取得することで行う。
【0054】
ステップS18:そして欠陥検出部36は、抽出した画素のうち互いに隣接する画素同士を結合して結合画素(AreaDを形成する。なお、互いに隣接する画素として認識する方向は、例えば縦方向(Y方向)、横方向(X方向)及び斜め方向である。またこのとき形成した結合画素は処理エリアとなり(形成工程)、以下の条件を満たす場合に階調補正の対象となる。
【0055】
ステップS20:欠陥検出部36は、結合画素の面積が規定欠陥面積より大きい条件を満たすか否かを確認する。なお規定欠陥面積は、通常の表面欠陥を撮像したときの面積よりも充分に大きい面積を想定したものであり、例えば予めワークWに存在し得る各種の欠陥の大きさに基づいて実験的に定めておくことができる。また面積の比較は、単純に画素数の比較で行うことができる。
【0056】
ステップS22:形成した結合画素が上記の条件を満たす場合(ステップS20:Yes)、欠陥検出部36はその結合画素を今回の処理エリアとして扱い、処理エリア内の画素から濃度の最大値Dmaxを算出する。なお最大値Dmaxの算出についても具体例を挙げて後述する。
【0057】
ステップS24:欠陥検出部36は、処理エリア内の画素の濃度を階調補正する(補正工程)。このとき欠陥検出部36は、階調補正係数として上記の最頻値Dfreqと最大値Dmaxとの比(=Dfreq/Dmax)を適用する。また補正の詳細については、具体例を挙げて後述する。
【0058】
以上の手順を実行するか、もしくは先のステップS20で条件を満たしていないと判断した場合(ステップS20:No)、欠陥検出部36はステップS26を実行する。
【0059】
ステップS26:欠陥検出部36は、検査エリア内に残りの結合画素があるか否かを確認する。その結果、他にも結合画素が残っていれば(Yes)、欠陥検出部36はステップS16に戻り、ステップS16〜ステップS24の手順を繰り返す。なお、このとき結合画素がステップS20の条件を満たさなければ、欠陥検出部36はステップS22及びステップS24を実行することなくステップS26を実行する。
【0060】
欠陥検出部36が検査エリア内の全ての結合画素について上記の手順を行うと、全ての処理エリアについての階調補正(ステップS22,S24)が完了する。そして欠陥検出部36は、残りの結合画素がないことを確認すると(ステップS26:No)、次のステップS28に進む。
【0061】
ステップS28:欠陥検出部36は、処理エリア内での欠陥閾値に対して補正係数を適用する設定を行う。このとき欠陥検出部36は、閾値補正係数として上記の最頻値Dfreqと画像全体の最頻値Dallとの比(=Dfreq/Dall)を適用する。なお、検査エリア内に処理エリアが1つも存在しない場合(全ての結合画素の面積が規定欠陥面積以下の場合)は特に閾値補正係数を適用する設定は行われない。また補正係数の適用については、具体例を挙げて後述する。
【0062】
ステップS30:欠陥検出部36は、定義済みの欠陥検出処理を実行する。この欠陥検出処理では、例えば検査エリア内に含まれる画素の濃度と所定の欠陥閾値とを比較し、濃度が閾値に満たない画素を欠陥部として判断する(判断工程)。このとき、処理エリアAD内の画素については階調補正後の濃度を用いて判断し、それ以外の画素については元々の濃度(原濃度)を用いて判断する。また、ここでは上記のように処理エリア内の画素については欠陥閾値に対して補正係数を適用するものとする。
【0063】
ステップS32:欠陥検出処理から復帰すると、欠陥検出部36は今回の画像について検査を続行するべきか否かを確認する。例えば、分割した検査エリアのうち未検査のものがあれば、欠陥検出部36は検査を続行するべき(Yes)と判断し、次にステップS34を実行する。
【0064】
ステップS34:欠陥検出部36は、次に検査対象となる検査エリアを変更する。
この後、欠陥検出部36はステップS12に戻り、ステップS12〜ステップS30までの手順を繰り返す。
【0065】
そして、取得した画像内で全ての検査エリアについて検査を完了すると、欠陥検出部36は検査を続行する必要がないと判断し(ステップS32:No)、欠陥検査処理を終了する。
【0066】
〔検査エリアの分割例〕
図6は、上記のステップS11で画像データを複数の検査エリアに分割する処理の例を示した概念図である。
【0067】
図6中(A):上記のように欠陥検出部36が画像データを取得すると(ステップS10)、その画像にはワークWの搬送時に発生したうねり等によって搬送方向(画像の副走査方向)に大きな濃度差が発生していることがある。このとき、取得した画像データには、主走査方向のライン画像が全部でn本分だけ含まれている。
【0068】
図6中(B):欠陥検出部36は全てのライン画像について、1ラインごとの濃度平均値Ave(1),Ave(2),Ave(3),Ave(4),・・・,Ave(n)を算出する。
【0069】
図6中(C):次に欠陥検出部36は、ラインごとの濃度平均値Ave(1)〜Ave(n)について差分Deff(1),Deff(2),Deff(3),Deff(4),・・・,Deff(n−1)を算出する。例えば、差分Deff(1)は濃度平均値Ave(1)とAve(2)との差分である。
【0070】
図6中(D):算出した差分を例えばメモリ空間上でプロットすると、搬送方向でみて濃度(明暗)が大きく変化している画像の境界位置に差分ピーク(この例では2つのピーク)が現れる。なお図中、縦軸は搬送方向を示し、横軸は差分の値を表している。
【0071】
図6中(E):したがって欠陥検出部36は、各差分ピークの現れた位置を境界として画像を3つの検査エリア(例えば検査エリア1〜3)に分割することができる。
【0072】
なお、特に取得した画像内で上記のような差分ピークが現れなかった場合、欠陥検出部36はその画像全体を1つの検査エリアとしてステップS12以降の処理を実行することができる。この場合、欠陥検出部36は検査エリアの変更(ステップS34)を実行することなく検査を終了する。
【0073】
〔欠陥検査の具体例〕
図7は、欠陥検査処理において取得される画像データとその画素ごとの濃度の分布を簡略化して表した図である。なお図7では便宜上、画像データ内の画素数を実際よりも少なく調整している。以下、欠陥検査処理について具体例を挙げて説明する。
【0074】
〔検査エリアの分割〕
図7中(A):上記のように欠陥検出部36は画像データを取得すると(ステップS10)、その画像全体を例えば2つの検査エリアA1,A2に分割する(ステップS11)。なお、ここでは便宜上、例えば搬送方向(副走査方向)の中央位置で画像を2つの検査エリアに分割するものとする。
【0075】
〔最頻値(代表値),最大値の算出〕
今回の対象を検査エリアA1とすると、最頻値Dfreq及び最大値Dfmaxはそれぞれ以下の値として求められる(ステップS12,ステップS14)。なお、ここでは数値が大きいほど濃度が高いことを示す。
最頻値Dfreq:150
最大値Dfmax:150
【0076】
〔処理エリアの形成〕
検査エリアA1内で、最頻値Dfreqよりも濃度が低い画素を抽出し、隣接する画素同士を連結することで図7に示される結合画素(処理エリアAD)が形成される(ステップS18)。なお、最頻値Dfreqより濃度が低い画素PS1であっても、単独で分布するものは結合されないので、処理エリアADとして形成されることはない。また、ここでは便宜上、処理エリアADは規定欠陥面積より大きいものとする。
【0077】
そして、処理エリアAD内での濃度の最大値Dmaxが以下のように求められる(ステップS22)。
最大値Dmax :100
【0078】
〔処理エリアの階調補正〕
図7中(B):処理エリアADについて、階調補正係数Dfmax/Dmax(=150/100)を適用して階調補正(ステップS24)を行った場合の濃度の分布を示す。この階調補正により、処理エリアAD内の画素濃度は全体的に引き上げられている(100→150,20→30)。これにより、ワークWの弛み等によって画像内に暗領域が生じた場合であっても、この暗領域だけを処理エリアとして階調補正することができる。なお、単独の画素PS1について補正は行われない。
【0079】
〔閾値補正係数の適用〕
画像全体の最頻値Dall及び閾値補正係数Dfreq/Dallが以下のように求められる(ステップS28)。
最頻値Dall :200
閾値補正係数Dfreq/Dall:0.75(=150/200)
【0080】
〔欠陥検出処理〕
欠陥検出処理(ステップS30)において、検査エリアA1内で処理エリアAD以外の画素については標準の欠陥閾値を適用して欠陥の有無が判断される。一方、処理エリアAD内の画素については、標準の欠陥閾値に上記の閾値補正係数Dfreq/Dallを乗じて欠陥の有無が判断される(判断工程)。これにより、たとえ処理エリアAD内で欠陥部分が階調補正されていたとしても、そこには補正した欠陥閾値が適用されるため、欠陥部分を見逃してしまうことはない。
【0081】
図7に示される画像において検査エリアA1の検査が終わると、対象を残りの検査エリアA2として(ステップS34)、同様に最頻値Dfreq及び最大値Dfmaxが算出されるが、検査エリアA2には濃度の低い画素PS2が単独で存在するだけであり、結合するべき画素は存在しない(ステップS20:NoかつステップS26:No)。この場合、処理エリアが形成されないので、検査エリアA2については特に閾値補正係数Dfreq/Dallを適用することなく、全ての画素に標準の欠陥閾値を適用して欠陥検出処理が行われる。
【0082】
以上のように本実施形態の欠陥検査装置10を用いて行う欠陥検査方法によれば、画像に不規則な形状の暗領域が存在する場合であっても、そのような領域だけを階調補正することができるので、暗領域全体を欠陥部分として誤検出することがなく、本来の欠陥部分のみを高精度に検出することができる。また、暗領域(処理エリア)内に欠陥部分が存在していた場合であっても、暗領域(処理エリア)については閾値補正係数が適用されるため、階調補正された欠陥部分が検出から漏れてしまうこともない。
【0083】
〔その他の実施形態〕
本発明は、上述した一実施形態に制約されることなく、種々に変形して実施可能である。一実施形態では、画像全体を搬送方向(副走査方向)で2〜3つの検査エリアに分割しているが、その他の分割パターンを採用してもよい。例えば、画像全体の面積が大きい場合、搬送方向だけでなく主走査方向に検査エリアを分割してもよい。
【0084】
また、一実施形態ではワークWの搬送方向へのうねりと弛みが複合的に生じた場合の欠陥検査を例に挙げているが、単純にうねりだけで画像に濃淡差が生じた場合(図4中(A)の暗領域R3がない場合)や、弛みだけで濃淡差が生じた場合(例えば図4中(B))、あるいはワークWそのものに変形がなく表面の絵柄模様による濃淡差だけが生じた場合(例えば図4中(C))についても本実施形態の欠陥検査方法を適用して暗領域(処理エリア)の階調補正を行い、本来の欠陥部分のみを高精度に検出することが可能である。
【0085】
また図示とともに挙げた濃度はあくまで一例であり、その具体的な値は被検査物や撮像環境によって変動するため、その都度、適切な閾値を設定して欠陥検出を行えばよい。
【0086】
一実施形態ではワークWを副走査方向に搬送して撮像しているが、ワークWを固定しておき、逆に主走査線LをワークWに対して副走査方向に移動させながら撮像してもよい。この場合でも、ワークWの変形によって生じた濃度変化の影響を補正することができる。また一実施形態ではグレースケールの画像データを扱っているが、画像データをカラーとして処理してもよい。
【0087】
その他、一実施形態で挙げた各種機器の配置はいずれも好ましい例示であり、本発明の実施に際して機器の配置を適宜に変更可能であることはいうまでもない。
【図面の簡単な説明】
【0088】
【図1】欠陥検査装置の構成例を概略的に示した図である。
【図2】ラインセンサによりワークが撮像される過程を示した斜視図である。
【図3】演算処理部の構成をより詳細に示すブロック図である。
【図4】画像形成プロセス中における各種要因から画像濃度に変化が生じる態様を示した斜視図である。
【図5】欠陥検査プロセスの手順例を示したフローチャートである。
【図6】画像データを複数の検査エリアに分割する処理の例を示した概念図である。
【図7】画像データとその画素ごとの濃度の分布を簡略化して表した図である。
【符号の説明】
【0089】
10 欠陥検査装置
12 ベルトコンベア
14 ロータリエンコーダ
18 ラインセンサ
20 レンズ
22 照明器具
24 演算処理部
30 入力部
32 データ処理部
34 データ記憶部
36 欠陥検出部
38 出力部
40 CPU
A1,A2 検査エリア(検査領域)
AD 処理エリア(処理領域)

【特許請求の範囲】
【請求項1】
被検査物を撮像した画像を取得する取得工程と、
前記取得した画像を構成する画素から濃度の代表値を求める算出工程と、
前記画像の中から前記代表値よりも低い濃度を有する画素を抽出し、互いに隣接する画素同士を結合して処理領域を形成する形成工程と、
前記形成した処理領域が規定面積より大きい場合、その中に含まれる全ての画素の濃度を階調補正する補正工程と、
前記画像のうち前記処理領域については補正後の濃度に基づいて欠陥の有無を判断し、その他の領域については原濃度に基づいて欠陥の有無を判断する判断工程と
を有する欠陥検査方法。
【請求項2】
請求項1に記載の欠陥検査方法において、
前記補正工程では、
前記算出工程で求めた代表値と前記処理領域内に含まれる画素の濃度の最大値との比を補正係数として階調補正を行うことを特徴とする欠陥検査方法。
【請求項3】
請求項1又は2に記載の欠陥検査方法において、
前記取得工程で取得した画像を複数の検査領域に分割する分割工程をさらに有し、
前記算出工程では、
前記取得した画像のうち、前記分割工程で複数に分割されたいずれか1つの前記検査領域を構成する画素から代表値を求め、
前記形成工程では、
前記検査領域の中から抽出した画素同士を結合して前記処理領域を形成し、
前記判断工程では、
予め定められた閾値と個々の画素の濃度とを比較して欠陥の有無を判断し、その際、前記処理領域内の画素については、前記検査領域内での代表値と前記取得工程で取得した画像を構成する全ての画素から求めた濃度の代表値との比を補正係数として閾値を補正することを特徴とする欠陥検査方法。
【請求項4】
請求項3に記載の欠陥検査方法において、
前記分割工程で複数に分割された前記検査領域のそれぞれについて、前記算出工程から前記判断工程までを繰り返し実行することを特徴とする欠陥検査方法。
【請求項5】
被検査物を撮像して画像を生成する画像生成手段と、
前記画像生成手段により生成された画像を構成する画像から濃度の代表値を求める算出手段と、
前記画像の中から前記代表値よりも低い濃度を有する画素を抽出し、互いに隣接する画素同士を結合して処理領域を形成する形成手段と、
前記処理領域が規定面積より大きい場合、その中に含まれる全ての画素の濃度を階調補正する補正手段と、
前記画像のうち前記処理領域については補正後の濃度に基づいて欠陥の有無を判断し、その他の領域については原濃度に基づいて欠陥の有無を判断する判断手段と
を備えた欠陥検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−71876(P2010−71876A)
【公開日】平成22年4月2日(2010.4.2)
【国際特許分類】
【出願番号】特願2008−241291(P2008−241291)
【出願日】平成20年9月19日(2008.9.19)
【出願人】(000162113)共同印刷株式会社 (488)
【Fターム(参考)】