説明

気体サンプル室、及び、この気体サンプル室を備える濃度測定装置

【課題】測定対象気体の濃度の変化に対する応答性の悪化を防ぐことができるとともに、測定対象気体の濃度を正確に測定できる気体サンプル室及び濃度測定装置を提供する。
【解決手段】筒状に形成された本体部6と、本体部6の一端部6bに配置され且つ赤外線を放射する光源7と、本体部6の他端部6cに配置され且つ光源7からの赤外線を検出する赤外線センサと、を備え、光源7からの赤外線を本体部6の内部を通じて前記赤外線センサに導く気体サンプル室2において、本体部6の一端部6bに配設され且つ本体部6の熱を雰囲気に放出する放熱部材9と、本体部6の他端部6cに配設され且つ雰囲気の熱を前記赤外線センサに伝える調温部材10と、を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置に用いられる気体サンプル室及びこの気体サンプル室を備える濃度測定装置に関するものである。
【背景技術】
【0002】
例えば、二酸化炭素、水蒸気、一酸化炭素などの所定の気体の濃度を測定する濃度測定装置には、従来、種々の気体サンプル室が用いられてきた。例えば、特許文献1に開示されている気体サンプル室は、内部が密閉された筒状の本体部としての中空チューブと、中空チューブの一端部に設けられた光源と、中空チューブの他端部に設けられた受光器とを備えている。
【0003】
中空チューブは、その内面が鏡面状に形成されており、その外壁に複数の開口部が設けられている。また、中空チューブは、前述した開口部を塞いだ半透膜シートが取り付けられている。この半透膜シートは、所定の寸法よりも小さな気体浮遊粒子が通過して中空チューブ内外を移動することを許容し、所定の寸法よりも大きな気体浮遊粒子が通過することを規制する。この半透膜シートを設けることにより、中空チューブ内に雰囲気を出入り自在としている。
【0004】
光源は、白熱ランプであり、赤外線(即ち、赤外光)を放射する。受光器は、赤外線センサと、前記赤外線センサと光源との間に配置されて所定の波長の赤外線のみを透過するフィルタと、を備えている。この赤外線センサは、赤外線の強さに応じた電圧を出力する。フィルタを透過する赤外線の波長は、濃度が測定される対象となる気体に応じて定められる。例えば、測定対象の気体の濃度が0ppmから数千ppmの比較的低濃度の範囲内であれば、フィルタを透過する赤外線の波長として、測定対象の気体によって最も減衰しやすい赤外線波長を選択するなどして、このフィルタは、測定対象の気体に応じて適切に選択される。
【0005】
このような気体サンプル室即ち濃度測定装置は、半透膜シートを通じて中空チューブ内に雰囲気を供給し、フィルタを介して赤外線センサが受光した光源からの赤外線の強さを測定することで、この雰囲気に含まれる前述した測定対象の気体の濃度を測定していた。
【特許文献1】特許第3606866号
【発明の開示】
【発明が解決しようとする課題】
【0006】
上述したような気体サンプル室を用いて測定対象の気体の濃度を測定するときは、白熱ランプの点灯・消灯を所定間隔で繰り返し(即ち、点滅し)、点灯時の赤外線センサの出力電圧と消灯時の赤外線センサの出力電圧との差分(電位差)を算出し、そして、この電位差の移動平均を算出したのち濃度換算テーブルに適用して測定対象の気体の濃度を求めていた。
【0007】
しかしながら、光源としての白熱ランプから放出される赤外線には近赤外線も含まれており、この近赤外線によって中空チューブの一端部が加熱されて非常に高温(例えば、750〜800℃位)になるので、白熱ランプを消灯しても中空チューブの熱がすぐには下がらず、即ち、中空チューブ内に赤外線が残存して、白熱ランプを消灯しているにもかかわらず、赤外線センサが赤外線を検出してそれに応じた電圧を出力してしまい、そのため、白熱ランプの消灯時の出力電圧を正確に測定するには、中空チューブの熱が下がるまで消灯時間を長くする必要があった。そして、白熱ランプの消灯時間を長くすると、上述した点灯時の赤外線センサの出力電圧と消灯時の赤外線センサの出力電圧との電位差の算出、及び、この電位差の移動平均の算出に時間がかかってしまうので、測定対象の気体の濃度の変化に対する応答性が悪くなるという問題があった。
【0008】
また、上述したような気体サンプル室では、赤外線センサとしてサーモパイル(熱電堆)式赤外線センサが用いられることがある。サーモパイル式赤外線センサは、測定基準となる冷接点を一定温度に保ちつつ温接点に赤外線を照射すると、温接点が赤外線の強さに応じて温度が上昇して温接点と冷接点との間に温度差が生じ、この温度差に応じて電圧を出力する周知のセンサである。しかしながら、このようなサーモパイル式赤外線センサは、冷接点がそのケースに熱的に接続されており、冷接点を周囲の雰囲気の温度に合わせて、その出力電圧を前記周囲の雰囲気の温度に基づいて補正して用いるものであるが、例えば、前記周囲の雰囲気の温度変化などにより、冷接点の実際の温度と雰囲気の温度との間に差異が生じてしまう場合があり、このような場合、出力電圧の補正に誤差が生じて、測定対象の気体の濃度が正確に測定できないという問題があった。
【0009】
本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、測定対象気体の濃度の変化に対する応答性の悪化を防ぐことができるとともに、測定対象気体の濃度を正確に測定できる気体サンプル室及び濃度測定装置を提供することを目的としている。
【課題を解決するための手段】
【0010】
請求項1に記載された発明は、上記目的を達成するために、筒状に形成された本体部と、前記本体部の一端部に配置され且つ赤外線を放射する光源と、前記本体部の他端部に配置され且つ前記光源からの前記赤外線を検出する赤外線センサと、を備え、前記光源からの前記赤外線を前記本体部の内部を通じて前記赤外線センサに導く気体サンプル室において、前記本体部の一端部に配設され且つ前記本体部の熱を雰囲気に放出する放熱部材と、前記本体部の他端部に配設され且つ前記雰囲気の熱を前記赤外線センサに伝える調温部材と、を備えていることを特徴とする気体サンプル室である。
【0011】
請求項2に記載された発明は、赤外線を放射する光源と前記光源からの前記赤外線を検出する赤外線センサとを備えた気体サンプル室と、前記赤外線センサが検出した前記赤外線の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、前記気体サンプル室として、請求項1に記載の気体サンプル室を備えていることを特徴とする濃度測定装置である。
【0012】
請求項1に記載された発明によれば、本体部の一端部に配設され且つ本体部の熱を雰囲気に放出する放熱部材を備えているので、本体部の一端部の熱をその周囲の雰囲気に放出して、本体部及び光源の熱を素早く下げることができる。また、本体部の他端部に配設され且つ雰囲気の熱を赤外線センサに伝える調温部材を備えているので、赤外線センサの温度を、周囲の雰囲気の温度に素早く合わせることができる。また、放熱部材と調温部材とを備えているので、光源によって生じた熱を、雰囲気を介して赤外線センサに伝えることができる。
【0013】
請求項2に記載された発明によれば、前述した気体サンプル室を備えているので、本体部及び光源の熱を素早く下げることができる。また、赤外線センサの温度を、周囲の雰囲気の温度に素早く合わせることができる。また、光源によって生じた熱を、雰囲気を介して赤外線センサに伝えることができる。
【発明の効果】
【0014】
上記説明より、請求項1に記載された発明によれば、本体部及び光源の熱を素早く下げることができるので、光源の消灯時間を長くする必要が無くなって、光源の点灯・消灯の間隔を短くすることができ、そのため、測定対象の気体の濃度の変化に対する応答性の悪化を防止することができる。また、赤外線センサの温度を、周囲の雰囲気の温度に素早く合わせることができるので、赤外線センサの温度(つまり、熱電堆式赤外線センサにおいて基準点となる冷接点などの温度)と周囲の雰囲気の温度との間に差異が生じることがなくなり、そのため、赤外線センサの出力電圧の補正の誤差を解消して、測定対象の気体の濃度を正確に測定できる。
【0015】
また、光源は所定間隔で点灯・消灯を繰り返すため、光源から生じる熱は高温且つその温度が安定している。そして、放熱部材と調温部材を備えることにより、この光源によって生じた熱を、雰囲気を介して赤外線センサに伝えることができるので、高温且つ安定した雰囲気の温度を赤外線センサに伝えて、赤外線センサの温度を安定して保つことができ、そのため、測定対象の気体の濃度を正確に測定できる。
【0016】
請求項2に記載された発明によれば、上述した気体サンプル室を備えているので、測定対象の気体の濃度の変化に対する応答性の悪化を防止することができるとともに、測定対象の気体の濃度を正確に測定できる。
【発明を実施するための最良の形態】
【0017】
以下、本発明の一実施形態に係る濃度測定装置を、図1乃至図6を参照して説明する。
【0018】
濃度測定装置1は、図2に示すように、濃度の測定対象の気体を含んだ雰囲気が充填される気体サンプル室2と、制御回路部3と、受光回路部4と、濃度算出部としてのマイクロコンピュータ(以下、μcomと記載する)5と、を備えている。
【0019】
気体サンプル室2は、図1に示すように、本体部としての測定セル6と、光源7と、受光ユニット8と、放熱部材としての放熱器9と、調温部材としての吸熱器10と、を備えている。
【0020】
測定セル6は、その内部を通じて一端部6bから他端部6cに赤外線を導く導管である。測定セル6には、例えば、円筒状に形成されたガラスや金属などが用いられ、赤外線が乱反射しないように、その内面に、例えば、金メッキなどの鏡面加工が施されている。
【0021】
測定セル6の一端部6b及び他端部6cのそれぞれには、図示しない気体導入孔及び図示しない気体導出孔が設けられており、上記気体導入孔には、図示しない気体供給部が接続されている。この気体供給部は、測定対象の気体を含んだ雰囲気を気体導入孔から強制的に測定セル6内に送り込む。そして、測定セル6内に送り込まれた上記雰囲気は気体導出孔から排出される。また、測定セル6は、この構成に限らず、例えば、外壁6aに複数の貫通孔を設け、これら複数の貫通孔を通じて、測定セル6内に雰囲気を供給しても良い。
【0022】
光源7は、測定セル6内でかつ当該測定セル6の一端部6bに設けられている。光源7は、電圧が印加されることで、光としての赤外線を測定セル6の他端部に向かって放射する。光源7として、例えば黒体炉、白熱ランプ等が用いられる。また、光源7には、リフレクタ30が取り付けられている。すなわち、濃度測定装置1は、リフレクタ30を備えている。リフレクタ30は、光源7から出射された光を反射して、受光ユニット8に向かう平行光にする。光源7は、例えば、点灯0.7秒、消灯2.7秒などの所定間隔で点灯・消灯を繰り返すパルス点灯を行う。
【0023】
受光ユニット8は、図3及び図4に示すように、ユニット本体11と、複数の受光器12と、集光部材13と、を備えている。ユニット本体11即ち受光ユニット8は、測定セル6内でかつ当該測定セル6の他端部6cに設けられている。ユニット本体11は、測定セル6の外壁6aの内面に沿う円筒状に形成されている。受光器12は、図示例では、四つ設けられている。受光器12は、それぞれ、赤外線センサとしての熱電堆式赤外線センサ14と、透過部材15とを備えている。
【0024】
熱電堆式赤外線センサ(以下、「赤外線センサ」ともいう)14は、サーモパイル式赤外線センサとも呼ばれ、複数の熱電対を直列に接続して出力電圧を高めた、周知の熱−電圧エネルギー変換素子である。赤外線センサ14の温接点は、光源からの赤外線を受光するように、透過部材15と向かい合うように配設されており、また、冷接点は、図示しない赤外線センサ14のケースと熱的に接続されている。赤外線センサ14は、ユニット本体11に取り付けられている。即ち、赤外線センサ14の冷接点は、測定セル6の他端部6cと熱的に接続されている。複数の受光器12の赤外線センサ14は、同一平面上に配置されている。赤外線センサ14は、光源7が発しかつ透過部材15を透過した赤外線を受光し、この赤外線の熱を電気エネルギーに変換する。赤外線センサ14は、赤外線の熱を電気エネルギーに変換して、センサ出力としてμcom5に出力する。
【0025】
透過部材15は、ユニット本体11に取り付けられて、赤外線センサ14と光源7との間に配置されている。複数の受光器12の透過部材15は、同一平面上に配置されている。透過部材15は、それぞれ、光源7からの赤外線のうち予め定められた波長の赤外線のみを透過して、当該透過した波長の赤外線を赤外線センサ14まで導く。複数の受光器12の透過部材15は、互いに透過する赤外線の波長が異なる。
【0026】
透過部材15が透過する赤外線の波長は、濃度測定装置1によって濃度を測定される対象となる気体に応じて定められる。図示例では、測定対象の気体の測定の濃度範囲が0ppmから数千ppmの範囲内の低濃度の検出を可能としたものであり、透過部材15の透過する赤外線の波長は、濃度測定対象の気体に対する透過率が小さな赤外線の波長にされる。なお、受光器12は、二酸化炭素以外にも水蒸気、一酸化炭素を測定対象の気体とする。図示例では、例えば、一つの受光器12は、基準として用いられ、その透過部材15が大気中で全く減衰しない波長が1.5μm又は4.0μmの赤外線のみを透過する。図示例では、例えば、他の一つの受光器12は、二酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した二酸化炭素中で減衰しやすい波長が4.27μmの赤外線のみを透過する。図示例では、例えば、更に他の受光器12は、水蒸気の濃度を測定するために用いられ、その透過部材15が前述した水蒸気中で減衰しやすい波長が1.9μmの赤外線のみを透過する。図示例では、例えば、更に別の受光器12は、一酸化炭素の濃度を測定するために用いられ、その透過部材15が前述した一酸化炭素中で減衰しやすい波長が4.64μmの赤外線のみを透過する。
【0027】
なお、図6は、二酸化炭素に対する赤外線の透過率を示しており、図6中の横軸は赤外線の波長(μm)を示し、図6中の縦軸は赤外線の透過率(%)を示している。図6によれば、波長が4.27μmの赤外線の二酸化炭素中の透過率が、略零であることが示されており、波長が4.27μmの赤外線は、二酸化炭素中を殆ど透過しない(殆ど吸収されてしまう)ことが示されている。
【0028】
集光部材13は、例えば300度などの所定の角度の範囲の赤外線を集光して、透過部材15つまり赤外線センサ14に集中させる。すると、光源7から直接入射する赤外線以外にも、測定セル6の外壁6aの内面で反射する赤外線も赤外線センサ14に集めることができるので、赤外線の受光効率を良くすることができる。なお、集光部材13として、フレーネルレンズ等を用いることができる。
【0029】
放熱器9は、熱源から生じた熱を周囲の雰囲気に放出する周知の放熱部材である。放熱器9は、例えば、アルミニウムや銅などの熱伝導率の高い材料からなり、直方体状の本体9aと、その外面から立設した複数のフィン9bを備えている。なお、図示例では、放熱器9は、複数のフィン9bを備えるものであったが、これに限らず、例えば、複数のピン状の突起など、その表面積を大きくして放熱を効率よくできるものであれば、その形状は任意である。放熱器9は、測定セル6の一端部6bに、測定セル6との間の熱抵抗が小さくなるように密着して配設されている。これにより、放熱器9は、光源7によって加熱された測定セル6の熱を雰囲気中に放出して、光源7及び測定セル6の温度を素早く下げることができる。
【0030】
吸熱器10は、放熱器9と同様に、例えば、アルミニウムや銅などの熱伝導率の高い材料からなり、直方体状の本体10aと、その外面から立設した複数のフィン10bを備えている。なお、図示例では、吸熱器10は、複数のフィン10bを備えるものであったが、これに限らず、例えば、複数のピン状の突起など、その表面積を大きくして放熱を効率よくできるものであれば、その形状は任意である。吸熱器10は、測定セル6の他端部6cに、測定セル6との間の熱抵抗が小さくなるようにして密着して配設されている。つまり、吸熱器10は、赤外線センサ14の冷接点と熱的に接続されており、これによって、周囲の雰囲気の熱を吸熱して冷接点に伝えることができ、冷接点の温度を、周囲の雰囲気の温度の変化に素早く追従させることができる。
【0031】
制御回路部3は、図2に示すように、発振器16、クロック分周回路17、定電圧回路18などを備えており、μcom5の命令とおりに、所定の周波数で光源7を点滅させる。
【0032】
受光回路部4は、図5に示すように、複数のアンプ19と、切り換え器20と、A/D変換器21とを備えている。アンプ19は、それぞれ、受光器12と1対1に対応して設けられている。アンプ19は、対応する受光器12の赤外線センサ14からの信号を増幅して、切り換え器20を介してA/D変換器21に向かって出力する。A/D変換器21は、赤外線センサ14からの信号をデジタル信号に変換して、μcom5に向かって出力する。
【0033】
μcom5は、制御回路部3及び受光回路部4と接続して、これらの動作を制御することで、濃度測定装置1全体の動作をつかさどる。μcom5は、予め定められたプログラムに従って動作するコンピュータである。このμcom5は、周知のように、予め定めたプログラムに従って各種の処理や制御などを行う中央演算処理装置(CPU)、CPUのためのプログラム等を格納した読み出し専用のメモリであるROM、各種のデータを格納するとともにCPUの処理作業に必要なエリアを有する読み出し書き込み自在のメモリであるRAM等を有して構成している。
【0034】
また、μcom5には、濃度測定装置1自体がオフ状態の間も記憶内容の保持が可能な電気的消去/書き換え可能な読み出し専用のメモリが接続されている。そして、このメモリには、濃度の算出に必要な後述する吸光係数、測定距離、濃度変換係数等の各種情報を記憶するとともに、算出した濃度を外部から読出可能に時系列的に記憶する。
【0035】
前述した構成の濃度測定装置1は、測定セル6内に雰囲気を供給して、この測定セル6即ち気体サンプル室2内の気体を雰囲気と等しくする。そして、濃度測定装置1は、光源7を点滅(パルス点灯)させて、この光源7からの赤外線を各受光器12の赤外線センサ14で受光する。そして、濃度測定装置1のμcom5は、赤外線センサ14に受光した赤外線の強さ(即ち、光源7の点灯時の出力電圧と消灯時の出力電圧との電位差)などに基づいて、気体サンプル室2内の予め定められた気体(例えば、二酸化炭素、水蒸気、一酸化炭素など)の濃度を測定する。具体的には、濃度測定装置1のμcom5は、基準として用いられる受光器12の赤外線センサ14で受光した赤外線の強さと、二酸化炭素、水蒸気及び一酸化炭素を測定するための受光器12の赤外線センサ14で受光した赤外線の強さとを比較して、測定対象の二酸化炭素、水蒸気及び一酸化炭素の濃度を測定する。このように、濃度測定装置1の気体サンプル室2は、光源7からの赤外線を受光器12に導くように形成されている。
【0036】
以上より、本発明によれば、放熱器9を備えているので、測定セル6及び光源7の熱を素早く下げて、光源7の点灯・消灯の間隔を短くすることができ、そのため、測定対象の気体の濃度の変化に対する応答性の悪化を防止することができる。また、吸熱器10を備えているので、熱電堆式赤外線センサ14の冷接点の温度を、周囲の雰囲気の温度に素早く合わせることができ、そのため、熱電堆式赤外線センサ14の冷接点の実際の温度と周囲の雰囲気の温度との間に差異が生じてしまうことがなくなり、熱電堆式赤外線センサ14の出力電圧の補正の誤差を解消して、測定対象の気体の濃度を正確に測定できる。
【0037】
また、光源7は所定間隔で点灯・消灯を繰り返すため、光源7から生じる熱は高温且つその温度が安定している。そして、放熱器9と吸熱器10を備えることにより、この光源7によって生じた熱を、雰囲気を介して熱電堆式赤外線センサ14に伝えることができるので、高温且つ安定した雰囲気の温度を熱電堆式赤外線センサ14に伝えて、冷接点の温度を安定して保つことができ、そのため、測定対象の気体の濃度を正確に測定できる。
【0038】
前述した実施形態では、測定対象の気体の濃度が低濃度である場合の透過部材15の透過する赤外線の波長を示しているが、本発明では、測定対象の気体が低濃度から高濃度(0ppmから数%)の範囲内にある場合には、測定セル6の長さを変更したり、透過部材15が測定対象の気体中での赤外線の吸収量が少ない波長の赤外線のみを透過するようにしたり、しても良い。
【0039】
さらに、実施形態では、濃度測定装置1が二酸化炭素、水蒸気、一酸化炭素の濃度を測定している。しかしながら、本発明では、濃度測定装置1がNOx、SOx、H2S、O3、CH4、NOなどの二酸化炭素、水蒸気、一酸化炭素以外の種々の気体の濃度を測定しても良い。また、本発明では、測定セル6は、円筒状以外の種々の筒状に形成されても良い。
【0040】
また、実施形態では、赤外線センサとして熱電堆式赤外線センサを備えるものであったが、これに限定するものではなく、例えば、赤外線センサとして、光導電効果などを利用した周知の量子型赤外線センサなど、他の種類の赤外線センサを用いても良い。このような量子型赤外線センサにおいても、調熱部材によって、それ自身を周囲の温度に素早く合わせることで測定の誤差などを解消することができる。この種の量子型赤外線センサには、室温での測定に適したものとして、光導電素子の材料にPbSeを用いたもの、低温での測定に適したものとして、光導電素子の材料にPbSを用いたものなどがある。
【0041】
なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形
態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施
することができる。
【図面の簡単な説明】
【0042】
【図1】本発明の一実施形態にかかる濃度測定装置の気体サンプル室の構成を模式的に示す斜視図である。
【図2】図1に示された濃度測定装置の構成を示す説明図である。
【図3】図1に示された気体サンプル室の受光ユニットの正面を模式的に示す説明図である。
【図4】図3中のVI−VI線の断面を模式的に示す説明図である。
【図5】図2に示された濃度測定装置の受光回路の構成を示す説明図である。
【図6】二酸化炭素の吸収スペクトラムを示したグラフである。
【符号の説明】
【0043】
1 濃度測定装置
2 気体サンプル室
5 マイクロコンピュータ(濃度算出部)
6 測定セル(本体部)
7 光源
9 放熱器(放熱部材)
10 吸熱器(調温部材)
11 ユニット本体
12 受光器
13 集光部材
14 熱電堆式赤外線センサ
15 透過部材
30 リフレクタ

【特許請求の範囲】
【請求項1】
筒状に形成された本体部と、前記本体部の一端部に配置され且つ赤外線を放射する光源と、前記本体部の他端部に配置され且つ前記光源からの前記赤外線を検出する赤外線センサと、を備え、前記光源からの前記赤外線を前記本体部の内部を通じて前記赤外線センサに導く気体サンプル室において、
前記本体部の一端部に配設され且つ前記本体部の熱を雰囲気に放出する放熱部材と、
前記本体部の他端部に配設され且つ前記雰囲気の熱を前記赤外線センサに伝える調温部材と、を備えている
ことを特徴とする気体サンプル室。
【請求項2】
赤外線を放射する光源と前記光源からの前記赤外線を検出する赤外線センサとを備えた気体サンプル室と、前記赤外線センサが検出した前記赤外線の強さに基づいて、前記気体サンプル室内の予め定められた気体の濃度を算出する濃度算出部と、を備えた濃度測定装置において、
前記気体サンプル室として、請求項1に記載の気体サンプル室を備えていることを特徴とする濃度測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2010−48644(P2010−48644A)
【公開日】平成22年3月4日(2010.3.4)
【国際特許分類】
【出願番号】特願2008−212514(P2008−212514)
【出願日】平成20年8月21日(2008.8.21)
【出願人】(000006895)矢崎総業株式会社 (7,019)
【Fターム(参考)】