説明

水素ステーション

【課題】水素製造装置を有する水素ステーションに関し、供給安定性を確保しつつコストダウン可能な水素ステーションを提供する。
【解決手段】水素製造装置2故障時等における車両への充填は、可搬式蓄圧器Ca、固定式蓄圧器S1の順で行われる。最初にバルブV2,V8を開とし、水素ガス供給系統R5により可搬式蓄圧器Caから車両への充填を開始する。可搬式蓄圧器Caの圧力Pca=車両圧力Pv)となった段階で、バルブV2を閉とし供給系統R4により蓄圧器S1からの充填に移行する。充填は低圧バンクS1(L)側から優先的に行われ、車両圧力Pvが標準設定圧(P)に達した段階で完了となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素ステーションに係り、特に水素製造装置を有する水素ステーションに関する。
【背景技術】
【0002】
近年、燃焼によりCO2を排出しない水素がクリーンエネルギーとして注目されている。また、水素を燃料とする燃料電池自動車(FCV)はガソリンエンジン自動車と比較して排気ガスによる問題もなく、電気自動車と比較して長距離運転が可能であるという長所があり、普及開発が進められている。さらに、燃料電池自動車の燃料供給手段として、水素ステーションの設置促進も進められている。
水素ステーションには、水素製造装置を備えた水素ステーション(オンサイト型水素ステーション)と、水素製造装置を備えず、水素製造設備、オンサイト型水素ステーション等から供給を受けて蓄圧する水素ステーション(オフサイト型水素ステーション)に分類される。
【0003】
この内、オンサイト型水素ステーションの構成に関しては、例えば特許文献1に開示されている。同文献による水素ステーション100は、図11に示すように水素製造ユニット101(本願の水素製造装置に該当)と、水素製造ユニット101により製造された水素を所定圧力まで圧縮する昇圧ユニット102(同昇圧装置)と、昇圧ユニット102により圧縮された水素を貯蔵する複数の蓄ガスユニット103(同固定式蓄圧器)と、オフサイト型水素ステーション107の供給源として機能する移動式水素貯蔵設備(同可搬式蓄圧器)104と、蓄ガスユニット103又は移動式水素貯蔵設備からの水素を燃料電池車等に水素供給するディスペンサーユニット105、108と、を備えている。
かかる構成により、従来、水素ガストレーラ等により水素ガスを輸送して、移動型(オフサイト型)水素ステーションに水素供給する際の、不活性ガスの置換に伴う作業効率や安全性確保等の問題を解消している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−236270号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
水素ステーション100では可搬式蓄圧器を接続した状態で、固定式蓄圧器と可搬式蓄圧器に同時に水素充填する構成となっている。このため、可搬式蓄圧器に対する出荷設備としては機能するものの、可搬式蓄圧器からディスペンサーを介して水素供給する機能は有していない。
このため、水素製造装置に故障が発生した場合、他の水素製造拠点から出荷された可搬式蓄圧器を接続して、車両等に水素供給できないという不都合が生じる。特に、バスやトラック等、営業用車両への水素供給についてはより高い供給安定性が求められるため、上記文献1のシステムでは水素製造装置を複数系統装備する必要があり、コストアップ要因ともなる。
【課題を解決するための手段】
【0006】
本発明は、上記課題を解決するためのものであって、供給安定性を確保しつつコストダウン可能な水素ステーションを提供するものである。
本発明は、以下の内容をその要旨とする。すなわち、
第一の発明は、水素製造装置を備えた水素ステーションであって、
水素製造装置(2)で製造された水素を所定圧力に昇圧する昇圧装置(6)と、
昇圧装置(6)で昇圧された水素を貯蔵する固定式蓄圧器(S1)と、
昇圧装置(6)で昇圧された水素を貯蔵し、かつ、外部に移動可能な可搬式蓄圧器(Ca)と、
固定式蓄圧器(S1)又は可搬式蓄圧器(Ca)内の水素を車両に供給するためのディスペンサー(3)と、
水素製造装置(2)と昇圧装置(6)間を結ぶ昇圧系統(R1)と、
減圧弁(4)を介在させて、可搬式蓄圧器(Ca)と昇圧装置(6)間を結ぶ昇圧系統(R6)と、
昇圧装置(6)と固定式蓄圧器(S1)間を結ぶ充填系統(R2)と、
昇圧装置(6)と可搬式蓄圧器(Ca)間を結ぶ充填系統(R3)と、
固定式蓄圧器(S1)とディスペンサー(3)間を結ぶ水素供給系統(R4)と、
可搬式蓄圧器(Ca)とディスペンサー(3)間を結ぶ水素供給系統(R5)と、
可搬式蓄圧器(Ca)と固定式蓄圧器(S1)間を結ぶ水素充填系統(R7)と、
を備えて成り、かつ、
各系統(R1−R7)の適宜切り替えにより、可搬式蓄圧器(Ca)から直接または昇圧装置(6)を介して固定式蓄圧器(S1)へ水素を充填し、及びディスペンサー(3)に水素供給可能に構成した、ことを特徴とする。
【0007】
本発明において「水素製造装置」とは、都市ガス、脱硫ガソリン、ナフサ、メタノールなど炭化水素系原料の水蒸気改質、製鉄COGからの精製分離、アルカリ水電解など、種々の方式により水素を製造する装置をいう。
系統(R1−R7)の切り替えは、例えば系統内に切替バルブ等の流路切替手段を設けて、これを適宜操作することにより可能である。具体的には、後述するように例えば可搬式蓄圧器(Ca)から直接固定式蓄圧器(S1)又はディスペンサー(3)に水素供給する場合には(図2(e)参照)、R6,R2系統を開とし、他の系統を閉とすることにより可能となる。以下の各発明においても同様である。
【0008】
第二の発明は、第一の発明において、さらに、水素製造装置(2)で製造された水素を、前記昇圧装置(6)より高い第一の高圧設定圧(PH1)に昇圧する高圧昇圧装置(21)と、
高圧昇圧装置(21)で昇圧した水素を貯蔵する固定式高圧蓄圧器(S2)と、
減圧弁(22)を介在させて、可搬式蓄圧器(Ca)と高圧昇圧装置(21)間を結ぶ昇圧系統(R21)と、
高圧昇圧装置(21)と固定式高圧蓄圧器(S2)間を結ぶ充填系統(R22)と、
固定式高圧蓄圧器(S2)とディスペンサー(3)間を結ぶ水素供給系統(R23)と、
減圧弁(22)を介在させて、固定式高圧蓄圧器(S1)と高圧昇圧装置(21)間を結ぶ昇圧・充填系統(R24)と、
を備え、かつ、各系統(R21−R24)の適宜切り替えにより、
可搬式蓄圧器(Ca)内貯蔵水素を、高圧昇圧装置(21)により昇圧後に固定式高圧蓄圧器(S2)に充填可能とし、及び、
固定式高圧蓄圧器(S2)内貯蔵水素を、ディスペンサー(3)を介して車両に差圧充填可能に構成した、ことを特徴とする。
【0009】
本発明において「差圧充填」とは、固定式蓄圧器、可搬式蓄圧器又は固定式高圧蓄圧器の充填圧力が車両の充填圧力より高い場合に、両者の差圧を利用して車両に充填する充填方式をいう。
【0010】
第三の発明は、第一の発明において、さらに、水素製造装置(2)で製造された水素を昇圧装置(6)より高い第二の高圧設定圧(PH2)に昇圧する高圧昇圧装置(31)と、
減圧弁(33)を介在させて、可搬式蓄圧器(Ca)と高圧昇圧装置(31)間を結ぶ昇圧系統(R31)と、
高圧昇圧装置(31)とディスペンサー(3)間を結ぶ水素供給系統(R32)と、
減圧弁(33)を介在させて、固定式高圧蓄圧器(S1)と高圧昇圧装置(31)間を結ぶ昇圧系統(R33)と、を備え、かつ、各系統(R31−R33)の適宜切り替えにより、
可搬式蓄圧器(Ca)内貯蔵水素を高圧昇圧装置(31)により昇圧後に、ディスペンサー(3)を介して車両に直接充填可能に構成した、ことを特徴とする
【0011】
なお、昇圧装置(6)、高圧昇圧装置(21)の設定圧力は、車両への供給圧力、容器の最高充填圧力(および価格)に基づいて、適宜定めることができる。
【0012】
第四の発明は、上記第一乃至第三のいずれか記載の水素ステーションにおける可搬式蓄圧器から固定式蓄圧器への水素充填方法であって、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、固定式蓄圧器(S1)の圧力より高い場合には、充填系統(R7)を介して差圧により充填し、
差圧による充填が不可能になった段階で、昇圧装置(6)を稼働させて昇圧系統(R6)を介して充填する、ことを特徴とする。
【0013】
第五の発明は、上記第二の発明に係る水素ステーションにおけるディスペンサーを介しての車両への水素供給方法であって、可搬式蓄圧器(Ca)から標準設定圧(P)に到達するまでディスペンサー(3)に供給系統(R5)を介して水素供給し、
標準設定圧(P)に到達していない場合には、さらに、固定式蓄圧器(S1)から順次ディスペンサー(3)に供給系統(R4)を介して水素供給する、ことを特徴とする。
【0014】
第六の発明は、上記第二の発明に係る水素ステーションにおける可搬式蓄圧器から固定式蓄圧器(S1)又は固定式蓄圧器(S2)への水素充填方法であって、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、高圧昇圧装置(21)の受入圧力(Pcr(min))より高い場合には、
高圧昇圧装置(21)を稼働させて昇圧系統(R21)を介して固定式蓄圧器(S2)に水素充填し、次いで、高圧昇圧装置(21)を停止させて請求項4の工程に従い固定式蓄圧器(S1)に水素充填し、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、高圧昇圧装置(21)の受入圧力(Pcr(min))以下の場合には、請求項4の工程に従い固定式蓄圧器(S1)に水素充填する、
ことを特徴とする、ことを特徴とする。
【0015】
第七の発明は、上記第二の発明に係る水素ステーションにおけるディスペンサーを介しての車両への水素充填方法であって、
可搬式蓄圧器(Ca)からディスペンサー(3)に供給系統(R5)を介して水素供給し、
標準設定圧(P)まで充填できた場合には、次いで第一の高圧設定圧(PH1)まで供給系統(R23)を介して固定式蓄圧器(S2)から差圧で充填し、
標準設定圧(P)まで充填できない場合には、固定式蓄圧器(S1)から標準設定圧(P)に到達するまでディスペンサー(3)に供給系統(R4)を介して水素供給し、
さらに固定式蓄圧器(S2)から差圧で供給系統(R23)を介して第一の高圧設定圧(PH1)まで充填する、ことを特徴とする。
【0016】
第八の発明は、上記第三の発明に係る水素ステーションにおけるディスペンサーを介しての車両への水素充填方法であって、
可搬式蓄圧器(Ca)からディスペンサー(3)に供給系統(R5)を介して水素供給し、
設定標準圧(P)まで充填できた場合には、次いで高圧昇圧装置(31)を稼働させて供給系統(R31)を介して、可搬式蓄圧器(Ca)から第二の高圧設定圧(PH2)まで充填し、
設定標準圧(P)まで充填できない場合には、供給系統(R4)を介して固定式蓄圧器(S1)から標準設定圧(P)まで充填し、
さらに高圧昇圧装置(31)を稼働させて、供給系統(R32)及び供給系統(R33)を介して固定式蓄圧器(S1)から第二の高圧設定圧(PH2)まで充填する、ことを特徴とする。
【発明の効果】
【0017】
本発明によれば、配管系統のバルブ切り替えのみにより出荷設備及び受入設備として機能するため、システムの簡素化、低コスト化が可能となるという効果がある。
また、受入時に可搬式蓄圧器の圧力が高い場合には、水素圧縮機を介さずに固定式蓄圧器またはディスペンサーに水素供給可能とすることにより、水素圧縮機を動作させるエネルギーを削減することができる。
また、水素製造装置が故障等により機能しない場合であっても、固定式蓄圧器及び車両への充填が可能という効果がある。
【図面の簡単な説明】
【0018】
【図1】第一の実施形態における水素ステーション1の構成を示す図である。
【図2(a)】水素ステーション1における昇圧系統R1、充填系統R2を示す図である。
【図2(b)】充填系統R3を示す図である。
【図2(c)】供給系統R4を示す図である。
【図2(d)】供給系統R5を示す図である。
【図2(e)】昇圧系統R6を示す図である。
【図2(f)】昇圧系統R7を示す図である。
【図3】水素ステーション1における通常時における蓄圧器S1、Caへの充填態様を示すフロー図である。
【図4】同可搬式蓄圧器Caからの受入態様を示すフロー図である。
【図5】同可搬式蓄圧器Caから車両への充填態様を示すフロー図である。
【図6(a)】第二の実施形態における水素ステーション20の構成を示す図である。
【図6(b)】水素ステーション20における昇圧系統R21、充填系統R22を示す図である。
【図6(c)】同供給系統R23を示す図である。
【図6(d)】同昇圧・充填系統R24を示す図である。
【図7】水素ステーション20における可搬式蓄圧器Caから固定式蓄圧器S1,S2への充填態様を示すフロー図である。
【図8】同車両への充填態様を示すフロー図である。
【図9(a)】第三の実施形態における水素ステーション30の構成を示す図である。
【図9(b)】水素ステーション30における昇圧系統R31、供給系統R32を示す図である。
【図9(c)】同昇圧系統R33を示す図である。
【図10】水素ステーション30における車両への充填態様を示すフロー図である。
【図11】従来の水素ステーション100の構成を示す図である。
【発明を実施するための形態】
【0019】
以下、本発明に係る水素ステーションの実施形態について、図1乃至10を参照してさらに詳細に説明する。重複説明を避けるため、各図において同一構成には同一符号を用いている。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。
【0020】
(第一の実施形態)
本実施形態は、35MPa差圧充填ステーション(40MPa蓄圧器に充填した水素を、ディスペンサーを介して車両に35MPa充填する)における出荷、受入及び充填に係る。
図1を参照して、本発明の一実施形態に係る水素ステーション1は、都市ガス導管からメタンを主成分とする13A都市ガスを導入して水素を製造する水素製造装置2と、水素製造装置2で製造された水素を昇圧する水素圧縮機6(請求項の昇圧装置に相当)と、昇圧された水素を貯蔵する固定式蓄圧器S1と、接続カプラー5により配管系統と着脱可能に構成され外部に移動可能な可搬式蓄圧器Caと、固定式蓄圧器S1、可搬式蓄圧器Ca内の充填水素を車両に供給するためのディスペンサー3と、を主要構成として備えている。
水素製造装置2は、都市ガス中の炭化水素を水蒸気改質器(図示せず)で水蒸気改質し、さらにPSA(図示せず)で分離して水素を得るように構成されている。水素製造装置2、水素圧縮機6の下流側にはそれぞれ逆止弁8a、8bが介装されており、逆流を防止するよう構成されている。
【0021】
固定式蓄圧器S1は複数の水素貯蔵タンクを束ねて構成されており、かつ、一般的には充填水素の有効蓄ガス量の増加を図るために、2乃至3程度の複数のバンクに区画されている。各バンクの充填又は出荷は、各バンクに付設されているバルブVsの適宜切り替え操作により行われる。
可搬式蓄圧器Caも複数の水素貯蔵タンクを束ねて構成されており、最大充填圧力は容器にもよるが、20MPa乃至35MPaが多く用いられている。
水素圧縮機6は出口圧力40MPaの能力を有し、また受入圧力は水素製造装置の出口圧力に合わせて、一般的には0.6−0.7MPaに設定されている。
【0022】
水素ステーション1の主要配管系統は以下の6系統により構成されている。図2(a)を参照して、昇圧系統R1は水素製造装置2と圧縮機6間を配管L1で結んで構成されている。また、充填系統R2は、圧縮機6と固定式蓄圧器S1間を配管L2で結んで構成されている。
図2(b)を参照して、充填系統R3は、経路内に開閉バルブ(V2)を介装させて、圧縮機6と可搬式蓄圧器Ca間を配管L2、L3で結んで構成されている。
図2(c)を参照して、供給系統R4は、固定式蓄圧器S1とディスペンサー3間を、配管L2、L4で結んで構成されている。ディスペンサー3の上流側には開閉バルブV8が介装されており、ディスペンサー3を介して車両等への水素供給時に開弁可能に構成されている。
図2(d)を参照して、供給系統R5は、経路内に開閉バルブ(V2)を介装させて、可搬式蓄圧器Caとディスペンサー3間を配管L3、L4で結んで構成されている。
図2(e)を参照して、昇圧系統R6は、経路内に減圧弁4及び開閉バルブV1を介装させて、可搬式蓄圧器Caと圧縮機6間を配管L3、L6で結んで構成されている。また上述のように、充填系統R2は圧縮機6と固定式蓄圧器S1間を配管L2で結んで構成されている。
図2(f)を参照して、充填系統R7は、経路内に開閉バルブ(V2)を介装させて、可搬式蓄圧器Caと固定式蓄圧器S1間を配管L3、L2で結んで構成されている。
【0023】
水素ステーション1は以上のように構成されており、次に、図3乃至5を参照して、通常時における固定式蓄圧器S1又は可搬式蓄圧器Caへの充填(出荷)、及び水素製造装置2故障時等における可搬式蓄圧器Caからの受入の態様について説明する。
【0024】
<通常時における蓄圧器S1、Caへの充填>
図3を参照して、初期状態において水素製造装置2停止、水素圧縮機6停止、開閉バルブV1−V2閉の状態にある(S101)。この状態から、出荷のために水素製造装置2を運転開始する(S102)。次いで水素圧縮機6を稼働開始し(S103)、固定式蓄圧器S1に設定圧力まで充填する(S104)。この際、通常は固定式蓄圧器S1の複数あるバンクのうち、残圧の高いバンク(以下、高圧バンクS1(H)側という場合がある)から順次、低残圧のバンク(同低圧バンクS1(L)側)に充填していく。
蓄圧器S1の充填が完了したときは(S105においてYES)、バルブV2を開とし(S106)、可搬式蓄圧器Caの充填を行う(S107)。なお、可搬式蓄圧器Caへの充填途中でディスペンサーからの出荷等の理由により、蓄圧器S1の圧力が閾値以下に下がった場合には(S108においてYES)、バルブV2を閉じて(S110)、蓄圧器S1に優先的に充填を行う(S104以下)。蓄圧器Caの充填が完了したときは(S109においてYES)、本フローを終了する。
【0025】
<可搬式蓄圧器Caからの受入>
次に、図4を参照して水素製造装置2が故障等の場合における、可搬式蓄圧器Caからの受入の態様について説明する。初期状態において、バルブV1−V2は閉状態、水素圧縮機6停止状態である(S201)。また、減圧弁4は水素圧縮機6の標準受入圧力と等しくなるように設定されている。
本実施形態の充填フローは、以下に示すように固定式蓄圧器S1の圧力状態に応じて異なる。すなわち、可搬式蓄圧器Caから固定式蓄圧器S1へ差圧による供給が可能な場合には(S202においてYES)、バルブV2を開とする(S203)。これにより水素ガスは図2(f)の経路(充填系統R7)により固定式蓄圧器S1へ供給される(S204)。
このような操作により、可搬式蓄圧器の圧力を有効に使うことができ、減圧弁4を介して圧縮機6により固定式蓄圧器S1に充填する場合と比較して、電力消費の抑制が可能となる。
【0026】
両者の圧力が等しくなり充填不可となった時点で(S205においてYES)、次に昇圧による充填を行う。まず、バルブV1開、V2を閉とし(S206)、次いで水素圧縮機6の稼働を開始する(S207)。これにより、可搬式蓄圧器Ca内の水素ガスは図2(e)の流路(昇圧系統R6、充填系統R2)により、減圧弁4を経て水素製造装置2の出口圧力と同一に調整されたのち水素圧縮機6に導入される。圧縮機6において40MPaに昇圧されたガスの充填は、固定式蓄圧器S1の残圧の高いバンクから優先的に行われる(S208)。
【0027】
S202において、Pca≦P1(L)の場合には(S202においてNO)、可搬式蓄圧器Caから直接固定式蓄圧器S1への充填不可であるため、昇圧による充填となる。すなわち、バルブV1開を閉とし(S209)、S207以下のフローに移行する。この場合も充填後の各蓄圧器の圧力は、Pca>P1(L)の場合と同様となる。
【0028】
<可搬式蓄圧器Caから車両への充填>
次に、図5を参照して、水素製造装置2故障時等における車両への充填の態様について説明する。この場合、可搬式蓄圧器Ca、固定式蓄圧器S1の順で車両への充填が行われる。
最初にバルブV2、V8を開とし、図2(d)の水素ガス供給系統R5により可搬式蓄圧器Caから車両への充填を開始する(S301)。なお、以下記載を省略する場合があるが、バルブV8は車両充填時に開、ディスペンサー3不使用時には閉となる。
可搬式蓄圧器Ca圧力Pca=車両圧力Pvとなった段階で(S303においてYES)、車両圧力Pvが標準設定圧(P)に達していない場合には(S3031においてNO)、バルブV2を閉とし(S304)、図2(c)の供給系統R4により蓄圧器S1からの充填に移行する。充填は低圧バンクS1(L)側から優先的に行われ、車両圧力Pvが標準設定圧(P)に達した段階で充填が完了となる(S306においてYES)。その後、上述のS301、S301のステップを実施する(S307)(図4参照)。
S3031においてYES,すなわち車両圧力Pvが標準設定圧(P)に達している場合には充填完了となる(S307へ)。
【0029】
なお、本実施形態では水素ガス供給系統R5について、経路内に開閉バルブ(V2)を介装させて、可搬式蓄圧器Caとディスペンサー3間を配管L3、L4で結ぶ構成としたが、これに限らず例えば開閉バルブを介装させて両装置間を直接配管で結ぶ構成とすることもできる。さらに、その他の系統についても、目的の充填、供給等を実現可能な任意のバルブ介装、配管構成を選択することができる。以下の各実施形態についても同様である。
【0030】
(第二の実施形態)
次に、図6(a)乃至8を参照して、本発明の他の実施形態について説明する。本実施形態は70MPa差圧充填ステーションにおける受入及び充填に係る。
図6(a)を参照して、本実施形態に係る水素ステーション20の構成が上述の水素ステーション1と異なる点は、80MPa固定式高圧蓄圧器S2及び80MPa昇圧用の高圧水素圧縮機21を、さらに備えていることである。水素圧縮機21の下流側には逆止弁23が介装されている。また、図6(b)を参照して、可搬式蓄圧器Caと水素圧縮機21を結ぶ昇圧系統R21(同図太線)を備えている。昇圧系統R21は、経路内に開閉バルブV2、V4及び減圧弁22を介装させて、配管L3、L2、L21により構成されている。また、配管L22により構成される高圧水素圧縮機21と固定式高圧蓄圧器S2間を結ぶ充填系統R22(同図太線)を備えている。
さらに、図6(c)を参照して、固定式高圧蓄圧器S2とディスペンサー3間を配管L22、L23、L4で結ぶ供給系統R23(同図太線)を備えている。
さらに、図6(d)を参照して、固定式蓄圧器S1と固定式高圧蓄圧器S2間を、高圧水素圧縮機21を介在させて配管L2、L21、L22で結ぶ昇圧・充填系統R24(同図太線)を備えている。当該系統R24は、固定式蓄圧器S1から固定式高圧蓄圧器S2への充填の際に用いられる。
その他の構成は水素ステーション1と同様であるので、重複説明を省略する。
【0031】
次に、水素ステーション20における各蓄圧器又は車両への充填の態様について説明する。通常時における出荷用充填については上述の実施形態と同様であるので、重複説明を省略し、ここでは、水素製造装置2故障時における可搬式蓄圧器Caからの受入の態様について説明する。
<可搬式蓄圧器Caから固定式蓄圧器S1,S2への充填>
図7を参照して、初期状態においてバルブV1、V2,V4、V6は閉状態、水素圧縮機6、21は停止状態である(S401)。充填に際しては、可搬式蓄圧器Caの圧力状態に応じてステップが変化する。
まず、Pca>Pcr(min)、すなわち可搬式蓄圧器Caの圧力が水素圧縮機21の受入最低圧力(例えば30MPa)より大きい場合には(S402においてYES)、バルブV4を開とし(S403)、水素圧縮機21を稼働開始して(S404)、固定式高圧蓄圧器S2への充填を行う(S405)。充填完了後はバルブV4を閉とし、水素圧縮機21を停止する(S406)。
その後のフローは、上述の35MPa差圧ステーションにおけるS108、S109のステップを実施する(S407)。
【0032】
次に、S402においてNO、すなわちPca≦Pcr(min)の場合には、圧縮機21による80MPa昇圧ができないため高圧蓄圧器S2への充填不可となり、蓄圧器S1への充填のみとなる(S408以下)。この場合の充填フローは、上述のS202−S209と同一となる(図3参照)。
【0033】
<車両への充填>
本実施形態における車両への充填は、可搬式蓄圧器Ca、蓄圧器S1、高圧蓄圧器S2の順でディスペンサーを介して車両に対して充填を行う。
図8を参照して、最初にバルブV2、V6、V8を開とし(S501)、可搬式蓄圧器Caから車両への充填を行う(S502)(図2(d)、R5参照)。可搬式蓄圧器Ca圧力Pca=車両圧力Pvとなった段階で(S503においてYES)、車両圧力Pvが標準設定圧(P)に達していない場合には(S5031においてNO)、バルブV2を閉とし(S504)、蓄圧器S1から車両への充填を行う(S505)(図2(c)、R4と同様)。この場合、低圧バンクS1(L)側から使用され、順次高圧バンクS1(H)側に移行していく(S506)。車両圧力Pvが標準設定圧(P)に達した段階で(S506においてYES)、次に高圧蓄圧器S2から車両への充填を行う(S507)(図6(c)、R23と同様)。さらに、車両圧力Pvが所定の圧力(例えば70MPa)となった段階で充填が完了となり、その後、上述のS401、S402のステップを実施する(S508)(図7参照)。
S5031においてYES,すなわち車両圧力Pvが標準設定圧(P)に達している場合には、高圧蓄圧器S2からの充填に移行する(S507へ)。
【0034】
(第三の実施形態)
さらに図9(a)乃至10を参照して、本発明の他の実施形態について説明する。本実施形態は70MPa直接充填ステーション(70MPa圧縮機から直接車両充填)における受入及び充填に係る。
図9(a)を参照して、本実施形態に係る水素ステーション30の構成が上述の水素ステーション20と異なる点は、80MPa高圧蓄圧器S2を有しておらず、また80MPa昇圧用の水素圧縮機21に替えて70MPa昇圧用の水素圧縮機31を備えていることである。
また、図9(b)をも参照して、可搬式蓄圧器Caと水素圧縮機31を結ぶ昇圧系統R31(同図太線)を備えている。昇圧系統R31は、経路内に減圧弁33、開閉バルブV5を介装させて配管L3、L31により構成されている。また、配管L32、L4により構成され、高圧水素圧縮機21とディスペンサー3間を結ぶ供給系統R32(同図太線)を備えている。
また、図9(c)をも参照して、固定式蓄圧器S1と水素圧縮機31を結ぶ昇圧系統R33(同図太線)を備えている。昇圧系統R33は、経路内に減圧弁33、開閉バルブV2、V5を介装させて配管L2、L3、L31により構成されている。
その他の構成は水素ステーション20と同様であるので重複説明を省略する。
【0035】
次に、水素ステーション30における蓄圧器、車両への充填の態様について説明する。正常時における出荷用充填及び受入用充填については、それぞれ第一の実施形態の図3、4のフローと同様であるので重複説明を省略する。
<車両への充填>
図10を参照して、最初に可搬式蓄圧器Caから車両への充填については第二の実施形態と同様であるが、充填後の蓄圧器Caの残圧状態によりその後の充填フローが異なる。
最初にバルブV2、V6,V8を開とし(S601)、可搬式蓄圧器Caから車両への充填を行う(S602)。Pv=35MPa(標準設定圧(P))、すなわち蓄圧器Caにより35MPaまで車両に充填できた場合には(S603においてYES)、蓄圧器Caの残圧Pcaが水素圧縮機31の受入最低圧力Pcr(min)を下回らないため(通常、Pca≧P≧Pcr(min) あるいは、Pcr(min) ≧Pと設定することもあるが、この場合の図は省略)、次にバルブV2、V6閉、バルブV5開とし(S604)、圧縮機31を稼働開始し(S605)、70MPaまで充填する(S606)。充填完了後、第一の実施形態と同様に蓄圧器への水素移送工程(図4のS202以下)を実施する(S612)。
【0036】
S603においてNO、すなわち蓄圧器Caにより35MPaまで充填できない場合には、バルブV2を閉とし(S607)、蓄圧器S1から車両への充填を行う(S608)。車両圧力Pvが35MPaとなった段階で(S611においてYES)、蓄圧器S1による直接充填を終了し、以下、圧縮機31による70MPa充填を行う(S604以下)。
【産業上の利用可能性】
【0037】
本発明は、都市ガスを原料とする水素ステーションに限らず、可搬式蓄圧器を用いる水素ステーションに広く適用可能である。
【符号の説明】
【0038】
1、20、30・・・・・水素ステーション
2、21,31・・・・・水素製造装置
3・・・・・ディスペンサー
4・・・・・減圧弁
5・・・・・接続カプラー
6・・・・・水素圧縮機
8a、8b、23,34・・・・・逆止弁
21、31・・・・高圧水素圧縮機
Ca・・・・可搬式蓄圧器
R1、R6、R21、R31、R33・・・・昇圧系統
R2、R3、R22・・・・充填系統
R4、R5、R23、R32・・・・供給系統
R24・・・・昇圧・充填系統
S1・・・・固定式蓄圧器
S2・・・・固定式高圧蓄圧器
V1〜V8・・・・開閉バルブ



【特許請求の範囲】
【請求項1】
水素製造装置を備えた水素ステーションであって、
水素製造装置(2)で製造された水素を所定圧力に昇圧する昇圧装置(6)と、
昇圧装置(6)で昇圧された水素を貯蔵する固定式蓄圧器(S1)と、
昇圧装置(6)で昇圧された水素を貯蔵し、かつ、外部に移動可能な可搬式蓄圧器(Ca)と、
固定式蓄圧器(S1)又は可搬式蓄圧器(Ca)内の水素を車両に供給するためのディスペンサー(3)と、
水素製造装置(2)と昇圧装置(6)間を結ぶ昇圧系統(R1)と、
減圧弁(4)を介在させて、可搬式蓄圧器(Ca)と昇圧装置(6)間を結ぶ昇圧系統(R6)と、
昇圧装置(6)と固定式蓄圧器(S1)間を結ぶ充填系統(R2)と、
昇圧装置(6)と可搬式蓄圧器(Ca)間を結ぶ充填系統(R3)と、
固定式蓄圧器(S1)とディスペンサー(3)間を結ぶ水素供給系統(R4)と、
可搬式蓄圧器(Ca)とディスペンサー(3)間を結ぶ水素供給系統(R5)と、
可搬式蓄圧器(Ca)と固定式蓄圧器(S1)間を結ぶ水素充填系統(R7)と、
を備えて成り、かつ、
各系統(R1−R7)の適宜切り替えにより、可搬式蓄圧器(Ca)から直接または昇圧装置(6)を介して固定式蓄圧器(S1)又はディスペンサー(3)に水素充填又は供給可能に構成した、
ことを特徴とする水素ステーション。
【請求項2】
請求項1において、さらに、
水素製造装置(2)で製造された水素を、前記昇圧装置(6)より高い第一の高圧設定圧(PH1)に昇圧する高圧昇圧装置(21)と、
高圧昇圧装置(21)で昇圧した水素を貯蔵する固定式高圧蓄圧器(S2)と、
減圧弁(22)を介在させて、可搬式蓄圧器(Ca)と高圧昇圧装置(21)間を結ぶ昇圧系統(R21)と、
高圧昇圧装置(21)と固定式高圧蓄圧器(S2)間を結ぶ充填系統(R22)と、
固定式高圧蓄圧器(S2)とディスペンサー(3)間を結ぶ水素供給系統(R23)と、
減圧弁(22)を介在させて、固定式高圧蓄圧器(S1)と高圧昇圧装置(21)間を結ぶ昇圧系統(R24)と、
を備え、
かつ、各系統(R21−R24)の適宜切り替えにより、
可搬式蓄圧器(Ca)内貯蔵水素を、高圧昇圧装置(21)により昇圧後に固定式高圧蓄圧器(S2)に充填可能とし、及び、
固定式高圧蓄圧器(S2)内貯蔵水素を、ディスペンサー(3)を介して車両に差圧充填可能に構成した、
ことを特徴とする水素ステーション。
【請求項3】
請求項1において、さらに、
水素製造装置(2)で製造された水素を昇圧装置(6)より高い第二の高圧設定圧(PH2)に昇圧する高圧昇圧装置(31)と、
減圧弁(33)を介在させて、可搬式蓄圧器(Ca)と高圧昇圧装置(31)間を結ぶ昇圧系統(R31)と、
高圧昇圧装置(31)とディスペンサー(3)間を結ぶ水素供給系統(R32)と、
減圧弁(33)を介在させて、固定式高圧蓄圧器(S1)と高圧昇圧装置(31)間を結ぶ昇圧系統(R33)と、
を備え、かつ、各系統(R31−R33)の適宜切り替えにより、
可搬式蓄圧器(Ca)内貯蔵水素を高圧昇圧装置(31)により昇圧後に、ディスペンサー(3)を介して車両に直接充填可能に構成した、
ことを特徴とする水素ステーション。
【請求項4】
請求項1乃至3のいずれかに記載の水素ステーションにおける可搬式蓄圧器から固定式蓄圧器への水素充填方法であって、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、固定式蓄圧器(S1)の圧力より高い場合には、充填系統(R7)を介して差圧により充填し、
差圧による充填が不可能になった段階で、昇圧装置(6)を稼働させて昇圧系統(R6)を介して充填する、
ことを特徴とする水素ステーションにおける水素充填又は供給方法。
【請求項5】
請求項1乃至3のいずれかに記載の水素ステーションにおけるディスペンサーを介しての車両への水素供給方法であって、
可搬式蓄圧器(Ca)から標準設定圧(P)に到達するまで、供給系統(R5)を介してディスペンサー(3)に水素供給し、
標準設定圧(P)に到達していない場合には、さらに、固定式蓄圧器(S1)から順次ディスペンサー(3)に供給系統(R4)を介して水素供給する、
ことを特徴とする水素ステーションにおける水素充填又は供給方法。
【請求項6】
請求項2に記載の水素ステーションにおける可搬式蓄圧器から固定式蓄圧器(S1)又は固定式蓄圧器(S2)への水素充填方法であって、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、高圧昇圧装置(21)の受入圧力(Pcr(min))より高い場合には、
高圧昇圧装置(21)を稼働させて昇圧系統(R21)を介して固定式蓄圧器(S2)に水素充填し、次いで、高圧昇圧装置(21)を停止させて請求項4の工程に従い固定式蓄圧器(S1)に水素充填し、
可搬式蓄圧器(Ca)の充填圧力(Pca)が、高圧昇圧装置(21)の受入圧力(Pcr(min))以下の場合には、請求項4の工程に従い固定式蓄圧器(S1)に水素充填する、
ことを特徴とする水素ステーションにおける水素充填又は供給方法。
【請求項7】
請求項2に記載の水素ステーションにおけるディスペンサーを介しての車両への水素充填方法であって、
可搬式蓄圧器(Ca)からディスペンサー(3)に供給系統(R5)を介して水素供給し、
標準設定圧(P)まで充填できた場合には、次いで第一の高圧設定圧(PH1)まで供給系統(R23)を介して固定式蓄圧器(S2)から差圧で充填し、
標準設定圧(P)まで充填できない場合には、固定式蓄圧器(S1)から標準設定圧(P)に到達するまでディスペンサー(3)に供給系統(R4)を介して水素供給し、
さらに固定式蓄圧器(S2)から差圧で供給系統(R23)を介して第一の高圧設定圧(PH1)まで充填する、
ことを特徴とする水素ステーションにおける水素充填又は供給方法。
【請求項8】
請求項3に記載の水素ステーションにおけるディスペンサーを介しての車両への水素充填方法であって、
可搬式蓄圧器(Ca)からディスペンサー(3)に供給系統(R5)を介して水素供給し、
標準設定圧(P)まで充填できた場合には、次いで高圧昇圧装置(31)を稼働させて供給系統(R31)を介して、可搬式蓄圧器(Ca)から第二の高圧設定圧(PH2)まで充填し、
標準設定圧(P)まで充填できない場合には、供給系統(R4)を介して固定式蓄圧器(S1)から標準設定圧(P)まで充填し、
さらに高圧昇圧装置(31)を稼働させて、供給系統(R32)及び供給系統(R33)を介して固定式蓄圧器(S1)から第二の高圧設定圧(PH2)まで充填する、
ことを特徴とする水素ステーションにおける水素充填又は供給方法。

【図1】
image rotate

【図2(a)】
image rotate

【図2(b)】
image rotate

【図2(c)】
image rotate

【図2(d)】
image rotate

【図2(e)】
image rotate

【図2(f)】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6(a)】
image rotate

【図6(b)】
image rotate

【図6(c)】
image rotate

【図6(d)】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9(a)】
image rotate

【図9(b)】
image rotate

【図9(c)】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2013−40648(P2013−40648A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2011−177823(P2011−177823)
【出願日】平成23年8月16日(2011.8.16)
【出願人】(000220262)東京瓦斯株式会社 (1,166)
【Fターム(参考)】