説明

水モニタ

【課題】排水中のトリチウム濃度を精度良く検出できる水モニタを提供する。
【解決手段】被検出面の有感面積が広く、薄い中空のサンプリング容器3に被測定試料であるトリチウム水を導入し、サンプリング容器3を挟んで両側面(被検出面)に第一の検出部1aと第二の検出部1bの、2系統の検出部を近接して対向配置させる構成とする。
それぞれの検出部(1aまたは1b)は、サンプリング容器3に近接配置されるプラスチックシンチレータ以外の固体シンチレータ(2aまたは2b)を備えている。一方の固体シンチレータにおいて、トリチウム水から放出されたベータ線の入射を受けてシンチレーション光が発光されると、そのシンチレーション光は全方向に広がり、2つの検出部1a、1bの、両方の光電子増倍管7a、7bに伝搬される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、原子力発電所等の放射線関連施設において設置される放射線監視設備のうち、水モニタに関するものである。水モニタは、排水等の水中に含まれるトリチウム(三重水素)から放出される低エネルギーベータ線を測定し、トリチウム濃度を評価する目的で設けられるモニタである。
【背景技術】
【0002】
従来のトリチウム濃度計測の代表的な方式としては、液体シンチレータ方式がある(例えば、特許文献1参照。)。
また、プラスチックシンチレータの表面に付着した測定試料の低エネルギー放射線を光に変換して計測する固体シンチレータ方式がある(例えば、特許文献2参照)。
【0003】
【特許文献1】特開平9−21878号公報
【特許文献2】特開平8−75863号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
従来の液体シンチレータ方式による水モニタは、計測する試料に液体シンチレータを直接混ぜて発光させるため、発光効率が良いが、測定後は、有機液体である液体シンチレータの廃液処理をしなくてはなないという環境問題が生じていた。さらに、1回の計測に数グラムの試料しか測定できないため、測定サンプリング率が低いという測定効率の問題もあった。そのため、液体シンチレータ方式は、原子力発電所等のプラント施設のように大量の試料をスクリーニングする場合には不向きであった。さらに、液体シンチレータが有機液体であるために、試料内で発光した光が消光するクエンチングの問題があり、このクエンチングを補正するために対策を講じる必要があった。
【0005】
また、固体シンチレータを用いた従来の水モニタでは、無色透明な液体試料を用いるため、クエンチングの問題がなく、また廃液処理の問題もないが、計測効率として幾何学的効率を向上させることが課題である。一方、固体シンチレータとしてプラスチックシンチレータを用いており、プラスチックの主要構成原子である水素と測定試料のトリチウムとが同位体であることから、同位体交換反応が生じ、検出器が汚染されるという問題もあった。
この発明は上記のような課題を解決するためになされたものであり、廃液処理、クエンチング対策等の問題を解消するとともに、固体シンチレータ特有の問題と言える幾何学的効率を向上させ、同位体交換反応による汚染がなく、トリチウム濃度を連続して測定できる水モニタを提供することを目的とする。
【課題を解決するための手段】
【0006】
この発明に係わる水モニタは、被測定試料を導入するサンプリング部、上記サンプリング部の外側を取り囲むように2体が対向配置され、上記被測定試料から放出されるベータ線をシンチレーション光として検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換して、後段に出力する第一、第二の検出部、上記第一、第二の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記第一、第二の検出部は、上記サンプリング部に近接して配置され、ベータ線入射を受けてシンチレーション光を発光する固体シンチレータ、上記固体シンチレータの後段に配置され、上記シンチレーション光を後段側に導くライトガイド、上記ライトガイドの後段に配置され、上記シンチレーション光を検出し電気信号に変換する光電子増倍管によってそれぞれ構成されるものであり、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記第一または第二の検出部を構成する上記固体シンチレータのうちいずれか一方において発光したシンチレーション光を、上記第一および第二の検出部を構成する両方の上記光電子増倍管において検出するものである。
【0007】
また、この発明に係わる水モニタは、所定の厚さを有し、一平面に沿って広がる外部形状であり、その外部形状を反映した内部空間を持つサンプリング容器を有し、上記サンプリング容器内に被測定試料を導入するサンプリング部、上記サンプリング容器内に、上記サンプリング容器内部空間を二分するように一平面に沿って配置され、上記被測定試料から放出されるベータ線を受けてシンチレーション光を発光する平板状の固体シンチレータ、上記サンプリング容器の両側面にそれぞれ配置され、上記シンチレーション光を検出するとともに電気信号に変換してベータ線検出情報をそれぞれ出力する第一、第二の検出部、上記第一、第二の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記シンチレータ検出器を、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記固体シンチレータにおいて発光したシンチレーション光を上記第一および第二の検出部の両方において検出するものである。
【0008】
さらに、この発明に係わる水モニタは、複数枚の透明な平板の端部を互い近接させて多角形筒状の試料導入板を構成するとともに、上記試料導入板の表面に、上部から被測定試料を吹き掛け、ウォーターカーテンを形成する要領で、上記被測定試料を導入するサンプリング部、上記試料導入板を構成する平板のそれぞれの外表面に向って近接して配置され、上記被測定試料から放出されるベータ線をシンチレーション光として検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換し、後段に上記ベータ線検出情報をそれぞれ出力する複数の検出部、上記複数の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記複数の検出部は、上記試料導入板を構成する平板の表面に向って近接して配置され、ベータ線入射を受けてシンチレーション光を発する固体シンチレータ、上記固体シンチレータの後段に配置され、シンチレーション光を後段側に導くライトガイド、上記ライトガイドの後段に配置され、シンチレーション光を検出し電気信号に変換する光電子増倍管によって構成され、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記複数の検出部を構成する上記固体シンチレータのうちいずれか一方において発光したシンチレーション光を、上記複数の検出部を構成する全ての上記光電子増倍管において検出するものである。
【0009】
また、この発明に係わる水モニタは、立てた状態で配置される平板状の固体シンチレータ、上記固体シンチレータの表面に、上部から被測定試料を吹き掛ける試料導入装置、上記被測定試料から放出されるベータ線を受け、上記固体シンチレータにおいて発光するシンチレーション光を検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換し、後段に出力する機能を持ち、上記固体シンチレータを取り囲むように配置される複数の検出部、複数の上記検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部を備え、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記固体シンチレータにおいて発光したシンチレーション光を、全ての上記検出部において検出するものである。
【発明の効果】
【0010】
この発明の水モニタによれば、プラスチックシンチレータ以外の固体シンチレータを用いるため、同位体変換反応による汚染の問題がなく、液体シンチレータを用いないため、廃液処理を必要とせず、またクエンチングの問題を解消できる。さらに、放射線に起因して発生したシンチレーション光を、サンプリング部を挟んで対向配置された2体の検出部において同時に検出することができるため、幾何学的効率向上の効果が得られるとともに、ノイズを除去することができ、正確にトリチウム濃度を検出することができる。
【0011】
また、この発明の水モニタによれば、サンプリング容器内の中心に、1枚の平板状の固体シンチレータを配置し、その固体シンチレータを中心として2つの検出部を対称的に配置でき、両方の検出部へ向うシンチレーション光の伝搬経路を同様の経路とできるため、結果として得られる出力波形が同じ形となり、データの比較が容易となる。また、固体シンチレータは、1枚設ければ良く、構成部材が少ない。
【0012】
さらに、この発明の水モニタによれば、複数の平板によって多角形筒形の試料導入板を構成し、その表面に被測定試料を吹き掛けて試料の導入を行い、トリチウム濃度計測を行うため、連続して被測定試料を試料導入板に吹き掛けることで、連続的なトリチウム濃度計測、監視を行え、容器に試料を貯留する方式よりも、より多くの被測定試料に対してトリチウム濃度計測を実施できる。
【0013】
また、この発明の水モニタによれば、立てた状態で配置される平板状の固体シンチレータを試料導入板として用い、その固体シンチレータの表面に被測定試料を吹き掛けて試料導入を行うため、被測定試料を貯留する容器や、試料導入板を必要とせず、構成部材を少なくできるとともに、より大量の被測定試料に対して連続的にトリチウム濃度計測を行うことが可能である。
【発明を実施するための最良の形態】
【0014】
実施の形態1.
以下、この発明の実施の形態1について、図1〜図3を用いて説明する。図1は、水モニタの基本構成を示す図であり、この水モニタは、被測定試料を導入するサンプリング部5と、サンプリング部5の外側を取り囲むように対向配置され、被測定試料から放出される放射線(ベータ線)をシンチレーション光として検出し、そのシンチレーション光を電気信号よりなるベータ線検出情報に変換して、後段に出力する第一の検出部1a、第二の検出部1bと、これら第一の検出部1a、第二の検出部1bからそれぞれ出力されたベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部13とを備えている。
【0015】
図1に示すように、第一の検出部1aと第二の検出部1bは、サンプリング部5を挟むように、その厚みを介して対向配置された状態となる。サンプリング部5に近接配置される第一の検出部1aは、放射線入射を受けてシンチレーション光を発光する平板状の固体シンチレータ2aと、その固体シンチレータ2aに接着され、シンチレーション光を集光し、後段側に導くライトガイド6aと、そのライトガイド6aの後段に配置され、シンチレーション光を検出し電気信号(ベータ線検出情報に相当する。)に変換する光電子増倍管7aによって構成されている。第二の検出部1bも、上述した第一の検出部1aと同様の構成であり、固体シンチレータ2b、ライトガイド6b、光電子増倍管7bを構成要素として含む。
【0016】
なお、固体シンチレータ2a、2bは、プラスチックシンチレータ以外の固体シンチレータによって構成されており、例えば、フッ化カルシウム(CaF(Eu):CaFに少量のEu(ユーロピウム)を包含している。)、ビズマスジャーマネイト(BGO)、ビスマスシリコン複合酸化物(BSO)、イットリウム・アルミニウム複合酸化物(YAP(Ce):YAPに少量のCe(セリウム)を含有している。)等を用いることができる。これらの固体シンチレータは、水素原子を含んでおらず、トリチウムと同位体変換反応を起こすことがない。
【0017】
被測定試料である液体(トリチウム水)を導入するサンプリング部5は、図3に、その斜視図を示すように、被測定試料を溜めるサンプリング容器3によって主に構成される。サンプリング容器3は、所定の厚さを有し、一平面に沿って広がる外部形状であり、その外部形状を反映した内部空間を持っている。また、その外部形状が短い円柱状であり、被検出面3a、3bとなる円形の平面(両端面)が、横方向(固体シンチレータ2a、2bの方向)を向くように配置されている。このサンプリング容器3は、その被検出面3a、3bの形状を、検出器の形状に合わせて円形としているが、検出器の形状に対応させて、別の形状とすることも可能である。
【0018】
また、サンプリング容器3を構成する素材としては、例えば、強固で無色透明な石英ガラス等を用いることができるが、40Kを含むような物質は、同位体交換反応を生じるおそれがあるため不適であり、いずれにしても、放射能自己汚染がないものを材質として用いる。さらに、サンプリング部5は、サンプリング容器3の上部から被測定試料を導入する吸水口4aと、サンプリング容器3の下部から被測定試料を排出する排水口4bを備えている。
【0019】
また、図1に示すように、検出部1a、1bと、測定部13とは、それぞれ電気信号ケーブル9a、9bで繋がれており、光電子増倍管7a、7bからそれぞれ出力されるベータ線検出情報が、電気信号ケーブル9a、9bを介して測定部13側に入力される。この測定部13は、第一の検出器1a、第二の検出器1bの、2つの系統の出力信号をそれぞれ増幅する前置増幅器10a、10bと、これら前置増幅器10a、10bの出力信号を入力し、前置増幅器10aと前置増幅器10bの出力信号を同時に計数する時のみ同じ電気信号を出力するアンドロジック回路である同時計数回路11と、その同時計数回路11の出力信号を計測し、上述したベータ線検出情報をトリチウム濃度情報に変換し、記録する機能を持つ計測記録装置12から主に構成されている。
なお、図1に示すように、サンプリング容器3と、第一の検出部1a、第二の検出部1bは、鉛容器8によって覆われる状態とする。この鉛容器8によって、その外部からの放射線(ガンマ線)を遮断し、被測定試料に含まれる放射線核種から放出される放射線(ベータ線)のみを検出できるようにする。鉛容器8の厚さは、約10cm程度必要とされる。
【0020】
次に、この実施の形態1の水モニタについて、その詳細な動作を説明する。
被測定試料となる放射線放出核種を含む液体(トリチウム水(図示せず。))を吸水口4aから取り入れ、サンプリング容器3に一定時間貯留して放射線放出核種から放出される放射線(ベータ線)を測定し、測定を終了すると、被測定試料を排水口4bから排出する。
図2に、シンチレーション光の伝搬の様子を模式図として示す。被測定試料がサンプリング容器3に貯留されている間に、試料中に含まれる放射線放出核種20から放射線(ベータ線)21が放出される。この放射線21は、一方の固体シンチレータ2aに入射し、その固体シンチレータ2a内でシンチレーション光22a、22bと呼ばれる光を発光する。なお、図2では、説明の簡単化のために、シンチレーション光22a、22bが、矢印の2方向(図面に向って左右方向)に向うことを例示しているが、実際は、この2方向だけではなく、発光点から周囲全体に光が伝搬され広がる特性を持っている。このシンチレーション光22aは、ライトガイド6aを通って、光電子増倍管7aに至る。その一方で、反対側に伝搬されるシンチレーション光22bは、他方の固体シンチレータ2bを通過し、他方のライドガイド6bを通って、他方の光電子増倍管7bに至る。
【0021】
光電子増倍管7a、7bでは、シンチレーション光22a、22bをそれぞれ電子に変換し、シンチレーション光を電子に変換し、電子の数量を増幅し、その増幅された電子の集まりは一般の電気信号回路で検出可能なパルス信号(ベータ線検出情報)となる。このパルス信号には、放射線のエネルギーに比例した波高値を持つ特徴がある。光電子増倍管7a、7bの出力パルス信号(ベータ線検出情報)は電気信号ケーブル9a、9bを通ってそれぞれ前置増幅器10a、10bに至り、さらに信号増幅される。
【0022】
前置増幅器10a、10bからそれぞれ出力される2系統の出力信号は、いずれも同時計数回路11に入力される。同時計数回路11は、2系統の検出部の出力信号が、同時に入力された場合に出力するアンドゲートである。同時計数回路11では、放射線放出が起こり、2系統の光電子増倍管7a、7bが同時にシンチレーション光を検知した場合にのみ真の計測データと認識させるために導入するもので、1系統の検出部(第一の検出部1aまたは第二の検出部1b。)のみが計数する事象を光電子増倍管7aまたは7b等において生じたノイズとみなして無視する。
【0023】
同時計数回路11の出力信号は、後段の計測記録装置12に入力される。この計測記録装置12は、ディスクリ回路、計数回路、演算回路、記録手段等により構成され、測定対象の放射線放出核種濃度(トリチウム濃度情報に相当する情報。)を蓄積、記録、表示する。図1に示す測定部13は、上述の前置増幅器10a、10b、同時計数回路11、計数記録装置12によって構成されるものとする。
【0024】
図1および図2に示した例では、シンチレーション光を検出する検出部(第一の検出部1a、第二の検出部1bをそれぞれ1系統とみなす。両方で2系統。)を2系統としたが、3系統以上設けても良く、その場合は、ノイズカットの効果をより向上させることが可能である。
このように構成した水モニタは、第一の検出部1aまたは第二の検出部1bを構成する固体シンチレータ2aまたは2bのうちいずれか一方において発光したシンチレーション光を、第一の検出部1aおよび第二の検出部1bを構成する両方の光電子増倍管7aおよび7bにおいて検出することが可能となる。
【0025】
図1および図2に示した水モニタにおいて、一方の固体シンチレータ2aで発光したシンチレーション光22a、22bを、2系統の検出部(1a、1b。)で感度良く検出するためには、2枚の平板状の固体シンチレータ2a、2bを、サンプリング容器3の両側面にそれぞれ密着または近接するように配置した上で、固体シンチレータ2a、2b間の距離をより近づける配置とする必要があり、サンプリング容器3の厚みをできるだけ薄く構成することが有効である。ただし、被測定試料の液体23に対し、圧力損失(サンプリング容器3の厚みを薄くするにともなって、流路が狭くなり、容器内の試料が流れにくくなるという損失。)増大等の影響を鑑み、トリチウム水の流れに支障がない範囲において薄くするものとする。
【0026】
上述したとおり、固体シンチレータ2a、2bを、互いに近接して設置すると、光電子増倍管7aまたは7bのノイズを同時計数回路11にて除去する効果には差し支えないが、宇宙線等の外部ガンマ線によって発光するシンチレーション光も2系統の検出部で同時に検出してしまうため、外部ガンマ線の影響を除去する機能は失われると云える。2つの検出部で同時に外部ガンマ線を検出しないためには、2つの固体シンチレータ2a―2b間の距離を大きくとる必要があるが、本発明ではできる限り近づけたために、外部ガンマ線が二つの固体シンチレータ2a、2bを同時に通過する確率も高く、また、外部ガンマ線が一方の固体シンチレータだけに入射した場合でも、同様に、そのシンチレーション光を2系統の検出部において同時に検出してしまう。このため鉛容器8の厚さをできる限り大きくする必要があるとともに、測定対象の放射線のエネルギー帯を限定するなどして、計数対象から除去する対応が必要となる。
【0027】
具体的な対策としては、この水モニタは、トリチウム水を被測定試料としており、そのトリチウムから放出されるベータ線の最大エネルギーは18keV程度であることから、ベータ線の最大エネルギーより大きいエネルギーを持つ放射線に関する出力パルスを、計測記録装置12において除去するように設定することで、外部ガンマ線の影響を補正できる。
【0028】
以上説明したように、2系統の検出部を、被測定試料を挟んで対向配置させ、サンプリング容器3の被検出面3aを覆う状態とし、互いに近接配置させることで、一方の固体シンチレータ2aまたは2bにおいて発光したシンチレーション光でも、両方の系統の光電子増倍管において検出可能であり、また、従来の固体シンチレーション方式に比べても、発光位置と光電子増倍管との距離をより短くでき、幾何学的効率(シンチレーション光が発光した際に、全放射方向(:100%)にシンチレーション光が伝搬するが、そのうち何%のシンチレーション光を光電子増倍管に入射させられるかを示す値。)を向上させることができる。
【0029】
また、固体シンチレータ2a、2bと、光電子増倍管7a、7bが一体であるため、検出器自身がシンチレーション光の遮蔽となる弊害がない。さらに、被測定試料となる排水が、無色透明の液体であるため、液体シンチレーション方式と比較しても、液体シンチレーション方式に特有のクエンチング等の消光現象からの影響を可能な限り取り去ることができるという効果もある。
また、固体シンチレータ2a、2bを、プラスチックシンチレータ(水素原子を含む。)以外の固体シンチレータ(トリチウムとの同位体変換反応がないものを選定して用いる。)とすることで同位体交換反応の問題を解消することができ、固体シンチレータ2a、2bが汚染させることがない。
なお、液体シンチレータを用いないため、測定後の試料は、他の廃液と同様に処分でき、廃液処理の問題を解消できることは言うまでもない。
【0030】
実施の形態2.
次に、この発明の実施の形態2による水モニタについて図4〜図6を用いて説明する。先述の実施の形態1では、2つの固体シンチレータ2aおよび2bを、サンプリング容器3を挟んで互いに対向配置させ、近接させる例について述べたが、この実施の形態2では、図4に示すように、サンプリング容器3内に、この容器の中心を通って、容器の広がる一平面に沿って、容器内部空間を二分するように平板状の固体シンチレータ2cを1つ挿入配置した水モニタについて説明する。
【0031】
図4に示すように、この実施の形態2では、サンプリング容器3の一方の側面(被検出面)に向って、ライトガイド6cが近接配置され、その後段には光電子増倍管7cが配置され、これらライトガイド6cと光電子増倍管7cによって第一の検出部1cが構成される。サンプリング容器3の、他方の側面(被検出面)側にも、同様に、ライトガイド6dと光電子増倍管7dによって第二の検出部1dが構成される。他の構成は、実施の形態1の場合と同様である。
【0032】
サンプリング容器3は、実施の形態1の場合と同様の、非常に薄い容器を用いる。従って、固体シンチレータ2cの厚さは、サンプリング容器3の内部空間の幅よりも、さらに薄く形成する必要がある。図5(a)に、図4のa―a断面図を示すように、サンプリング容器3内に被測定試料となる液体23が導入されると、固体シンチレータ2cの表面を伝って液体23が流れ落ち、導入量が多いと、容器内の所定の水位まで液体23が満たされた状態となる。また、図5(b)は、図5(a)のb−b断面図である。
【0033】
次に、サンプリング容器3への試料導入時の、液体23の流れ方について、その模式図を図6に示して説明する。吸水口4aから水滴を滴下させる要領でサンプリング容器3内に液体23を導入する。容器内の固体シンチレータ2cの上部に到達した液体23は、固体シンチレータ2cの表面(図6の例では、両面。)を伝って固体シンチレータ2cの下部まで流れる。この固体シンチレータ2cの表面を滴り落ちる間に発光し、トリチウム濃度が測定される。測定後は、排水口4b側へ続く配管を通って排水口4bから外部へ排出される。図6では、液体23を雫型に模して示しているが、実際には、液体23は、固体シンチレータ2cの表面を所定の膜厚を構成するように流れ落ちる。
なお、サンプリング容器3への被測定試料の導入方法としては、一定量の試料を溜めて測定し、その後排出する方法、または、連続して試料を導入する一方で、同時に連続して排出する方法のいずれかの方法を適用することができる。
【0034】
この実施の形態2の場合、一つの固体シンチレータ2cにおいて放射線の入射によって発光したシンチレーション光は、固体シンチレータ2cを中心として対称に配置させた第一の検出部1cおよび第二の検出部1dの、両方の検出部で同時に検出される。この実施の形態2でも、実施の形態1と同様に、サンプリング容器3の厚さを、被測定試料である液体23の流れに支障がない範囲において薄く構成しており、また、二つの検出部を、サンプリング容器3を挟むように対向配置させるため、固体シンチレータ2cにおいて生じるシンチレーション光を効率良く検知でき、幾何学的効率も保持できる。
【0035】
上述の実施の形態1と、この実施の形態2との相違点は、放射線が固体シンチレータに入射し、シンチレーション光が発生する点から、光電子増倍管に至るまでの物質境界面の数である。実施の形態2の場合は、被測定試料である液体23から放出された放射線が固体シンチレータ2cに入射すると、放射線(ベータ線)のエネルギーが小さいため、固体シンチレータ2cの表面近傍でシンチレーション光が発生する。シンチレーション光は、その発生点から、固体シンチレータ2cの両面に向って放出される。固体シンチレータ2cの両面で第1の境界面を通過し、サンプリング容器3内の液体23を通過して、サンプリング容器3とライトガイド6cまたは6dの間の、第二の境界面を通過し、さらにライトガイド6cまたは6dと光電子増倍管7cまたは7dの間の第三の境界面を通過する。このように、実施の形態2では、シンチレーション光が通過する境界面は3箇所であり、シンチレーション光は3回の屈折を受けることになる。
【0036】
一方、実施の形態1では、固体シンチレータ2aでシンチレーション光22a、22bが発生した場合に、第一の検出器1a側に向うシンチレーション光22aは、光電子増倍管7aに至るまでに2回の屈折を受け、第二の検出器1b側に向うシンチレーション光22bは、光電子増倍管7bに至るまでに4回の屈折を受ける。一方、サンプリング容器3を通過するシンチレーション光22bは、サンプリング容器3内の被測定試料となる液体を通過しなくてはならず、その屈折回数が2回多くなってしまい、光電子増倍管7a、7bにおいて検出するデータに差が生じてしまう。
【0037】
この実施の形態2では、2つの光電子増倍管7c、7dに向って放出されるシンチレーション光は、その光の伝搬経路がほとんど同じとなり(固体シンチレータ2c内での発光位置に依存した経路差は生じ得る。)、同回数の屈折を受けるので、同時係数回路11に入力される2系統のパルスは同形となり、その対比処理をし易くなり、理想的な計数が実施できる。また、固体シンチレータ2cが1つでよいのでコスト低減につながるという効果がある。
【0038】
いずれにしても、実施の形態1および実施の形態2においては、サンプリング容器3の厚さに比して、固体シンチレータ2a、2b、2cの有感面積を広く取るように構成しており、この限りにおいては、実施の形態1と実施の形態2は同等の効果を奏するものと云える。
【0039】
実施の形態3.
上述の実施の形態1および2では、サンプリング部5を構成するサンプリング容器3内に被測定試料を導入して、トリチウム濃度の計測を実施する例について述べたが、この実施の形態3では、図7に示すように、サンプリング容器3の代わりに一枚の透明な平板よりなる試料導入板(自己汚染のない透明板。サンプリング容器3と同様の素材により構成する。)30を立てた状態で配置し、試料導入板30の上部から噴霧器(試料導入装置)31で被測定試料となる液体23を噴霧し、試料導入板30の表面に流し、液体23よりなるウォーターカーテンを形成する要領で被測定試料を導入するものとし、その試料導入板30の両面側に、1系統づつ、合計2系統の検出部(第一の検出部1aと第二の検出部1b。)を配置する場合について説明する。
【0040】
放射線放出核種を含む液体23を噴霧器31より噴出させ、噴出された液体23がすべて試料導入板30の一面または両面の上部に吹き掛けられるようにする。噴霧された液体23は、試料導入板30の表面に一様な厚さのウォーターカーテンを形成する状態となり、下方に流れる。このように、実施の形態3では、試料導入板30の表面に、被測定試料(液体23)からなるウォーターカーテンを形成する要領で試料の導入を行う。サンプリング部5を構成する試料導入板30の両側面に近接するように、第一の検出部1aと第二の検出部1bを対向配置させ、流れる液体23から放出される放射線(ベータ線)を捉えて計数する。光電子増倍管7a、7bからの出力信号は、図示しない後段の測定部13で計数される。
【0041】
この実施の形態3の水モニタは、第一の検出部1aおよび第二の検出部1b以下の計測系にて放射線測定を行っている間、液体23が試料導入板30の表面を連続的に流れ落ちるように構成しているため、トリチウム濃度の連続監視が可能となる。このため、サンプル抽出式の水モニタではなし得なかった、すべての測定対象水を監視できるという能力を備える。測定対象水に濃度のムラがあれば、サンプル式は測定すべき部分を抽出できない可能性もあり、高濃度放射性物質を放出してしまうことにつながる。しかし、この実施の形態3に示したような多くの試料をスクリーニングさせる試料導入方法によって、サンプル式での問題を解決し、抽出ムラに起因する危険を回避できるという効果がある。
【0042】
実施の形態4.
次に、この発明の実施の形態4について図8を用いて説明する。上述の実施の形態3では、サンプリング部5を構成するのは、1枚の透明な自己汚染のない平板(試料導入板30)であったが、この実施の形態4では、図8に示すように、4枚の自己汚染のない透明な平板30a、30b、30c、30dを、その端部を互いに近接させて、全体として多角形筒形となるように配置して試料導入板(多角形筒形)33を構成する。サンプリング部5に試料を導入する際には、その表面(内面、外面のいずれか、若しくは両面。図8では内面に導入。)に、上部から被測定試料である液体23を吹き掛け、ウォーターカーテンを形成する要領で導入する。
【0043】
また、試料導入板(多角形筒形)33を構成する平板30a〜30dのそれぞれの外表面に向って、近接して検出部1が1つづつ配置される。図8の例では、試料導入板33が4枚の平板よりなるため、4つの検出部1が配置されている。検出部1は、上述した第一の検出部1aまたは第二の検出部1bと同様の構成であり、固体シンチレータ2、ライトガイド6、光電子増倍管7によって構成されるものとする。その他の構成は、上述した実施の形態1〜3と同様である。
【0044】
このように、4つの検出部1でサンプリング部5を取り囲むように構成することで、一つの固体シンチレータ2において、シンチレーション光を発した場合に、全て(4つ)の検出部1で、そのシンチレーション光を検出することが可能となる。
また、全ての光電子増倍管7においてノイズが同時に発生する確率は低いことから、同時に、全ての検出部1から出力があった場合には、放射線情報であると判断でき、いずれかの検出部1において出力がなかった場合にはノイズと判断できるため、同時計数回路11の同時計数機能により有意にノイズを除去することができ、ノイズ除去効率を高めることができる。
【0045】
この実施の形態4による水モニタは、被測定試料となる液体23を、複数(4つ)の検出部1で取り囲んでいるため、幾何学的効率が良い。なお、複数の光電子増倍管7の位置が互いに離れているため、外部ガンマ線が複数の検出部1を同時に通過する確率は非常に低くなるが、1つの固体シンチレータ2において発せられたシンチレーション光は、全ての検出部1にて検出される構成のため、外部ガンマ線に起因するノイズ除去は、鉛容器8を設置すること、または計測対象とするエネルギー帯を限定することによって行うものとする。
【0046】
実施の形態5.
上述の実施の形態3では、ウォーターカーテンを自己汚染のない透明な平板よりなる試料導入板30の表面に形成する場合について述べたが、この実施の形態5では、図9に示すように、試料導入板30を固体シンチレータ2dによって構成することについて示す。サンプリング部5を噴霧器31と平板状の固体シンチレータ2dによって構成し、立てた状態の固体シンチレータ2dの表面に、ウォーターカーテンを形成する要領で、被測定試料となる液体23を吹き掛けて、サンプリング部5への試料の導入を行う。このような構成とすることで、上述の実施の形態3と同様の連続監視モニタを得ることができる。
なお、この実施の形態5では、図9に示すように、第一の検出部1c、第二の検出部1dは、実施の形態2の場合と同様で、固体シンチレータを含まず、ライトガイド6c、6d、光電子増倍管7c、7dよりなる構成となり、また、固体シンチレータ2dが、試料導入板の役割も果たすため、別途、試料導入板やサンプリング容器を用意する必要がなく、より少ない部材で、水モニタを構成することが可能となる。
なお、図9では、固体シンチレータ2dの平面形状を長方形としているが、ライトガイドの形状を反映させて、円形平板とすることも可能であることは言うまでもない。
【0047】
実施の形態6.
上述の実施の形態4と実施の形態5とを組み合わせた技術を、実施の形態6として示す。図10に示すように、サンプリング部5を、複数の平板状の固体シンチレータ2e、2f、2g、2hを多角形筒形に組み合わせた試料導入板25と、噴霧器31によって構成し、ライトガイド6および光電子増倍管7よりなる複数(4つ)の検出部40を、全ての固体シンチレータ2e〜2hの外表面を取り囲むように、それぞれ向きを変えて配置する。
図10のような水モニタは、実施の形態4において示した多角形筒形の試料導入板33を用いる場合と同様に、より多くの試料を連続して計測することに適しており、光電子増倍管において生じるノイズ除去の点においても優れている。さらに、実施の形態5と同様に、固体シンチレータ2e〜2hが、試料導入板の役割も果たすため、別途、サンプリング容器や試料導入板を用意する必要がなく、より少ない部材で、水モニタを構成することが可能となる。
なお、固体シンチレータ2e〜2hの平面形状は、実施の形態5と同様に、別な形状とすることができる。
【0048】
実施の形態7.
上述の実施の形態1では、サンプリング容器3に被測定試料である液体23を貯留して計測するという例について述べたが、この実施の形態7では、サンプリング容器3に、気泡を発生させる機構を導入した場合について説明する。図11は、サンプリング部5を示す斜視図である。図11に示すように、サンプリング容器3内に気泡51を発生させるエアーポンプ(気泡発生装置)50が、サンプリング部5に接続されて備えられている。このエアーポンプ50は、サンプリング容器3下部に配置されるエアー排出部50aと、それに繋がるエアーポンプ本体50bから構成される。エアーは、外部から循環させる方式、内部で循環させる方式のいずれでも良く、設置環境、使用条件等に合わせて選定する。なお、水モニタのその他の構成については実施の形態1と同様であるので説明を省略する。
【0049】
エアーポンプ50を設ける効果は、次の通りである。
被測定試料は、トリチウム水であり、このトリチウム水から放出される放射線(ベータ線)は、エネルギーが非常に低いため、水によってその伝搬が止まってしまうという特性を持っている。そのため、試料を流動させない状態では、固体シンチレータ2a(2b)に近接したトリチウムのみしか計測ができなかった。計測効率を向上させるためには、固体シンチレータ2a(2b)の近傍以外に位置するトリチウムも計測する必要があり、また、試料中のトリチウム濃度が、サンプリング容器3の中央において高くなるように分布するなど、分布ムラがあると、放射能濃度測定が不能となってしまうという問題も潜んでいた。そこで、この実施の形態7で示すように、エアーポンプ50を用いて、サンプリング容器3内に気泡51を送り込み、放射線が気泡51内部を通過する機会を与え、放射線の飛程距離を平均的に長くし、計数効率を向上させる。また、気泡51を送り込むことによって、サンプリング容器3内で液体(図示せず。)を流動させることができ、このエアーポンプ50は、液体攪拌器としても機能させることができ、トリチウム濃度の均一化を図り、分布ムラを解消することができる。
【0050】
実施の形態8.
次に、この発明の実施の形態8について図12を用いて説明する。図12に示すとおり、この実施の形態8の水モニタは、被測定試料を導入する吸水口4aの上流に不純物除去装置60を備えている。この不純物除去装置60は、ストレーナ(濾過器)61および中空糸膜(微多孔膜)62を構成要素として含んでいる。
放射線施設から排出されたサンプリング液は、この不純物除去装置60に導入されると、ストレーナ61によって異物を除去される。その後、中空糸膜62によって、トリチウムを含む水が高純度で取り出され、それ以外は廃液として排出される。このように濾過され、取り出されたトリチウム水は、被測定試料の液体23として水モニタ本体側の吸水口4aから取り込まれ、サンプリング部5へ導入されて、トリチウム濃度の計測がなされる。
【0051】
不純物除去装置60を設置すると、異物がサンプリング容器3に混入しなくなり、また、水垢、油膜等が付着しなくなるため、メンテナンスの点で優れている。また、異物が混入しないことから、サンプリング容器3として、より薄型のものを用いることが可能となり、その分だけトリチウム濃度検出精度を向上させることが可能である。
なお、不純物除去装置60として、ストレーナ61のみを設けた構造としても良く、その場合でも異物除去が可能であり、メンテナンス性を向上させることができ、サンプリング容器3の薄型化が可能となる。
【0052】
また、さらに中空糸膜62を設置することによる利点は、トリチウム水の高純度化以外に、被測定試料となる液体23を純水化することができることにある。これにより、液体23の粘度も小さくできるため、サンプリング容器3の内側表面または平板よりなる試料導入板30表面など、液体23が接する表面に対して、均一に液体23を広げて薄膜状とできるため、サンプリング率(サンプリング容器3に採取した液体23に対する放射線の計測が可能な位置にある液体の体積比。)を一定化させることができる。
サンプリング率の一定化により、採取した液体23の流量に一定の割合を乗じた量が測定に係る液体23の体積であると簡単に算出できるようになり、計測処理の簡単化、測定部13(図示しない。)に含まれる制御装置の高速化の効果が得られる。
【図面の簡単な説明】
【0053】
【図1】この発明の実施の形態1に係わる水モニタの構成を示す図である。
【図2】この発明の実施の形態1に係わるシンチレーション光の伝搬を示す図である。
【図3】この発明の実施の形態1に係わるサンプリング部を示す斜視図である。
【図4】この発明の実施の形態2に係わる水モニタの構成を示す図である。
【図5】図4中のa−a断面、および図5中のb−b断面を示す図である。
【図6】この発明の実施の形態2に係わる被測定試料の流れを模式的に示す図である。
【図7】この発明の実施の形態3に係わる水モニタの要部を示す斜視図である。
【図8】この発明の実施の形態4に係わる水モニタの要部を示す斜視図である。
【図9】この発明の実施の形態5に係わる水モニタの要部を示す斜視図である。
【図10】この発明の実施の形態6に係わる水モニタの要部を示す斜視図である。
【図11】この発明の実施の形態7に係わるサンプリング部を示す要部斜視図である。
【図12】この発明の実施の形態8に係わる不純物除去装置を備えた水モニタの要部を示す図である。
【符号の説明】
【0054】
1、40 検出部 1a、1c 第一の検出部
2、2a、2b、2c、2d、2e、2f、2g、2h 固体シンチレータ
3 サンプリング容器 3a、3b 被検出面
4a 吸水口 4b 排水口
5 サンプリング部 6、6a、6b、6c、6d ライトガイド
7、7a、7b、7c、7d 光電子増倍管
8 鉛容器 9a 第一の電気信号ケーブル
9b 第二の電気信号ケーブル 10a 第一の前置増幅器
10b 第二の前置増幅器 11 同時計数回路
12 計測記録装置 13 測定部
20 放射線放出核種 21 放射線(ベータ線)
22a、22b シンチレーション光
23 液体 25、33 試料導入板(多角形筒形)
30 試料導入板(平板) 30a、30b、30c、30d 平板
31 噴霧器 50 エアーポンプ
50a エアー排出部 50b エアーポンプ本体
51 気泡 60 不純物除去装置
61 ストレーナ 62 中空糸膜。

【特許請求の範囲】
【請求項1】
被測定試料を導入するサンプリング部、上記サンプリング部の外側を取り囲むように2体が対向配置され、上記被測定試料から放出されるベータ線をシンチレーション光として検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換して、後段に出力する第一、第二の検出部、上記第一、第二の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記第一、第二の検出部は、上記サンプリング部に近接して配置され、ベータ線入射を受けてシンチレーション光を発光する固体シンチレータ、上記固体シンチレータの後段に配置され、上記シンチレーション光を後段側に導くライトガイド、上記ライトガイドの後段に配置され、上記シンチレーション光を検出し電気信号に変換する光電子増倍管によってそれぞれ構成されるものであり、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記第一または第二の検出部を構成する上記固体シンチレータのうちいずれか一方において発光したシンチレーション光を、上記第一および第二の検出部を構成する両方の上記光電子増倍管において検出することを特徴とする水モニタ。
【請求項2】
上記サンプリング部を構成し、上記被測定試料の容器となるサンプリング容器は、所定の厚さを有し、一平面に沿って広がる外部形状であり、その外部形状を反映した内部空間を持ち、外部から上記サンプリング容器内に上記被測定試料を導入する吸水口、上記被測定試料を上記サンプリング容器内から外部に排出する排水口を備え、上記第一、第二の検出器を構成する上記固体シンチレータは、上記サンプリング容器の所定の厚さを介して対向配置された平板状の物質であることを特徴とする請求項1記載の水モニタ。
【請求項3】
所定の厚さを有し、一平面に沿って広がる外部形状であり、その外部形状を反映した内部空間を持つサンプリング容器を有し、上記サンプリング容器内に被測定試料を導入するサンプリング部、上記サンプリング容器内に、上記サンプリング容器内部空間を二分するように一平面に沿って配置され、上記被測定試料から放出されるベータ線を受けてシンチレーション光を発光する平板状の固体シンチレータ、上記サンプリング容器の両側面にそれぞれ配置され、上記シンチレーション光を検出するとともに電気信号に変換してベータ線検出情報をそれぞれ出力する第一、第二の検出部、上記第一、第二の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記シンチレータ検出器を、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記固体シンチレータにおいて発光したシンチレーション光を上記第一および第二の検出部の両方において検出することを特徴とする水モニタ。
【請求項4】
上記サンプリング部は、1枚の透明な平板よりなる試料導入板を構成として含み、上記試料導入板の一面または両面に、上部から上記被測定試料を吹き掛け、上記試料導入板の表面にウォーターカーテンを形成する要領で、上記サンプリング部に上記被測定試料を導入することを特徴とする請求項1記載の水モニタ。
【請求項5】
複数枚の透明な平板の端部を互い近接させて多角形筒状の試料導入板を構成するとともに、上記試料導入板の表面に、上部から被測定試料を吹き掛け、ウォーターカーテンを形成する要領で、上記被測定試料を導入するサンプリング部、上記試料導入板を構成する平板のそれぞれの外表面に向って近接して配置され、上記被測定試料から放出されるベータ線をシンチレーション光として検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換し、後段に上記ベータ線検出情報をそれぞれ出力する複数の検出部、上記複数の検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部とを備え、上記複数の検出部は、上記試料導入板を構成する平板の表面に向って近接して配置され、ベータ線入射を受けてシンチレーション光を発する固体シンチレータ、上記固体シンチレータの後段に配置され、シンチレーション光を後段側に導くライトガイド、上記ライトガイドの後段に配置され、シンチレーション光を検出し電気信号に変換する光電子増倍管によって構成され、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記複数の検出部を構成する上記固体シンチレータのうちいずれか一方において発光したシンチレーション光を、上記複数の検出部を構成する全ての上記光電子増倍管において検出することを特徴とする水モニタ。
【請求項6】
立てた状態で配置される平板状の固体シンチレータ、上記固体シンチレータの表面に、上部から被測定試料を吹き掛ける試料導入装置、上記被測定試料から放出されるベータ線を受け、上記固体シンチレータにおいて発光するシンチレーション光を検出し、上記シンチレーション光を電気信号よりなるベータ線検出情報に変換し、後段に出力する機能を持ち、上記固体シンチレータを取り囲むように配置される複数の検出部、複数の上記検出部からそれぞれ出力された上記ベータ線検出情報を入力してトリチウム濃度情報に変換し、記録する測定部を備え、上記固体シンチレータを、プラスチックシンチレータ以外の固体シンチレータによって構成するとともに、上記固体シンチレータにおいて発光したシンチレーション光を、全ての上記検出部において検出することを特徴とする水モニタ。
【請求項7】
上記サンプリング容器内にエアーを循環させるエアーポンプを備えたことを特徴とする請求項2記載の水モニタ。
【請求項8】
上記サンプリング部に上記被測定試料を導入する吸水口の上流に不純物除去装置を設け、上記サンプリング容器に導入する被測定試料の濾過を行うことを特徴とする請求項1、請求項3、請求項5、請求項6のいずれか一項記載の水モニタ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−178336(P2007−178336A)
【公開日】平成19年7月12日(2007.7.12)
【国際特許分類】
【出願番号】特願2005−378782(P2005−378782)
【出願日】平成17年12月28日(2005.12.28)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】