説明

水中設置構造物およびこれを備える水中設置構造物群

【課題】 その目的は、湧昇流の発生効率が高く、しかも、設置される場所の水深に制限されず、予め定める設置状態に精度よく設置することができる水中設置構造物およびこれを用いた水中設置構造物群を提供する。
【解決手段】 水中設置構造物1は、長手方向に延びる長手形状に形成され、長手方向中央部を通り、長手方向に垂直な仮想一平面10aに関して非対称な形状に形成され、前記長手方向に垂直な向きのうち、いずれの1つの向きに相対移動する流体からも、1つの作用点に対する仮想的な外力として近似したときに決定される作用点の位置が、重心1cの位置から前記長手方向一方側にずれた位置となる外力を受ける形状に形成されることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水中に設置する水中設置構造物およびこれを備える水中設置構造物群に関する。
【背景技術】
【0002】
第1の従来技術に係る水中設置構造物として、衝立形の水中設置構造物が知られる。衝立形の水中設置構造物は、2種類の衝立型構造物で構成され、衝立形の水中設置構造物を海底に設置するときには、これら衝立型構造物は、いずれもロープなどで吊り下げて海底に設置される(たとえば特許文献1参照)。第2の従来技術に係る水中設置構造物として、マウンド形の水中設置構造物が知られる。マウンド形の水中設置構造物を設置するときには、海上の土運船などから石材やブロック状のマウンド材料を、所定の海域に係留される浮体装置を介して、海面から海中に投入して沈降させ、海底に複数のマウンド材料の集合体として形成する。マウンド形の水中設置構造物は、円錐形に堆積させることによって形成される円錐形マウンド状構造物と、同じく土運船などから前記マウンド材料を海中に投入して一対の前記円錐形マウンド状構造物を連結するように形成される仕切構造物とからなる(たとえば特許文献2参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−3376号公報
【特許文献2】特許第2992940号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
第1の従来技術に係る衝立形の水中設置構造物の場合、ロープによって吊り下げた状態で海中に沈降され、所定位置(海底)に設置されるため、設置される海底の深さがロープの長さに制約されるという問題点がある。また、前記2種類の衝立型構造物が潮流に垂直になるよう設置されなければならず、高度な設置技術が求められる。また、第2の従来技術に係るマウンド形の水中設置構造物の場合、投入されるマウンド材料は潮流によって外力を付与されるので、海底における所定の堆積位置への位置決め精度が低下する。加えて、前記一対の前記円錐形マウンド状構造物およびこれを連結する仕切構造物が潮流に垂直になるよう構築されなければならず、その設置状態を高い精度で制御し決定することができないという問題点がある。
【0005】
また第1および第2の従来技術に係る水中設置構造物では、予め定める1つの向きに流れる流体には上下方向いずれかの流れを発生させることができるけれども、およそ水平ないずれの向きの流れに対しても上下方向の流れを発生させることができず、汎用性に乏しいという問題点がある。
【0006】
本発明の目的は、設置される場所の水深が制限されることなく、予め定める設置状態に精度よく設置することのできる水中設置構造物およびこれを備える水中設置構造物群を提供することである。
【0007】
さらに本発明の他の目的は、水平ないずれの向きに流体が移動する場合であっても、この流体に対して上下方向の少なくともいずれか一方の向きを含む流れを発生させることができる水中設置構造物およびこれを備える水中設置構造物群を提供することである。
【課題を解決するための手段】
【0008】
本発明は、長手形状に形成される水中設置構造物であって、
長手形状の長手方向中央部を通り長手方向に垂直な仮想一平面よりも長手方向一方の第1部分と前記仮想一平面よりも長手方向他方の第2部分とを有し、
前記第1部分と前記第2部分とは、前記仮想一平面に関して互いに非対称であり、
前記長手方向に垂直な向きのうち、いずれか1つの向きに相対移動する流体によって外力が付与された場合、前記外力を1つの作用点に対する仮想的な外力として近似したときに、前記相対移動する流体の向きが長手方向に垂直ないずれの向きであっても、前記作用点の位置が、重心の位置から前記長手方向にずれた位置となることを特徴とする水中設置構造物である。
【0009】
また本発明は、長手方向に垂直ないずれの仮想平面で切断した断面形状も円形となる形状に形成され、
前記長手方向一方に向かうにつれて先細状となる形状に形成されることを特徴とする。
【0010】
また本発明は、長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成され、
前記底面を含む平面に向かって重心から下ろした垂線の足は、前記底面上に位置することを特徴とする。
【0011】
また本発明は、円錐の少なくとも一部を成す形状に形成され、
テーパ比は、0.05以上0.2以下に設定されることを特徴とする。
【0012】
また本発明は、前記長手方向に異なる複数の位置における、前記長手方向に垂直な断面の中心点を結んで形成される中心軸線が、直線状となる形状に形成され、
前記中心軸線を含むいずれの一平面で切断した断面においても、断面の外縁を成す部分のうち、前記中心軸線に垂直な部分を除く他の部分は、凹形状を成す形状に形成され、
長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成されることを特徴とする。
【0013】
また本発明は、円柱状に形成され、互いに外径の異なる複数の円柱状部分を含み、
前記複数の円柱状部分は、すべての円柱状部分の軸線が1つの直線に一致して配置され、かつ長手方向一方から長手方向他方に向かうにつれて、外径が大きくなる順序で、長手方向に並べて配置され、
各円柱状部分は、すべての円柱状部分の軸線に一致する軸線を有する仮想的な円錐形の側面に対して内接する位置に配置されることを特徴とする。
【0014】
また本発明は、水域の底に設置され、
長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成され、
前記底面は、水平な平面と平行に、または水平な平面に対して30度未満の傾斜角を成して配置されることを特徴とする。
【0015】
また本発明は、長手形状に形成される長手形状体であって、
長手形状の長手方向中央部を通り長手方向に垂直な仮想一平面よりも長手方向一方の第1部分と前記仮想一平面よりも長手方向他方の第2部分とを有し、
前記第1部分と前記第2部分とは、前記仮想一平面に関して互いに非対称であり、
流体中に配置されたときに流体から付与される浮力を1つの作用点に対する仮想的な外力として近似したときに、前記作用点の位置が、重心の位置から前記長手方向にずれた位置となる長手形状体と、
前記長手形状体に流体から付与される浮力に抗して前記長手形状体を前記流体中で沈降させる密度および重量に設定され、前記長手形状体の長手方向他端部に、ロープを介して接続される錘とを含むことを特徴とする水中設置構造物である。
【0016】
また本発明は、正四角柱の形状に形成される正四角柱部と、円柱状に形成される円柱状部とを含み、
前記正四角柱部は、その軸線が前記円柱状部の軸線を含む直線に一致し、前記円柱状部よりも長手方向一方に、前記円柱状部に隣接して配置されることを特徴とする。
【0017】
また本発明は、複数の水中設置構造物を備え、各水中設置構造物構造物は、
前記水中設置構造物であり、
隣合う2つの水中設置構造物の底面の中心間距離は、両方の底面の直径の平均以上の距離に設定されることを特徴とする水中設置構造物群である。
【発明の効果】
【0018】
本発明によれば、水中設置構造物は、長手方向に延びる長手形状に形成される。また水中設置構造物は、長手方向中央部を通り長手方向に垂直な仮想一平面に関して非対称な形状に形成される。また水中設置構造物は、長手方向に垂直な向きのうち、いずれの1つの向きに相対移動する流体からも、1つの作用点に対する仮想的な外力として近似したときに決定される作用点の位置が、重心の位置から長手方向一方側にずれた位置となる外力を受ける形状に形成される。
【0019】
これによって、水中設置構造物を沈降させたときに、水中設置構造物の長手方向一方の端部を長手方向他方の端部よりも上方に向けた姿勢で、沈降させることができる。一時的に長手方向を水平にした姿勢で水中設置構造物が沈降する場合であっても、水中設置構造物に対して相対移動する流体は、水中設置構造物の重心よりも長手方向一方側にずれた位置の作用点に対して外力を付与する。
【0020】
これによって、水中設置構造物が長手方向を水平にした姿勢で沈降するときには、流体から水中設置構造物に付与される外力と、水中設置構造物に作用する重力との合力を偶力とし、水中設置構造物の進行方向および長手方向の両方に垂直な水平軸線まわりの回転駆動力を、水中設置構造物に付与することができる。流体から付与される外力の作用点は、流体が、長手方向に垂直ないずれの向きに相対移動するときにも、水中設置構造物の重心よりも長手方向一方側にずれた位置となるので、水中設置構造物がいずれの姿勢で沈降する場合にも、長手方向一方の端部を長手方向他方の端部よりも上方に向けた姿勢で沈降させることができる。
【0021】
これによって、水中を沈降し、水中設置構造物が底に到達した状態における水中設置構造物の姿勢を、制御することができる。したがって従来技術のように、沈降させるときの水中設置構造物の姿勢を制御するために、ロープによって吊り下げる必要がないので、ロープの使用自体をさけることができる。したがって、設置場所となる底までの水深がロープの長さに限定されることがない。
【0022】
また水中設置構造物は、長手方向中央部を通る仮想一平面に関して非対称な形状に形成されるので、長手方向一方を長手方向他方よりも上方に向けた姿勢で水中に設置された状態で、長手方向に垂直な向きに流れる流体から流体圧が付与されると、流体圧の付与される圧力作動面よりも流体の流れ方向下流側における背圧は、仮想一平面よりも長手方向一方と長手方向他方とで、非対称となる。したがって、水中設置構造物に流体から流体圧が付与される圧力作動面よりも流体の流れ方向下流側において、長手方向のベクトル成分を有するいずれかの向きに、流体を移動させることができる。これによって、水中設置構造物に作用した流体圧を動力源として、上下方向の流体の流れ、特に湧昇流を発生させることができる。これによって、設置した水域の流体を撹拌することができる。
【0023】
さらに水中設置構造物は、長手方向に垂直ないずれの向きに流れる流体をも、長手方向のベクトル成分を含む流れとすることができるので、従来技術のように予め定める流体に対してのみ上下方向の流れを発生させるのではなく、およそ水平な向きのいずれの向きに流れる流体に対しても、上下方向の流れを発生させることができる。これによって、汎用性の高い水中設置構造物を提供することができる。
【0024】
また本発明によれば、水中設置構造物は、長手方向に垂直ないずれの仮想平面で切断した断面形状も円形となる形状に形成される。また水中設置構造物は、長手方向一方に向かうにつれて先細状となる形状に形成される。これによって、水中設置構造物を長手方向に垂直ないずれの向きに見たときにも、水中設置構造物の重心が長手方向他方に偏在していることを、容易に視認することができる。したがって、流体中に水中設置構造物を沈降させたときに、水中設置構造物の長手方向一方の端部が長手方向他方の端部よりも上方に位置する姿勢となることを、確実に予想することが可能となる。
【0025】
また本発明によれば、水中設置構造物の長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成される。底面を含む平面に向かって水中設置構造物の重心から降ろした垂線の足は、底面上に位置する。これによって、水中を沈降し、水中設置構造物が底に到達した状態において、底面が下方に臨む姿勢で、水中設置構造物を安定に配置することができる。
【0026】
また本発明によれば、水中設置構造物は、円錐の少なくとも一部を成す形状に形成される。水中設置構造物におけるテーパ比は、0.05以上0.2以下に設定される。これによって、水中設置構造物の形状を、円錐または円錐台の形状に形成することができる。また水中設置構造物を、長手方向に垂直な仮想平面の面方向において、等方的な形状に形成することができるので、仮想平面の面方向において異方性を有する形状に形成する場合に比べて、水中設置構造物を容易に形成することができる。またそのテーパ比を0.05以上0.2以下とすることによって、水中を沈降して行くことで長手方向一方の端部を長手方向他方の端部よりも上方に向けた姿勢で底に配置することと、流れる流体から流体圧が付与されても姿勢を安定に維持することと、効率的に上下流、特に湧昇流を発生させることとの両方を実現することができる。
【0027】
また本発明によれば、水中設置構造物は、長手方向に異なる複数の位置における、長手方向に垂直な断面の中心点を結んで形成される中心軸線が、直線状となる形状に形成される。中心軸線を含むいずれの一平面で切断した断面においても、断面の外縁を成す部分のうち、中心軸線に垂直な部分を除く他の部分は、凹形状をなす形状に形成される。水中設置構造物の長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成される。
【0028】
これによって、水中設置構造物を、長手方向に垂直な仮想平面の面方向において、等方的な形状に形成することができるので、仮想平面の面方向において異方性を有する形状に形成する場合に比べて、水中設置構造物を容易に形成することができる。また中心軸線に垂直な部分を除く他の部分を、中心軸線を含む一平面内において凹形状を成す形状に形成することによって、水中設置構造物の側面部を、いずれの向きに流れる流体に対しても、前記一平面内において、上流側に臨んで凹形状となる形状に形成することができる。これによって、水中設置構造物の側面部が、前記一平面内で上流側に臨んで凸形状を成す場合に比べて、効率よく上下流、特に湧昇流を発生させることができる。また前記一平面内で凸形状を成す場合に比べて、水中設置構造物の安定性を向上させることができる。
【0029】
また本発明によれば、水中設置構造物は、円柱状に形成される複数の円柱状部分を含み、複数の円柱状部分は、互いに外径が異なる。複数の円柱状部分は、すべての円柱状部分の軸線が1つの直線に一致して配置され、かつ長手方向一方から長手方向他方に向かうにつれて、外径が大きくなる順序で、長手方向に並んで配置される。各円柱状部分は、仮想的な円錐形の側面に対して内接する位置に配置される。仮想的な円錐形は、すべての円柱状部分の軸線に一致する軸線を有する。
【0030】
これによって、水中設置構造物を、長手方向に垂直な仮想平面の面方向において、等方的な形状に形成することができるので、仮想平面の面方向において異方性を有する形状に形成する場合に比べて、水中設置構造物を容易に形成することができる。また運搬途中において、長手方向が水平方向に垂直ではなく、水平に近い状態で水中設置構造物を床面上に配置したときに、床面から離れ床面に臨む面が形成されるので、水中設置構造物を容易に支持することが可能となる。したがって、運搬を容易にすることができる。
【0031】
また本発明によれば、水中設置構造物は、水域の底に設置され、長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成される。底面は、水平な平面と平行に、または水平な平面に対して30度未満の傾斜角を成して配置される。
【0032】
これによって、水域の底に設置され、倒れない状態で、かつ高効率に流体の上下流、特に湧昇流を発生させることができる。傾斜角が30度を超えると、水中設置構造物が水域の底において倒れる可能性がある。水中設置構造物が倒れ、長手方向が水平方向に垂直ではなく、水平に近い状態となると、湧昇流も流体の上下流も発生させることができない。しかし傾斜角は10度を超える範囲で、傾斜角が大きくなれば大きくなるほど、流体の上下流、特に湧昇流は高効率に発生する。このように、底面は、水平であってもよいけれども、高効率に湧昇流を発生させることのできる範囲として、水平な平面に対して30度未満の傾斜角を成すことが許容されるので、設置における高い精度での姿勢の制御を必要としない。したがって、沈降させて配置することによっても、効率よく湧昇流を発生させることのできる姿勢とすることができる。
【0033】
また本発明によれば、水中設置構造物は、長手形状体と、錘とを含んで構成される。長手形状体は、長手形状に形成され、第1部分と第2部分とを含む。第1部分は、長手形状の長手方向の中央部を通り長手方向に垂直な仮想一平面よりも長手方向一方の部分であり、第2部分は、前記仮想一平面よりも長手方向他方の部分である。第1部分と第2部分とは、前記仮想一平面に関して互いに非対称である。長手形状体は、流体中に配置されたときに流体から付与される浮力を1つの作用点に対する仮想的な外力として近似したときに、前記作用点の位置が、重心の位置から長手方向にずれた位置となる。錘は、長手形状体に流体から付与される浮力に抗して、長手形状体を流体中で沈降させる密度および重量に設定される。また錘は、長手形状体の長手方向他端部に、ロープを介して接続される。
【0034】
これによって、長手形状体と錘とを含む水中設置構造物を、流体中で沈降させることができる。また長手形状体の長手方向の一方の端部を上方に向けた状態で、長手形状体を流体中に浮遊させて配置することができる。これによって長手形状体は、長手方向が規定された状態で配置されるので、長手方向におよそ垂直かつおよそ水平な流体の流れを受けて、上下方向のうち少なくともいずれか一方の向きを含む流体の流れを発生させることができる。
【0035】
また本発明によれば、水中設置構造物は、正四角柱部と円柱状部とを含んで構成される。正四角柱部は、正四角柱の形状に形成され、円柱状部は、円柱状に形成される。正四角柱部は、その軸線が円柱状部の軸線を含む直線に一致し、円柱状部よりも長手方向一方に、円柱状部に隣接して配置される。
【0036】
これによって、水中設置構造物を沈降させたときに、水中設置構造物の長手方向一方の端部を長手方向他方の端部よりも上方に向けた姿勢で、沈降させることができる。一時的に長手方向を水平にした姿勢で水中設置構造物が沈降する場合があっても、水中設置構造物に対して相対移動する流体から長手形状体に付与される抗力の総和は、長手方向において不均一となる。したがって、流体から付与される外力を1つの作用点に作用する外力として近似すると、作用点の位置は、水中設置構造物の重心よりも長手方向一方にずれた位置となる。これによって、水中設置構造物は、正四角柱部および円柱状部のいずれか一方を上方へ向けた姿勢で沈降し、水底に配置される。
【0037】
この状態で水底に設置された水中設置構造物に対し、側方からの潮流または水流が作用すると、流体の上下方向の流れ、特に湧昇流を生じさせることができる。正四角柱部および円柱状部に対し軸線に垂直な1つの向きの潮流または水流が作用すると、正四角柱部の背圧は低く、円柱状部の背圧は高くなる。したがって、正四角柱部および円柱状部のいずれか一方を上方へ向けた姿勢で水底に設置された水中設置構造物に、横から相対移動する流体が作用すると、水中設置構造物よりも潮流または水流の下流側において湧昇流を生じさせることができる。
【0038】
また本発明によれば、水中設置構造物群は、複数の水中設置構造物を備え、各水中設置構造物は、前記水中設置構造物である。隣合う2つの水中設置構造物の底面の中心間距離は、両方の底面の直径の平均以上の距離に設定される。
【0039】
これによって、水中設置構造物を単独で設置する場合に比べて、湧昇流など、流体の上下流の発生の効率を向上させることができる。また流体の流れの向きが、隣合う水中設置構造物が並ぶ方向に沿う方向となった場合であっても、水中設置構造物の中心間距離が、底面の直径の平均以上の距離に設定されるので、湧昇流発生の効率の低下を防止することができる。流体の流れの向きが、隣合う水中設置構造物が並ぶ方向に垂直な場合には、湧昇流など流体の上下流の発生効率は、水中設置構造物が単独である場合よりも高くなるので、全体としては、流体の流れの向きが変化する場合であっても、湧昇流など流体の上下流の発生の効率を高くすることができる。
【図面の簡単な説明】
【0040】
【図1】図1(a)〜図1(d)は、本発明の水中設置構造物1の4種の例を示す図である。
【図2】図1(a)に示す例の水中設置構造物1における湧昇流の形成領域を説明する図である。
【図3】図1(a)に示す例の水中設置構造物1におけるテーパ比と湧昇流量係数との関係を計測した結果を示す図である。
【図4】水中に置かれた円錐形の水中設置構造物1における水中設置構造物1からの距離と、湧昇流速係数およびテーパ比との関係を計測した結果を示す図である。
【図5】図4の計測の際の計測位置を説明する図である。
【図6】図6(a),図6(b)は、図1(a)に示す例の水中設置構造物1における傾斜角度と湧昇流量係数との関係を計測するための説明図である。
【図7】図6(b)に示す傾斜状態における傾斜角と湧昇流量係数との関係を計測した結果を示す図である。
【図8】径が異なる円柱状部分を積重ねた形状の水中設置構造物1における仮想的な円錐形20を示す図である。
【図9】図9(a)はテーパ比が0.15の円錐形状の水中設置構造物1、図9(b)はこれに勾配が近似する2段円柱状の水中設置構造物1、図9(c)は同3段円柱状の水中設置構造物1をそれぞれ示す正面図である。
【図10】径が異なる円柱状部分を積重ねた形状の水中設置構造物1における下段円柱状部分の突出率と湧昇流量係数との関係を計測した結果を示す図である。
【図11】テーパ比が0.15の円錐形状の水中設置構造物1、および円柱状部と正四角柱部とを組合せた水中設置構造物1における湧昇流量係数の計測結果を示す図である。
【図12】水中設置構造物群100の水中での水中設置構造物1の設置状態の一例を示す斜視図である。
【図13】図13(a)〜図13(d)は、水中設置構造物群100の水中での水中設置構造物1の設置状態における水流との関係を示す模式平面図である。
【図14】図13に示す水中設置構造物群100における水中設置構造物1の配列方向および配列間隔と湧昇流量係数との関係を計測した結果を示す図である。
【図15】本発明の他の実施形態における水中設置構造物群200の構成を表す図である。
【発明を実施するための形態】
【0041】
以下、本発明を実施するための形態について図面を参照して説明する。図1は、水中設置構造物1の4種の例を示す図である。図1(a)、図1(b)および図1(d)は正面図を示し、図1(c)は斜視図を示している。図1(a)および図1(b)に示す水中設置構造物1は、円錐台形状であって、水よりも比重の大きい材質(たとえば、コンクリート)で一様に形成されている。内部には内部空間などは形成されない。したがって、中空ではなく、中実に形成される。
【0042】
本実施形態において水中設置構造物1は、水中設置構造物1に設置され、水流との相互作用によって、水中設置構造物1の周囲の流体に上下方向の流れを発生させて、水中設置構造物1における魚介類および海藻類の生息環境を向上させる。水中設置構造物群100は、設置された複数の水中設置構造物1を含む。図1(c)および図1(d)には、海水よりも比重の大きい部分と、海水よりも比重の小さい部分とを含む水中設置構造物1の一例を示している。海水よりも比重の大きい部分は、一様な材質によって形成される。
【0043】
特に本実施形態における水中設置構造物1は、下方から上方に向かう湧昇流を効率よく発生させることができる。ただし、強制的に周囲の流体に上方から下方へ向かう下降流を発生させることによっても、結果として水中設置構造物1まわりの流体は、上下方向に撹拌されるので、流れによって水中設置構造物1の下流側に生じる背圧の差異によって下降流が発生する実施形態を否定しない。本実施形態において、流体は、液体である。
【0044】
図1(a)に示す本発明の一実施形態では、円錐台形状とすることによって、自ずと、長手方向(中心軸線10に沿った方向、円錐台の高さ方向)の中央部を通り、長手方向に垂直な仮想一平面10aに関して非対称な形状とされる。また、前記長手方向に垂直な向きのうち、いずれの1つの向きに相対移動する流体からも、1つの作用点に対する仮想的な外力として近似したときに決定される作用点の位置が、重心1cの位置から前記長手方向一方側にずれた位置となる外力を受ける形状とされる。
【0045】
したがって、この水中設置構造物1を流れのある水域4に沈降させると、長手方向一方の端部としての末口(上底)1aが、長手方向他方の端部としての元口(下底)1bよりも上方に向いた姿勢で沈降し、水底40には図1に示すような状態で安定的に設置される。また、この水中設置構造物1は、その中心軸線10の回りに対称な形状とされているから、水流2のある水域4にこの水中設置構造物1が設置される場合、どのような向きになっても、水流2に対向する側の形状およびその背後側(下流側)の形状が同じとなる。「水底」(40)は、海洋を含む水域の底、すなわち海底であってもよく、湖および河川を含む水域の底であってもよい。したがって、本実施形態において液体である流体は、具体的には海水または湖、河川などにおける水である。
【0046】
水流2のある水域4に水中設置構造物1が設置されると、この水中設置構造物1の下流側面に沿って湧昇流3が発生する。この湧昇流3は、背圧の差異によって発生する。ここで、背圧とは、圧力作動面の背後に作用する圧力であって、特に水中設置構造物1に対して相対移動し、水中設置構造物1に流体圧を付与した流体の、水中設置構造物1近傍における累積背圧を意味する。この背圧差に勾配があれば、湧昇流3が発生する。背圧差の勾配は、水中設置構造物1の形状が円錐形状(テーパ形状)であるため、水平方向の水流2を鉛直方向へ変換することと同義と解される。
【0047】
図2は、前記円錐台形状の水中設置構造物1に水流2が作用したとき、その背後(下流側)領域で発生する湧昇流3の領域を示している。図2において3a,3bで示す領域は、湧昇流3が発生する領域である。3cで示す領域のうち、3a,3bで示す領域を除く領域は、下方に向かう水流が発生する領域である。この湧昇流が発生する領域3a,3bは、水中設置構造物1の各高さ方向の背後における水中設置構造物1の直径の0.5〜1倍の大きさの水平領域であることが、本発明者等によって検証されている。
【0048】
上方へ向かう流体の流れは、「湧昇流」と称される。下方へ向かう流体の流れは、「下降流」と称されることもある。流体の上下方向の流れのいずれか一方または両方を「上下流」と称することもある。本実施形態では、海域における海水の流れによって生じる上下流も湖、河川における水流によって生じる上下流も特に区別せず同様の用語を用いて説明する。
【0049】
図1(b)は、長手方向に異なる複数の位置における、前記長手方向に垂直な断面の中心点を結んで形成される中心軸線10が、直線状となる形状に形成され、中心軸線10を含むいずれの一平面で切断した断面においても、断面の外縁を成す部分のうち、中心軸線10に垂直な部分を除く他の部分は、凹形状を成す形状に形成されている水中設置構造物1の例を示している。すなわち、側面視した形状が円錐台の斜面が中心部に向け凹曲状に凹んだ形状とされている。この例においても、図示のように水流2のある水域4の水底40に設置されると、この水中設置構造物1の下流側面に沿って湧昇流3が発生する。
【0050】
また、図1(c)は、長手形状体51および錘19を含む水中設置構造物の斜視図である。長手形状体51は、正四角柱の形状に形成される正四角柱部11と、円柱状に形成される円柱状部12とを含み、正四角柱部11は、その軸線が円柱状部12の軸線を含む直線に一致し、円柱状部12よりも長手方向一方に、円柱状部12に隣接して配置され、円柱状部12の長手方向に垂直な断面の面積は、正四角柱部11の長手方向に垂直な断面の面積よりも小さく設定される水中設置構造物1の例を示している。この場合、平面視した形状は、正四角柱部11の正四角形に対し、円柱状部12の円が内接円となる。
【0051】
この例において水中設置構造物1は、長手形状体51の比重は、水(海水)よりも小さい材料で形成されている。そのため、ロープ13の一端を下端に連結し、このロープ13の他端に錘19を取り付けて水域4に沈降させる必要がある。具体的にはロープ13の一端部に錘19を取付け、ロープ13の他端部を長手形状体51の他端部、すなわち円柱状部の端部に取付ける。これによって長手形状体51および錘19は、正四角柱部11を上方、円柱状部12を下方に向けて沈降し、沈降するときと同じ姿勢で水底40に配置される。水域4に沈降させた状態では、図示のように水中設置構造物1は水域4に浮いた状態となる。
【0052】
この例においても、図示のように水流2のある水域4に設置されると、水中設置構造物1の下流側面に沿って湧昇流3が発生する。水中設置構造物1に対してその中心軸線10に垂直な潮流または水流が作用すると、正四角柱部11の下流側で生じる背圧は、円柱状部12の下流側で生じる背圧よりも低くなる。中心軸線10に垂直な複数の方向に対して、正四角柱部11の形状は、異方性を有するけれども、正四角柱部11に作用する潮流または水流が、中心軸線10に垂直ないずれの向きであっても、円柱状部12の背圧よりは、低い背圧を生じる。
【0053】
したがって、水中設置構造物1が図1(c)のように水流2のある水域4の水底40に設置されると、水中設置構造物1の下流側面に沿って、円柱状部12の流れ方向下流側の位置から正四角柱部11の流れ方向下流側の位置に向かう湧昇流3が発生する。このような正四角柱部11と円柱状部12との組み合わせからなる水中設置構造物1においても、その背後領域に背圧が発生し、これによって湧昇流3が生じる。
【0054】
図1(d)に示す水中設置構造物1は、図1(a)に示す水中設置構造物1と同様に円錐台形状であるが、その比重が水(海水)とほぼ同じかやや小さい材料で形成されている。そのため、ロープ13の一端を下端に連結し、このロープ13の他端に錘19を取り付けて水域4に沈降させる必要がある。水域4に沈降させた状態では、図示のように水中設置構造物1は水域4に浮いた状態となる。この例においても、図示のように水流2のある水域4に設置されると、水中設置構造物1の下流側面に沿って湧昇流3が発生する。
【0055】
図1(a)、図1(b)、図1(d)に示される水中設置構造物1の形状に共通する概念として、長手方向に垂直ないずれの仮想平面で切断した断面形状も円形となる形状に形成され、前記長手方向一方に向かうにつれて先細状となる形状に形成されているものということができる。また、図1(a)、図1(b)に示される水中設置構造物1の形状に共通する概念として、長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成され、前記底面を含む平面に向かって重心1cから下ろした垂線の足は、前記底面上に位置する形状に形成されているものということができる。これら図1(a)、図1(b)、図1(d)の水中設置構造物1では、中心軸線10が曲がっているものも含まれる。
【0056】
図3は、図1(a)に示すような円錐台形状の水中設置構造物1、あるいは円錐形状の水中設置構造物におけるテーパ比と湧昇流量係数との関係について計測した結果を示している。ここで、テーパ比は、「(元口1bの直径−末口1aの直径)/高さ」、で算出される(円錐形状の場合は末口の直径はゼロである)。図3から、テーパ比が0.15の場合に、湧昇流量係数が0.063で最大となることが理解される。また、これらの検証から、テーパ比が0.05〜0.2であることが望ましく、これを円錐の斜面の勾配(2次式y=axのa)で表すと10〜40であるということができる。
【0057】
図4は、水中に置かれた円錐形の水中設置構造物における水中設置構造物からの距離と、湧昇流速係数およびテーパ比との関係を計測した結果を示す図である。ここで、横軸のx/dにおけるxは、水中設置構造物1の中心軸線10(図1参照)からの距離で、dは円錐形の水中設置構造物1の代表径(円錐形の水中設置構造物1の上下の中心における径)である。図4において、黒丸を付して表される結果21は、テーパ比が0.05のときの結果であり、黒三角で表される結果22は、テーパ比が0.10のときの結果である。また黒い菱形を付して表される結果23は、テーパ比が0.15のときの結果であり、「×」を付して表される結果24は、テーパ比が0.20のときの結果である。
【0058】
したがって、横軸のx/dは、水中設置構造物1の中心軸線10から代表径dの何倍の位置であるかを示す。横軸のプラス側は水中設置構造物1の背後領域(水流の下流側)、マイナス側は水流の上流側を示す。また、縦軸のW/UにおけるWは湧昇流の流速であって、図4の鉛直プラス方向の流れで、逆に同マイナス方向は下降流となる。また、Uは主流流速であって水流(海流)の速度である。さらに、図に示す4種の曲線はテーパ比の違いを示しており、それぞれのテーパ比は図に記載のとおりである。
【0059】
図5は、図4の計測の際の計測位置を説明する図であり、yは水中設置構造物1を上から見た場合の水中設置構造物1の中心軸からの距離であって、y/d=0.5は、水中設置構造物1の代表径d部分に接した位置を、y/d=0.25は、代表径d部分と頂点位置との中間位置で接した位置を、また、y/d=0は、頂点位置であることをそれぞれ示している。
【0060】
図4は、y/d=0.5の場合を代表例として示し、その流速の解析を行ったものである。図4では、y/d=0およびy/d=0.25の場合について図示していないが、y/d=0、y/d=0.25およびy/d=0.5の3パターンにおいて発生する湧昇流の平均値Wを前述のUで割った値を湧昇流速係数Cwとしている。水中設置構造物1の背後領域近傍に形成される湧昇流速係数Cw(W/U)はテーパ比0.1以上において、代表径dの0.7〜0.8程度下流側でピーク値をとり、一旦消滅した後に下降流となる。このことは、水中設置構造物1の背後領域に鉛直方向の渦、すなわち上下流が形成されていることを示唆する。
【0061】
鉛直渦の中心位置は、y/d=0の場合、代表径dの1倍程度の下流側にあるが、y/dの増大と共に次第に下流側に後退し、図4に示すようにy/d=0.5の場合は、渦構造がほぼ解消していることが伺える。図3で示される湧昇流量係数Qwは、湧昇流が生じる背後領域での代表径dに相当する面積(代表面積)をAwとすると、Qw=Cw×Awで計算されるものとしている。
【0062】
図6は、図1の(a)に示す例の水中設置構造物1の水底40での傾斜角θと湧昇流量係数との関係を計測するための説明図である。図6(a)は、本実施形態において、傾斜角θ≠0°のときの一般的な側面図である。図6(b)はテーパ比が0.15である水中設置構造物1を傾けない場合を基準とし、水底40に対する傾斜角θを変化させ、各傾斜角θにおいて水流2によって発生する湧昇流の湧昇流量係数を計測する状態を示している。
【0063】
図7は、本実施形態において図6に示したそれぞれの傾斜角θにおける結果を示す図である。図7から、傾斜角θが、10°および20°の場合、傾斜していない場合に比べて湧昇流量係数が1.24倍および5.86倍となっていることが理解される。これは、傾斜角θが、10°および20°と大きくなると、側面からの速度成分が加わるために湧昇流量係数が大きくなるものと考えられる。しかし、30°を超えると、水中設置構造物1が水底40で倒れてしまうため、傾斜角θが30°未満の状態で設置されることが望ましい。
【0064】
図6および図7では、沈降した水中設置構造物1が水底40で載置されることを前提としているけれども、たとえば水底40が砂地などである場合に、水中設置構造物1の長手方向の端部が水底40に突き刺さることで水中設置構造物1が立設される形態を、否定しない。潮流または水流を受けて倒れるならば、湧昇流など上下方向の流体の流れを生じることができないけれども、およそ30°未満の傾斜角θで設置されるならば、水底40に突き刺さる形態は、好ましい場合もある。
【0065】
図8は、径の異なる複数の円柱が同軸的に積み重なって構成される多段式の水中設置構造物1の例を示し、図は大径円柱、中径円柱、小径円柱が、同軸的にこの順序で下から上に一体的に積み重なって構成された3個の円柱状部分14,15,16からなる水中設置構造物1を示している。このように、複数の径の異なる円柱状部分14,15,16を径の大きなものから積み上げるようにすると、その数が多い程、外形状は円錐台形状のようなテーパ形状(図の2点鎖線で示される形状であって、仮想の円錐台形状または円錐形状を成す。以下、これを仮想的な円錐形20という)に近づく傾向となる。
【0066】
たとえば、いずれも、代表径d=114.5cmとし、図9(a)には、テーパ比0.15の円錐台形状の水中設置構造物1を示し、図9(b)には、大小2個の円柱状部分17,18の2段重ねで仮想的な円錐形20のテーパ比が0.15に相当する水中設置構造物1を示した。図9(c)には、円柱状部分14,15,16の3段重ねで仮想的な円錐形20のテーパ比が0.15に相当する水中設置構造物1を示した。全体の高さをたとえば、11m40cmとし、末口の直径を29cmとしたとき、テーパ比0.15を成す仮想的な円錐形20の元口の直径は200cmとなる。
【0067】
このように作製した場合、2段重ねの場合太い方の円柱状部分17の直径は114.5cm、細い方の円柱状部分18の直径は29cmとなる。したがって、隣接する円柱状部分の接続部での段差の突出幅Bは、2段重ねの場合、42.75cmとなる。3段重ねの場合、最も太い円柱状部分14の直径は143cm、中心軸線10方向の中央の円柱状部分15の直径は86cm、最も細い円柱状部分16の直径は、29cmとなる。したがって、隣接する円柱状部分の接続部での段差の突出幅Bは、どちらも28.55cmとなる。これらの突出幅Bと、代表径dとによって、突出率(B/d)を算出すると、2段重ねの場合には0.373、3段重ねの場合には0.25となる。ただしこれらの値は、それぞれ一例であって、たとえば、長手方向の長さ、突出率(B/d)の値について、これらの値のみに限定するものではない。
【0068】
このような構成とすることによって、すべての円柱状部分14〜18の上端周縁部分は、仮想的な円錐形20の側面に対して内接する位置に配置されることになる。図10は、この突出率(B/d)と湧昇流量係数との関係を計測した結果を示している。突出率(B/d)が0(零)の場合は、テーパ比0.15の円錐台形状の水中設置構造物1であることを意味している。図10から、円柱状部分の段数(個数)を増やす程、湧昇流量係数が、テーパ比が0.15の円錐台形状である基準の水中設置構造物1の場合に近づくことが理解される。
【0069】
図11は、テーパ比が0.15の円錐形状(または円錐台形状)の水中設置構造物1、および正四角柱部11と円柱状部12とを組合せた水中設置構造物1における湧昇流量係数の計測結果を示す図である。具体的には、図に示すPが前者を、Qが後者を示す。Pは図1(a)に示す水中設置構造物1に、Qは図1(c)の水中設置構造物1に、それぞれ相当する。Qのように、正四角柱と円柱とを組合せる形状に設計すると、円柱状部12の下流側よりも背圧の低い正四角柱部11側の下流側への湧昇が認められる。基準となるテーパ比が0.15の水中設置構造物1(Pとして示す例)に比べて湧昇流量係数が1.4倍となっている。
【0070】
このことは、構造物の直径が特に大きな差異として設定されなくても、角柱と円柱とを接続させるだけで、背圧勾配(湧昇流)を形成させることが可能であることを意味している。この結果、背圧差の勾配があれば、湧昇流を発生させることが確認できたので、図1(c)に示す2種類に限らず、3種類、4種類の組合せでも背圧差の勾配があれば、湧昇流を発生させることが可能であると考えられる。
【0071】
他の実施形態において、長手形状に形成される水中設置構造物1が、長手形状の長手方向、すなわち中心軸線10の方向を鉛直方向に一致させた姿勢で水底40に配置されるとき、中心軸線10に沿って、断面形状の異なる3つの部分が形成されてもよい。上下に並ぶ3つの各部分の、中心軸線10に垂直な断面の形状は、上から、たとえば円形、正方形、円形に形成される。各部分の上下方向の長さは、同じ長さに設定される。断面の形状が正方形に形成される部分の背圧は、断面が円形に形成される部分の背圧よりも低くなるので、これによって下から半分の高さまでは、部分的に湧昇流を生じさせ、上から半分の高さの範囲では、下降流を生じさせ、これによって、周囲の流体を上下方向に撹拌することができる。
【0072】
このように中心軸線10に沿って、上下に断面形状の異なる部分を複数設ける実施形態では、図1(d)に示した実施形態と同様に、全体の比重の総和を水よりも軽く設定し、長手方向他端からロープを介して錘19を接続することで、水域の底に沈められる実施形態としたけれども、他の実施形態では、長手方向一方の端部よりも他方の端部を重く設定することによって、沈降するときの姿勢を制御してもよい。図1(c)および図1(d)に示すこれらの実施形態において、ロープ13および錘19を除けば、水中設置構造物1は水または海水から浮力を受けて、浮上しようとする。ロープ13および錘19はこの浮上を阻止するけれども、浮上しようとする部分の姿勢は、浮力によって制御される。
【0073】
周囲の流体よりも密度を低くすることは、たとえば、中空に形成し、内部空間への流体の流入を阻止し、内部空間に空気を封入することによって全体の比重を軽く設定してもよい。また浮力体として、気体が封入された樹脂製の風船を複数取り付けることによって、浮力を生じさせてもよい。また材質自体を密度が1よりも低い材質とすることによって、浮力を生じさせてもよい。
【0074】
また、さらに他の実施形態では、水中設置構造物1の全体に比重の総和は、水および海水よりも重く設定し、水中設置構造物1の長手方向一方の端部の比重を、長手方向他方の端部の比重よりも軽く設定することによって、沈降途中での姿勢および水底40に設置された姿勢を制御することができる。長手方向一方の端部と長手方向他方の端部とで比重に差異を設定することについては、前述のように、内部への空気の封入、浮力体の取付け、材質自体の変更などによって実現してもよい。このような実施形態でも、ロープを不要とした沈降による設置と、水底40で配置された姿勢の制御とを両立することができる。
【0075】
図12は、水中設置構造物群100の水底での水中設置構造物1の設置状態の一例を示す斜視図である(図では、水域および水底の図示を省略している)。図12に示すように、多数(図では4個を示している)の円錐台形状の水中設置構造物1が水底に規則的に配置され、水中設置構造物群100が構成されている。図のように、流れのある水底に構成される水中設置構造物群100においては、水中設置構造物1の流れ方向下流側には、湧昇流が発生する。したがって、これらの湧昇流が集合する水中設置構造物群100の近傍の水域(海域)は魚類の恰好の生息域となる。
【0076】
また水底40において流体を上下方向に撹拌することは、魚類のみならず魚介類全般および海藻の生息にも好適な条件を整えることができる。これによって、例えば藻場を形成し、藻場における海洋生物の餌場および産卵場を形成することができ、稚魚の生育場を提供することができる。海藻群落が衰退すると、石灰藻などの群落が優先的に形成される「磯焼け」という現象が見られることがある。磯焼けが生じた地帯では、昆布などが生育が不充分となり、これによってウニなどの生育が不充分となるおそれがある。このような磯焼け現象は、ウニのみならず、アワビなどの魚介類、昆布などの有用な海藻の漁業生産の低下を招くという問題がある。これに対し水中設置構造物1を設置することによって、海洋生物の生育を促進することによって、磯焼けを抑制または防止する効果を期待することもできる。
【0077】
水中設置構造物1および水中設置構造物群100をダムとして貯留される水域の底に設置される場合には、水流を駆動力とする上下方向の流体の撹拌によって、水底40に堆積しようとする土砂を巻上げ、水底40における土砂の堆積による貯水量の減小を抑制することができる。
【0078】
各水中設置構造物1は、たとえば海洋に設置する場合には、元口の直径が1m〜数mの大きさに設定され、たとえばダムの底など、海洋に比べて規模の小さい水域の水底40に設置される場合には、数十cm〜1mの大きさに設定してもよい。河川の水底40に設置する場合には、水中設置構造物群100に含まれる、互いに隣接する水中設置構造物1は、互いに接して配置されてもよく、また数十cm〜数mの間隔をあけて配置されてもよい。
【0079】
図13は、水中設置構造物群100の水底での水中設置構造物1の設置状態における水流との関係を示す模式平面図である(図では、水域および水底の図示を省略している)。図13(a)および図13(b)は、水流2の方向に対して水中設置構造物1を平行に設置した状態を示している。この場合の隣合う水中設置構造物1,1間の中心間距離を「水流方向中心間距離」(LT)とすれば、図13(b)は、図13(a)の場合よりも、隣合う水中設置構造物1,1の底面の水流方向中心間距離LTが大きい場合を示している。
【0080】
図13(c)および図13(d)は、水流2の方向に対して水中設置構造物1を垂直に設置した状態を示している。この場合の隣合う水中設置構造物1,1間の中心間距離を「交差方向中心間距離」(LY)とすれば、図13(d)は、図13(c)の場合よりも、隣合う水中設置構造物1,1の底面の交差方向中心間距離LYが大きい場合を示している。これら図に示す水中設置構造物1は、底面直径がDで、テーパ比が0.15の円錐台形状または円錐形状のものとしている。
【0081】
図14は、図13に示す水中設置構造物群100の設置状態における水中設置構造物1の配列方向および配列間隔と湧昇流量係数との関係を計測した結果を示す図である。図14において、横軸は底面直径Dを水流方向中心間距離LTまたは交差方向中心間距離LYで割ったもので、数値が小さくなる程、隣合う水中設置構造物1,1間の距離が大きくなり、0(零)の場合は両方の水中設置構造物1,1を無限遠に離した状態、すなわち、実質的に水中設置構造物1を単体で設置した場合と同じとなる。
【0082】
図14に表される2つの曲線のうち、黒丸を付して表される結果25は、「D/LT」を表し、黒四角を付して表される結果26は、「D/LY」を表す。また、横軸の0.5は、水中設置構造物1,1を底面直径Dの2倍離した状態を、横軸の0.33は、水中設置構造物1,1を底面直径Dの3倍離した状態を示す。図14において横軸として表している配列間隔は、底面直径Dを、流体の流れに対して平行な水流方向または垂直な交差方向の中心間距離で割った値である。底面直径Dは、すなわち元口の直径である。
【0083】
図14において、図13(a)、図13(b)のように水中設置構造物1,1を水流2の方向に対して平行に設置する場合(D/LTのプロット)に、隣合う水中設置構造物1,1間の水流方向中心間距離LTが底面直径Dの2倍とすると、湧昇流量係数が、水中設置構造物1が単体の場合(図の破線レベル)よりも下回り、湧昇流の発生が阻害されているが、同3倍とすると、湧昇流の発生が阻害されていないことが理解される。
【0084】
また、図13(c)、図13(d)のように水中設置構造物1,1を水流2の方向に対して垂直に設置する場合(D/LYのプロット)に、水中設置構造物1,1を近付ける程湧昇流量係数が大きくなり、水中設置構造物1,1間の交差方向中心間距離LYが底面直径Dの3倍の状態からさらに近付けると急激に湧昇流量係数が大きくなり、湧昇流の発生が顕著となることが理解される。
【0085】
以上から、図13(a)または図13(b)のように、水流2の方向に平行に水中設置構造物1,1を設置した場合は、底面直径Dの3倍程度の間隔で水中設置構造物1,1を設置すると、湧昇流の発生が阻害されない。したがって、この場合には、3倍以上とする設定で、配置されることが好ましい。また図13(c)または図13(d)のように、水流2の方向に垂直に水中設置構造物1,1を設置した場合は、水中設置構造物1,1を近付ける程湧昇流の発生は効果的となる。水中設置構造物群100全体の湧昇流による魚類の生息環境の観点からすると、水流方向中心間距離LTあるいは交差方向中心間距離LYは、設置される環境に応じて、Dの3倍以上数十倍以下または100倍以下に設定されることが望ましい。これによって、流体の流れる向きに変化があっても、いずれの向きの流体に対しても複数の水中設置構造物1を設置することによる効率化を図ることができる。
【0086】
水中設置構造物1を水中設置構造物群100として複数配置する場合の、水中設置構造物1同士の間隔は、海洋と河川とでも差異がある。たとえば、海洋において、元口の直径が200cmほどの水中設置構造物1を設置する場合には、水中設置構造物1同士の間隔は、たとえば数m以上100m以下のいずれかの値に設定される。湖、河川の水底40、特にダムの底などでは、元口の直径が数十cm〜100cmの水中設置構造物1を設置し、水中設置構造物1同士の間隔は、たとえば、数十cm以上数m以下のいずれかの値に設定される。水中設置構造物1を設置する場合のこれらの間隔は、潮流または水流の向きをも考慮して設定される。
【0087】
なお、本発明に係る水中設置構造物1、あるいは水中設置構造物群100が適用される実際の水域は、海、湖、ダム湖などであり、したがって、前記における水底は、海底、湖底、ダム湖底などを意味する。また、図3、図4、図7、図10、図11および図14に示す計測は、すべて模型によるものである。
【0088】
本実施形態に係る水中設置構造物によれば、水中への沈降の際に、長手方向一端部を長手方向の他端部よりも上方に向けた姿勢で沈降させることができ、この状態で水底あるいは水中の所定の位置に精度よく設置させることができる。これによって、第1の従来技術に係る水中設置構造物のようにロープなどを用いることなく沈降させることができるから、設置対象の水深に制限されることがない。しかも、湧昇流を効果的に発生させることができ、水中における魚類の生息環境の向上を実現させることができる。
【0089】
また、本実施形態に係る水中設置構造物群によれば、水中設置構造物の形状的特性による効果に加えて、湧昇流の発生の効率を高くすることができる。
【0090】
(他の実施形態)
図15は、本発明の他の実施形態における水中設置構造物群200の構成を表す図である。他の実施形態に係る水中設置構造物1は、前述の一実施形態に係る水中設置構造物1に類似しており、以下、前述の一実施形態に対する他の実施形態の相違点を中心に説明する。
【0091】
水中設置構造物1は、長手形状体51と、索条体52と、浮上体53とを含んで構成される。長手形状体51は、長手形状に形成され、流体中に1または複数設置される。各長手形状体51は、長手形状の長手方向中央部を通り、長手方向に垂直な仮想一平面よりも長手方向一方の第1部分と、前記仮想一平面よりも長手方向他方の第2部分とを有し、第1部分と第2部分とは、前記仮想一平面に関して互いに非対称に形成される。第1部分および第2部分は、長手方向に垂直ないずれの仮想平面で切断した断面形状も円形となる形状に形成される。
【0092】
また長手形状体51は、長手方向一方に向かうにつれて先細状となる形状に形成され、かつ設置される領域の周囲の流体よりも大きな比重に設定される。索条体52は、各長手形状体51のうちの長手方向一端部または他端部を係累する。索条体52は、長手形状体51を索条体52の一端部に係累するとともに、索条体52の他端部は、浮上体53に接続される。浮上体53は、索条体52の他端部が接続され、前記流体よりも小さな比重に設定され、1または複数の長手形状体51を流体中に垂下した状態で、水面に浮上可能に形成される。
【0093】
これによって、たとえば筏などの浮上体53から1または複数の長手形状体51を索条体52を介して係累した状態で、長手形状体51を、たとえば海、河川、湖などの流体中に垂下することができる。また、たとえばロープまたはワイヤなどの索条体52の長さを設定および変更することによって、長手形状体51を設置する流体中の深さを任意に設定することができる。これによって、長手形状体51に対して流体が流れをもって衝突した場合に、長手形状体51の流れ方向下流側において、上下方向のいずれか一方の向きを含む流れを発生させることができる。したがって、設置した水域の流体を撹拌することができる。
【0094】
さらに水中設置構造物1は、長手方向に垂直ないずれの向きに流れる流体をも、長手方向のベクトル成分を含む流れとすることができるので、従来技術のように予め定める流体に対してのみ上下方向の流れを発生させるのではなく、およそ水平な向きのいずれの向きに流れる流体に対しても、上下方向の流れを発生させることができる。これによって、汎用性の高い水中設置構造物1を提供することができる。これによって、魚介類および海藻類の生息環境を向上させることができ、藻場における生物の繁殖および成長を促すことができる。
【0095】
また、流体中において、温度の異なる複数層の領域が、上下に重なって形成される場合、その境界、すなわち温度躍層において流体を混合することができる。これによって、形成される温度躍層を解消し、異なる高さにおける温度変化を緩和することができる。温度躍層が形成されていると、たとえば船の推進力に基づくエネルギが、温度躍層の混合のために消費されると、船の推進の効率が大幅に低下するという現象が生じる。これに対し、船の通過する領域で、かつ温度躍層が形成される領域に水中設置構造物1を設置すれば、温度躍層を解消することによって、その海域または流域において、船の推進が妨げられることを防止することができる。
【0096】
この水中設置構造物群200において、長手形状体51は、複数設置され、複数の長手形状体51のうち1つの長手形状体51から最も近接して配置される1または複数の隣接する他の長手形状体51は、前記1つの長手形状体51の先細状の端部が向く向きとは、反対の向きに、先細状の端部が向く姿勢で、設置される。
【0097】
これによって、各長手形状体51の近傍に生じる流れの向きと、これに近接して隣接する長手形状体51の近傍に生じる流れの向きとを、逆の向きに設定することができる。したがって、上下方向の成分を含む流れによって、効率よく渦を発生させることができる。これによって、隣接する複数の長手形状体51の先細状の端部が、同じ向きに向く姿勢で設置される場合に比べて、上下方向に撹拌する効果を高くすることができる。
【符号の説明】
【0098】
1 水中設置構造物
1a 長手方向一方
1b 長手方向他方
1c 重心
4 水域
10 中心軸線
10a 仮想一平面
11 正四角柱部
12 円柱状部
14,15,16 円柱状部分
17,18 円柱状部分
20 仮想的な円錐形
40 水底
100 水中設置構造物群
D 底面の直径
LT 水流方向中心間距離
LY 交差方向中心間距離
θ 傾斜角

【特許請求の範囲】
【請求項1】
長手形状に形成される水中設置構造物であって、
長手形状の長手方向中央部を通り長手方向に垂直な仮想一平面よりも長手方向一方の第1部分と前記仮想一平面よりも長手方向他方の第2部分とを有し、
前記第1部分と前記第2部分とは、前記仮想一平面に関して互いに非対称であり、
前記長手方向に垂直な向きのうち、いずれか1つの向きに相対移動する流体によって外力が付与された場合、前記外力を1つの作用点に対する仮想的な外力として近似したときに、前記相対移動する流体の向きが長手方向に垂直ないずれの向きであっても、前記作用点の位置が、重心の位置から前記長手方向にずれた位置となることを特徴とする水中設置構造物。
【請求項2】
長手方向に垂直ないずれの仮想平面で切断した断面形状も円形となる形状に形成され、
前記長手方向一方に向かうにつれて先細状となる形状に形成されることを特徴とする請求項1に記載の水中設置構造物。
【請求項3】
長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成され、
前記底面を含む平面に向かって重心から下ろした垂線の足は、前記底面上に位置することを特徴とする請求項2に記載の水中設置構造物。
【請求項4】
円錐の少なくとも一部を成す形状に形成され、
テーパ比は、0.05以上0.2以下に設定されることを特徴とする請求項3に記載の水中設置構造物。
【請求項5】
前記長手方向に異なる複数の位置における、前記長手方向に垂直な断面の中心点を結んで形成される中心軸線が、直線状となる形状に形成され、
前記中心軸線を含むいずれの一平面で切断した断面においても、断面の外縁を成す部分のうち、前記中心軸線に垂直な部分を除く他の部分は、凹形状を成す形状に形成され、
長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成されることを特徴とする請求項2または3に記載の水中設置構造物。
【請求項6】
円柱状に形成され、互いに外径の異なる複数の円柱状部分を有し、
前記複数の円柱状部分は、すべての円柱状部分の軸線が1つの直線に一致して配置され、かつ長手方向一方から長手方向他方に向かうにつれて、外径が大きくなる順序で、長手方向に並べて配置され、
各円柱状部分は、すべての円柱状部分の軸線に一致する軸線を有する仮想的な円錐形の側面に対して内接する位置に配置されることを特徴とする請求項2または3に記載の水中設置構造物。
【請求項7】
水域の底に設置され、
長手方向他方の端部は、長手方向に垂直な平面状の底面を成す形状に形成され、
前記底面は、水平な平面と平行に、または水平な平面に対して30度未満の傾斜角を成して配置されることを特徴とする請求項1〜6のいずれか1つに記載の水中設置構造物。
【請求項8】
長手形状に形成される長手形状体であって、
長手形状の長手方向中央部を通り長手方向に垂直な仮想一平面よりも長手方向一方の第1部分と前記仮想一平面よりも長手方向他方の第2部分とを有し、
前記第1部分と前記第2部分とは、前記仮想一平面に関して互いに非対称であり、
流体中に配置されたときに流体から付与される浮力を1つの作用点に対する仮想的な外力として近似したときに、前記作用点の位置が、重心の位置から前記長手方向にずれた位置となる長手形状体と、
前記長手形状体に流体から付与される浮力に抗して前記長手形状体を前記流体中で沈降させる密度および重量に設定され、前記長手形状体の長手方向他端部に、ロープを介して接続される錘とを含むことを特徴とする水中設置構造物。
【請求項9】
正四角柱の形状に形成される正四角柱部と、円柱状に形成される円柱状部とを含み、
前記正四角柱部は、その軸線が前記円柱状部の軸線を含む直線に一致し、前記円柱状部よりも長手方向一方に、前記円柱状部に隣接して配置されることを特徴とする請求項8に記載の水中設置構造物。
【請求項10】
複数の水中設置構造物を備え、各水中設置構造物構造物は、
請求項3〜6のいずれか1つに記載の水中設置構造物であり、
隣合う2つの水中設置構造物の底面の中心間距離は、両方の底面の直径の平均以上の距離に設定されることを特徴とする水中設置構造物群。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate