説明

水素吸蔵合金

【課題】ニッケル水素二次電池に適用したときに、長期放置後においても作動電圧の低下が抑制されて高い作動電圧が得られる、希土類-Mg-Ni系の水素吸蔵合金を提供する。
【解決手段】ニッケル水素二次電池は、負極(26)に水素吸蔵合金の粒子(36)を含み、この水素吸蔵合金は、一般式:(LaNdAD1−wMgNiAlTにて示される組成を有する。式中、A、D及びTは、Sm及びGdよりなる群、Pr,Eu等よりなる群、及び、V,Nb等よりなる群から選ばれる少なくとも1種の元素をそれぞれ表し、添字a,b,c,dはそれぞれa≧0,b≧0,c>0,0.1>d≧0,a+b+c+d=1で示される関係を満たし、添字w,x,y,zはそれぞれ0<w≦0.25,0.05≦y≦0.35,0≦z≦0.5,3.15≦x+y+z≦3.35で示される範囲にある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素吸蔵合金に関する。
【背景技術】
【0002】
水素吸蔵合金は、安全且つ容易に水素を吸蔵できることから、エネルギー変換材料及びエネルギー貯蔵材料として注目されている。また、水素吸蔵合金を負極に使用したアルカリ蓄電池、特にニッケル水素二次電池は、高容量であることやクリーンであるなどの特徴を有することから民生用電池として大きな需要がある。
ニッケル水素二次電池の負極用の水素吸蔵合金としては、希土類-Mg-Ni系水素吸蔵合金が開発されている(例えば特許文献1参照)。希土類-Mg-Ni系水素吸蔵合金は、従来使われてきた希土類-Ni系水素吸蔵合金に比べて水素吸蔵量が多く、ニッケル水素二次電池の高容量化に適している。
【0003】
一方、ニッケル水素二次電池の特性改良の方向性の一つに、自己放電を抑制することがある。従来のニッケル水素二次電池にあっては自己放電が大きく、放置している間に容量が減少するため、使用の直前に充電する必要があった。
これに対し、自己放電が抑制されたニッケル水素二次電池は、ユーザーが空いている時間に一度充電をしておけば、放置しても容量が減少しないため、いつでも使用することができるというメリットがある。この様なメリットを十分に活かすことにより、あたかも乾電池の様な使い勝手でニッケル水素二次電池を使えるようになるものと考えられる。
【特許文献1】特開平11-323469号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
上述したメリットを十分に活かすには、ニッケル水素二次電池を放置している間における作動電圧の低下を更に抑制する必要がある。これは、長期放置後の電池を、高い作動電圧を要求される機器(デジタルカメラ、電動シェーバー等)で用いた場合に、容量が残っているにもかかわらず、作動電圧が低下していることによって、機器を駆動できないという現象が起こるからである。
【0005】
本発明は上述の事情に基づいてなされたものであって、その目的とするところは、ニッケル水素二次電池に適用したときに、長期放置後においても作動電圧の低下が抑制されて高い作動電圧が得られる、希土類-Mg-Ni系の水素吸蔵合金を提供することにある。
【課題を解決するための手段】
【0006】
上記した目的を達成すべく、本発明者等は、作動電圧の低下を抑制すべく種々の検討を行った。本発明者等は、この検討過程で、Sm及びGdのうち少なくとも一方を含み且つAサイトを占める原子数に対するBサイトを占める原子数の比(B/A比)が3.15〜3.35である所定の組成を有する希土類-Mg-Ni系水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が抑制されることを見出し、本発明に想到した。
【0007】
すなわち、本発明によれば、一般式:
(LaNdAD1−wMgNiAlT
(ただし、式中、Aは、Sm及びGdよりなる群から選ばれる少なくとも1種の元素を表し、Dは、Pr,Eu,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Zr,Hf,Ca及びYよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Mo,Mn,Fe,Co,Zn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれa≧0,b≧0,c>0,0.1>d≧0,a+b+c+d=1で示される関係を満たし、添字w,x,y,zはそれぞれ0<w≦0.25,0.05≦y≦0.35,0≦z≦0.5,3.15≦x+y+z≦3.35で示される範囲にある。)にて表される組成を有する水素吸蔵合金が提供される(請求項1)。
【0008】
好ましくは、前記添字a、添字b及び添字cは、c>a+bで示される関係を満たす(請求項2)。
好ましくは、記添字a及び添字bは、a≧bで示される関係を満たす(請求項3)。
好ましくは、前記添字dは0.02以下である(請求項4)。
好ましくは、水素吸蔵合金は、前記TとしてCo及びCuのうちいずれも含まない(請求項5)。
【発明の効果】
【0009】
本発明の請求項1の水素吸蔵合金は、Sm及びGdのうち少なくとも一方を含み且つB/A比が3.15〜3.35である所定の組成を有することにより、当該水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が抑制される。
請求項2の水素吸蔵合金では、原子数比でみて、La及びNdの合計量よりも、一般式中のAで示される元素の量が多いことによって、当該水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が更に抑制される。
【0010】
請求項3の水素吸蔵合金では、原子数比でみて、Laの量がNdの量以上であることによって、当該水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が更に抑制される。
請求項4の水素吸蔵合金では、一般式中Dで示される元素の添字dが0.02以下であることによって、当該水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が更に抑制される。
【0011】
請求項5の水素吸蔵合金は、一般式中Tで示される元素としてCo及びCuのうちいずれも含まないことにより、当該水素吸蔵合金をニッケル水素二次電池に適用したときに、放置後の作動電圧の低下が更に抑制される。
【発明を実施するための最良の形態】
【0012】
以下、本発明の一実施形態に係るニッケル水素二次電池を詳細に説明する。
この電池は例えばAAサイズの円筒型電池であり、図1に示したように、上端が開口した有底円筒形状をなす外装缶10を備えている。外装缶10の底壁は導電性を有し、負極端子として機能する。外装缶10の開口内には、リング状の絶縁パッキン12を介して導電性を有する円板形状の蓋板14が配置され、これら蓋板14及び絶縁パッキン12は外装缶10の開口縁をかしめ加工することにより外装缶10の開口縁に固定されている。
【0013】
蓋板14は中央にガス抜き孔16を有し、蓋板14の外面上にはガス抜き孔16を塞いでゴム製の弁体18が配置されている。更に、蓋板14の外面上には、弁体18を覆うフランジ付き円筒形状の正極端子20が固定され、正極端子20は弁体18を蓋板14に押圧している。従って、通常時、外装缶10は絶縁パッキン12及び弁体18を介して蓋板14により気密に閉塞されている。一方、外装缶10内でガスが発生し、その内圧が高まった場合には弁体18が圧縮され、ガス抜き孔16を通して外装缶10からガスが放出される。つまり、蓋板14、弁体18及び正極端子20は、安全弁を形成している。
【0014】
外装缶10には、電極群22が収容されている。電極群22は、それぞれ帯状の正極24、負極26及びセパレータ28からなり、渦巻状に巻回された正極24と負極26の間にセパレータ28が挟まれている。即ち、セパレータ28を介して正極24及び負極26が互い重ね合わされている。電極群22の最外周は負極26の一部(最外周部)により形成され、負極26の最外周部が外装缶10の内周壁と接触することで、負極26と外装缶10とは互いに電気的に接続されている。なお、正極24、負極26及びセパレータ28については後述する。
【0015】
そして、外装缶10内には、電極群22の一端と蓋板14との間に、正極リード30が配置され、正極リード30の両端は正極24及び蓋板14にそれぞれ接続されている。従って、正極端子20と正極24との間は、正極リード30及び蓋板14を介して電気的に接続されている。なお、蓋板14と電極群22との間には円形の絶縁部材32が配置され、正極リード30は絶縁部材32に設けられたスリットを通して延びている。また、電極群22と外装缶10の底部との間にも円形の絶縁部材34が配置されている。
【0016】
更に、外装缶10内には、所定量のアルカリ電解液(図示せず)が注液され、セパレータ28に含まれたアルカリ電解液を介して正極24と負極26との間で充放電反応が進行する。なお、アルカリ電解液の種類は、特に限定されないけれども、例えば、水酸化ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液、及びこれらのうち2つ以上を混合した水溶液、好ましくは、水酸化ナトリウムを溶質の主体として含む水溶液を用いることができ、またアルカリ電解液の濃度についても特には限定されず、例えば8Nのものを用いることができる。
【0017】
セパレータ28の材料としては、例えば、ポリアミド繊維製不織布、ポリエチレンやポリプロピレンなどのポリオレフィン繊維製不織布に親水性官能基、好ましくはスルホン基(SO3H)を付与したものを用いることができる。
正極24は、多孔質構造を有する導電性の正極基板と、正極基板の空孔内に保持された正極合剤とからなる。
【0018】
正極基板としては、例えばニッケル製の金属多孔体を用いてもよいが、好ましくは焼結基板を用いることができる。正極合剤は、正極活物質粒子と、必要に応じて正極24の特性を改善するための種々の添加剤粒子と、必要に応じて、正極活物質粒子及び添加剤粒子の混合粒子を正極基板に結着するための結着剤とからなる。
なお、正極活物質粒子は、この電池がニッケル水素二次電池なので水酸化ニッケル粒子であるけれども、水酸化ニッケル粒子は、コバルト、亜鉛、カドミウム等を固溶していてもよい。好ましくは、水酸化ニッケル粒子の表面は、アルカリ熱処理されたコバルト化合物で被覆されている。
【0019】
また、添加剤としては、酸化イットリウムの他に、酸化コバルト、金属コバルト、水酸化コバルト等のコバルト化合物、金属亜鉛、酸化亜鉛、水酸化亜鉛等の亜鉛化合物、酸化エルビウム等の希土類化合物等を用いることができる。好ましくは、正極合剤は、Y,Yb,Er,Ti,W及びNbからなる群より選択される1種以上を含む酸化物又は水酸化物を0.5〜5.0質量%含む。
【0020】
結着剤としては親水性若しくは疎水性のポリマー等を用いることができる。
負極26は、帯状をなす導電性の負極基板(芯体)を有し、この負極基板に負極合剤が保持されている。負極基板は、貫通孔が分布されたシート状の金属材からなり、例えば、パンチングメタルや、金属粉末を成型してから焼結した金属粉末焼結体基板を用いることができる。従って、負極合剤は、負極基板の貫通孔内に充填されるとともに、負極基板の両面上に層状にして保持される。
【0021】
負極合剤は、図1中円内に概略的に示したけれども、負極活物質としての水素を吸蔵及び放出可能な水素吸蔵合金粒子36と、必要に応じて例えばカーボン等の導電助剤(図示せず)と、これら水素吸蔵合金及び導電助剤を負極基板に結着する結着剤38とからなる。結着剤38としては親水性若しくは疎水性のポリマー等を用いることができ、導電助剤としては、カーボンブラックや黒鉛を用いることができる。なお、活物質が水素の場合、負極容量は水素吸蔵合金量により規定されるので、本発明では、水素吸蔵合金のことを負極活物質ともいう。また、負極24のことを水素吸蔵合金電極ともいう。
【0022】
この電池の水素吸蔵合金粒子36における水素吸蔵合金は、希土類-Mg-Ni系水素吸蔵合金であって、主たる結晶構造がCaCu型ではなく、AB型構造とAB型構造とを合わせた超格子構造であり、その組成が一般式:
(LaNdAD1−wMgNiAlT …(1)
で示される。
【0023】
ただし、式(1)中、Sm及びGdよりなる群から選ばれる少なくとも1種の元素を表し、Dは、Pr,Eu,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Zr,Hf,Ca及びYよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Mo,Mn,Fe,Co,Zn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれa≧0,b≧0,c>0,0.1>d≧0,a+b+c+d=1で示される関係を満たし、添字w,x,y,zはそれぞれ0<w≦0.25,0.05≦y≦0.35,0≦z≦0.5,3.15≦x+y+z≦3.35で示される範囲にある。
【0024】
なお、超格子構造では、La、Nd、A及びDで表される元素並びにMgがAサイトに位置し、Ni、Al及びTで表される元素がBサイトに位置する。本明細書ではAサイトを占める元素のうち、La、Nd、Aで示される元素及びDで示される元素のことを希土類系成分とも称する。
水素吸蔵合金粒子36は、例えば以下のようにして得ることできる。
まず、上述の組成となるよう金属原料を秤量して混合し、この混合物を例えば高周波溶解炉で溶解してインゴットにする。得られたインゴットに、900〜1200℃の温度の不活性ガス雰囲気下にて5〜24時間加熱する熱処理を施し、インゴットの金属組織をAB型構造とAB型構造とを合わせた超格子構造にする。この後、インゴットを粉砕し、篩分けにより所望粒径に分級して、水素吸蔵合金粒子36を得ることができる。
【0025】
上述したニッケル水素二次電池においては、水素吸蔵合金粒子36が希土類-Mg-Ni系水素吸蔵合金を主成分とするため、高容量である。
そして、上述したニッケル水素二次電池に用いられた希土類-Mg-Ni系水素吸蔵合金は、Sm及びGdのうち少なくとも一方を含み且つB/A比が3.15〜3.35である所定の組成を有している。このため、負極26として、水素吸蔵合金粒子36を用いた水素吸蔵合金電極を有するニッケル水素二次電池は、放置後の作動電圧の低下が抑制される。
【0026】
かくして、本発明によれば、作動電圧の低下が抑制されニッケル水素二次電池を提供することができ、その工業的価値は極めて高い。
【実施例】
【0027】
1.電池の組立て
実施例1
(1)負極の作製
希土類系成分の内訳が、原子数比で、22%のLa、30%のNd、20%のSm、20%のGd及び8%のYになるように希土類系成分の原材料を用意し、そして、希土類系成分の原材料、Mg、Ni、Al及びCoを原子数比で0.90:0.10:2.9:0.2:0.1の割合で含有する水素吸蔵合金の塊を誘導溶解炉を用いて調製した。この合金をアルゴン雰囲気中で1000℃、10時間の熱処理を行い、組成が(La0.22Nd0.30Sm0.20Gd0.20Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10で表わされる超格子構造の希土類-Mg-Ni系水素吸蔵合金のインゴットを得た。
【0028】
この希土類-Mg-Ni系水素吸蔵合金のインゴットを不活性ガス雰囲気中で機械的に粉砕し、篩分けにより400メッシュ〜200メッシュの間に残る合金粒子を選別した。この合金粒子に対してレーザ回折・散乱式粒度分布測定装置を使用して粒度分布を測定したところ、重量積分50%に相当する平均粒径は30μmであり、最大粒径は45μmであった。
この合金粒子100質量部に対してポリアクリル酸ナトリウム0.4質量部、カルボキシメチルセルロース0.1質量部、および、ポリテトラフルオロエチレン分散液(分散媒:水、固形分60質量部)2.5質量部を加えた後、混練して負極合剤のスラリーを得た。
【0029】
このスラリーを、Niめっきを施した厚さ60μmのFe製パンチングメタルの両面の全面に均等に、かつ厚さが一定になるように塗着した。スラリーの乾燥を経て、このパンチングメタルをプレスして裁断し、1枚あたりの水素吸蔵合金量が9.0gであるAAサイズのニッケル水素二次電池用の負極を作製した。
(2)正極の作製
金属Niに対して、Znが3質量%、Coが1質量%の比率となるように、硫酸ニッケル、硫酸亜鉛および硫酸コバルトの混合水溶液を調製し、この混合水溶液に攪拌しながら水酸化ナトリウム水溶液を徐々に添加した。この際、反応中のpHを13〜14に保持して水酸化ニッケル粒子を析出させ、この水酸化ニッケル粒子を10倍量の純水にて3回洗浄したのち、脱水、乾燥した。
【0030】
得られた水酸化ニッケル粒子に、40質量%のHPCディスパージョン液を混合して、正極合剤のスラリーを調製した。このスラリーを多孔質構造のニッケル基板に充填して乾燥させてから、この基板を圧延、裁断してAAサイズのニッケル水素二次電池用の正極を作製した。
(3)ニッケル水素二次電池の組立て
上記のようにして得られた負極及び正極を、ポリプロピレンまたはナイロン製の不織布よりなるセパレータを介して渦巻状に巻回して電極群を形成し、この電極群を外装缶に収容したのち、この外装缶内に、アルカリ電解液として、リチウム、カリウムを含有した濃度30質量%の水酸化ナトリウム水溶液を注入して、図1に示した構成の電池を有し、公称容量が2500mAhであるAAサイズのニッケル水素二次電池を組立てた。
【0031】
実施例2
水素吸蔵合金の組成を(La0.22Nd0.30Gd0.40Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例3
水素吸蔵合金の組成を(La0.22Nd0.30Sm0.40Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0032】
実施例4
水素吸蔵合金の組成を(La0.12Nd0.20Sm0.30Gd0.30Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例5
水素吸蔵合金の組成を(La0.16Nd0.16Sm0.30Gd0.30Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0033】
実施例6
水素吸蔵合金の組成を(La0.20Nd0.12Sm0.30Gd0.30Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例7
水素吸蔵合金の組成を(La0.20Nd0.12Sm0.33Gd0.33Y0.02)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0034】
実施例8
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例9
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni3.00Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0035】
実施例10
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni2.85Al0.35にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例11
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni3.15Al0.05にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0036】
実施例12
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni2.95Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例13
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni3.15Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0037】
実施例14
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.75Mg0.25Ni3.00Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
実施例15
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.01)0.90Mg0.10Ni2.90Al0.20Cu0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0038】
比較例1
水素吸蔵合金の組成を(La0.22Nd0.70Y0.08)0.90Mg0.10Ni3.15Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
比較例2
水素吸蔵合金の組成を(La0.22Nd0.70Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0039】
比較例3
水素吸蔵合金の組成を(La0.22Ce0.40Nd0.30Y0.08)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
比較例4
水素吸蔵合金の組成を(La0.12Nd0.12Sm0.33Gd0.33Y0.10)0.90Mg0.10Ni2.90Al0.20Co0.10にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0040】
比較例5
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.10)0.90Mg0.10Ni2.82Al0.38にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
比較例6
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.10)0.90Mg0.10Ni3.18Al0.02にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0041】
比較例7
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.10)0.90Mg0.10Ni2.92Al0.02にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
比較例8
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.10)0.90Mg0.10Ni3.17Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
【0042】
比較例9
水素吸蔵合金の組成を(La0.21Nd0.12Sm0.33Gd0.33Y0.10)0.72Mg0.28Ni3.00Al0.20にしたこと以外は実施例1の場合とそれぞれ同様にして、ニッケル水素二次電池を組立てた。
2.電池評価方法
(1)活性化処理
実施例1〜14及び比較例1〜9の各電池について、活性化処理として、0.1Cの電流で16時間充電してから、0.2Cの電流で終止電圧0.5Vまで放電させる充放電処理を2回繰り返した。
(2)初期作動電圧の評価
活性化処理を施した実施例1〜14及び比較例1〜9の各電池について、1.0Cの電流で1時間充電してから1.0Cの電流で終止電圧0.8Vまで放電させる電池容量測定を行った。この測定結果において、放電時間の中間点での電圧を初期作動電圧として表1に示した。これらの結果を、比較例1の結果との差(単位:mV)として表1に示す。
【0043】
なお、表1には、水素吸蔵合金に含まれる元素及び一般式(1)における各元素の添字を載せるとともに、Aサイトの元素数に対するBサイトの元素数の比(B/A比)も示してある。
(3)放置後作動電圧の評価
初期作動電圧の評価にて放電させた各電池を、1.0Cの電流で1時間充電してから、60℃の雰囲気で1ヶ月保存した。この保存後、各電池について、1.0Cの電流で1時間充電してから1.0Cの電流で終止電圧0.8Vまで放電させる電池容量測定を行った。この測定結果において、放電時間の中間点での電圧を放置後作動電圧として求め、各電池について初期作動電圧から放置後作動電圧への変化量(単位:mV)を表1に示した。
(4)サイクル寿命評価
活性化処理を施した実施例1〜14及び比較例1〜9の各電池を、1.0Cの電流で1時間充電してから1.0Cの電流で終止電圧0.8Vまで放電させる電池容量測定を繰り返し、電池が放電できなくなるまでのサイクル数(サイクル寿命)を数えた。これらの結果を、比較例1の結果を100とした相対値にて表1に示す。
【0044】
【表1】

【0045】
3.電池評価結果
表1からは以下のことが明らかである。
(1)合金のB/A比が3.45の比較例1に対し、B/A比を3.20とした比較例2では、放置後作動電圧の低下が大きく改善されていることがわかる。しかしながら、比較例2では、初期の作動電圧が実用上問題となるレベルまで大きく低下している。
【0046】
作動電圧の低下を抑制するため、希土類系成分を変更した比較例3では、初期の作動電圧は回復したが、サイクル寿命が大幅に低下している。これは、Ceを含む希土類-Mg-Ni系水素吸蔵合金には、耐食性が大きく低下するという問題があるからである。
(2)そこで、B/A比を3.2としたまま、希土類系成分をLa,Nd,Sm,Cd及びYで構成した実施例1では、初期の作動電圧及びサイクル寿命共に比較例1と同等レベルを維持したまま、放置後作動電圧が大きく改善している。
【0047】
(3)実施例2、3と実施例1とを比較したところ、SmとGdの比率には関わりなく、放置後の作動電圧はほぼ一定であることがわかる。一方、実施例1に比べてSmが相対的に多い実施例3では、初期の作動電圧が僅かに低下しているが、Gdが相対的に多い実施例2では、初期の作動電圧が向上している。
(4)SmとGdの比率を変えるのではなく、実施例1に比べてSm及びGdの量を増やした実施例4では、初期作動電圧、放置後作動電圧及びサイクル寿命のすべてが改善されている。
(5)実施例1と実施例5、6との比較により、La及びNdの量の検討を行っている。これらの結果から、原子数比にてLaの量をNdと同等以上にすることで、放置後作動電圧及びサイクル寿命が向上することがわかる。ただし、Laの量がNdと同等以上の範囲では、Laの量を更に増やしても効果は飽和している。
【0048】
(6)実施例6、7、8と比較例4との比較により、La、Nd、Sm及びGd以外の希土類形成分をどれだけ含んでよいのか検討を行っている。Yの添字が0.1の比較例4ではサイクル寿命が大きく低下している。これに対し、Yの添字を0.02とした実施例6ではサイクル寿命が向上している。更にYの添字を0.01削減した実施例8では特性にほとんど変化がない。これより、La、Nd、Sm及びGd以外の希土類系成分の量に対応する一般式中の添字dは、0.10未満に設定され、0.01以上0.02以下の範囲にあるのが望ましい。
(7)実施例8、実施例9及び実施例15の比較により、BサイトにおけるNi及びAl以外の成分を削減可能か検討した。Ni及びAl以外の成分を無くした実施例9では放置後作動電圧が向上しており、Ni及びAl以外の成分を削減すること、特にCo及びCuを削減することは、有効であることがわかる。
【0049】
(8)実施例9、10、11と比較例5、6の比較により、Al量の上下限の検証を行っている。この結果として、Alの添字yは0.05〜0.35に設定され、好ましくは、0.10〜0.20に設定される。
(9)実施例9、12、13と比較例7、8の比較により、B/A比の上下限の検証を行っている。この結果として、B/A比は3.15〜3.35に設定され、好ましくは、3.20〜3.30に設定される。すなわち、下限側では、B/A比が3.15から僅かに低下しただけでも、サイクル特性が大きく低下し、上限側ではB/A比が3.35から僅かに増加しただけでも、放置後作動電圧が低下する。
(10)実施例9、14と、比較例9の比較により、Mg量の上限の検証を行っている。この結果より、Mg量を示す添字wは0.25以下に設定され、好ましくは、0.10〜0.20に設定される。
【0050】
本発明は上記した一実施形態及び実施例に限定されることはなく、種々変形が可能であり、例えばニッケル水素二次電池は、角形電池であってもよく、機械的な構造は格別限定されることはない。
一実施形態のニッケル水素二次電池では、一般式(1)で示される組成を有する希土類-Mg-Ni系水素吸蔵合金を用いることによって、長期放置後の作動電圧の低下を抑制したが、これ以外の手段を併用し、更に作動電圧の低下を抑制してもよい。
【0051】
具体的には、スルホン基を有する繊維を含むセパレータの使用、水酸化ナトリウムを溶質の主体とする電解液の使用、表面にコバルトを含む被覆層が存在する正極活物質の使用、コバルト被覆層に対するアルカリと酸素の共存下で加熱処理、正極活物質の表面にY,Yb,Er,Ti,W及びNbから選択される1種以上の酸化物又は水酸化物を存在させる、このときの存在量を正極合剤の0.5〜5.0質量%とする、正極板において多孔性のニッケル焼結基板に活物質を充填する等の手段を併用することができる。
【0052】
最後に本発明の水素吸蔵合金は、ニッケル水素二次電池以外の他の物品にも適用可能であるのは勿論である。
【図面の簡単な説明】
【0053】
【図1】本発明の一実施形態に係るニッケル水素二次電池を示す部分切欠斜視図であり、円内に負極の一部を拡大して概略的に示した。
【符号の説明】
【0054】
26 負極
36 水素吸蔵合金粒子

【特許請求の範囲】
【請求項1】
一般式:
(LaNdAD1−wMgNiAlT
(ただし、式中、Aは、Sm及びGdよりなる群から選ばれる少なくとも1種の元素を表し、Dは、Pr,Eu,Tb,Dy,Ho,Er,Tm,Yb,Lu,Sc,Zr,Hf,Ca及びYよりなる群から選ばれる少なくとも1種の元素を表し、Tは、V,Nb,Ta,Mo,Mn,Fe,Co,Zn,In,Cu,Si,P及びBよりなる群から選ばれる少なくとも1種の元素を表し、添字a,b,c,dはそれぞれa≧0,b≧0,c>0,0.1>d≧0,a+b+c+d=1で示される関係を満たし、添字w,x,y,zはそれぞれ0<w≦0.25,0.05≦y≦0.35,0≦z≦0.5,3.15≦x+y+z≦3.35で示される範囲にある。)
にて表される組成を有する水素吸蔵合金。
【請求項2】
前記添字a、添字b及び添字cは、c>a+bで示される関係を満たすことを特徴とする請求項1に記載の水素吸蔵合金。
【請求項3】
前記添字a及び添字bは、a≧bで示される関係を満たすことを特徴とする請求項1又は2に記載の水素吸蔵合金。
【請求項4】
前記添字dは0.02以下であることを特徴とする請求項1乃至3の何れかに記載の水素吸蔵合金。
【請求項5】
前記TとしてCo及びCuのうちいずれも含まないことを特徴とする請求項1乃至4の何れかに記載の水素吸蔵合金。

【図1】
image rotate


【公開番号】特開2009−228096(P2009−228096A)
【公開日】平成21年10月8日(2009.10.8)
【国際特許分類】
【出願番号】特願2008−77911(P2008−77911)
【出願日】平成20年3月25日(2008.3.25)
【出願人】(000001889)三洋電機株式会社 (18,308)