説明

水電解システムの運転方法

【課題】排出されるガス成分を良好に希釈するとともに、消費電力の削減及び騒音の低減を図ることを可能にする。
【解決手段】水電解システム10の運転方法は、高圧水電解装置12から気液分離装置16に排出される透過水素流量及び酸素流量を算出する工程と、運転中の水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて透過水素を希釈するために必要な透過水素用希釈流量を算出する工程と、運転中の前記水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて酸素を希釈するために必要な酸素用希釈流量を算出する工程と、前記透過水素用希釈流量及び前記酸素用希釈流量を比較し、流量の多い方を希釈用空気流量に選択して気液分離装置16内に希釈用空気を供給する工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高圧水電解装置と、水を前記高圧水電解装置に循環させる水循環装置と、前記高圧水電解装置から排出されるガス成分を、前記水循環装置内の前記水から分離する気液分離装置とを備える水電解システムの運転方法に関する。
【背景技術】
【0002】
例えば、燃料電池を発電させるために、燃料ガスとして水素ガスが使用されている。一般的に、この水素ガスを製造する際に、水電解装置が採用されている。この水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、アノード側給電体及びカソード側給電体を配設してユニットが構成されている。
【0003】
そこで、複数のユニットが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側給電体に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素イオン(プロトン)と共に生成された酸素が、余剰の水を伴ってユニットから排出される。
【0004】
この種の水電解システムとして、例えば、特許文献1に開示された水電解装置の水循環装置(水電解システム)が知られている。図7に示すように、水電解システムでは、酸素側水槽1と水素側水槽2が水電解槽3の上方に設置されており、重力の力によって水供給配管4a、4bを通じて、自然に水電解槽3に水が給配されている。電源5は、サイリスタにより電流のON/OFFが可能なものとなっており、これにより、電解によって発生するガスの量及び発生間隔を任意に選択できる。
【0005】
酸素側水槽1と水素側水槽2には、消費された水を補給する系統6aと6bが設けられている。水は、発生したガスにより、排出管7aと7b内をリフトアップされている。
【0006】
ガスの発生は、電源5により断続的になされているため、ガスとガスの間に効果的に水が挟まれ、多量の水のリフトアップが可能になる。リフトアップされた水を補うため、水は、重力の力で水供給配管4a、4bから供給されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平9−291385号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、上記の水電解システムでは、酸素側水槽1に高濃度の酸素が滞留するとともに、場合により排出管7a側に透過した水素が滞留するおそれがある。特に、酸素よりも高圧な水素が生成される高圧水電解装置では、酸素側水槽1に水素が滞留し易い。
【0009】
しかしながら、上記の酸素側水槽1には、高濃度の酸素や水素を希釈する工夫がなされておらず、直接排出している。このため、例えば、ブロアを使用して酸素側水槽1内に希釈用空気を供給することが考えられるが、前記ブロアの消費電力が増大するとともに、騒音が発生し易いという問題がある。
【0010】
本発明はこの種の問題を解決するものであり、排出されるガス成分を良好に希釈するとともに、消費電力の削減及び騒音の低減を図ることが可能な水電解システムの運転方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明は、電解質膜の両側に給電体が設けられ、水を電気分解してアノード側に酸素を発生させるとともに、カソード側に前記酸素よりも高圧な水素を発生させる高圧水電解装置と、前記水を前記高圧水電解装置に循環させる水循環装置と、前記高圧水電解装置の前記アノード側から排出されるガス成分を、前記水循環装置内の前記水から分離するとともに、前記ガス成分を希釈用空気により希釈する気液分離装置とを備える水電解システムの運転方法に関するものである。
【0012】
ガス成分は、アノード側に生成される酸素と、カソード側に生成されて電解質膜を透過した透過水素とを含んでいる。
【0013】
この運転方法では、高圧水電解装置から気液分離装置に排出される透過水素流量及び酸素流量を算出する工程と、運転中の水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて透過水素を希釈するために必要な透過水素用希釈流量を算出する工程と、運転中の前記水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて酸素を希釈するために必要な酸素用希釈流量を算出する工程と、前記透過水素用希釈流量及び前記酸素用希釈流量を比較し、流量の多い方を希釈用空気流量に選択して気液分離装置内に希釈用空気を供給する工程とを有している。
【0014】
また、この運転方法では、高圧水電解装置の運転温度及びカソード側に生成される水素の圧力に基づいて、前記カソード側からアノード側に電解質膜を透過した透過水素流量を算出する工程を有することが好ましい。
【0015】
さらに、この運転方法では、希釈用空気は、気液分離装置に接続されるブロアを制御することにより供給されることが好ましい。
【発明の効果】
【0016】
本発明によれば、透過水素を希釈するために必要な透過水素用希釈流量と、酸素を希釈するために必要な酸素用希釈流量とが算出されている。次いで、透過水素用希釈流量及び酸素用希釈流量の流量の多い方が希釈用空気流量に選択され、気液分離装置内に希釈用空気が供給されている。
【0017】
従って、高圧水電解装置から実際に排出される透過水素流量及び酸素流量に基づいて、最適量の希釈用空気が供給されるため、透過水素及び酸素の希釈処理が効率的且つ確実に遂行される。
【0018】
しかも、希釈用空気を供給する、例えば、ブロアは、常時、最大水素濃度に対応する一定の出力で駆動されることがなく、過剰な希釈用空気の供給を抑制することができる。これにより、ブロアは、効率的に制御され、排出されるガス成分を良好に希釈するとともに、前記ブロアの消費電力の削減及び騒音の低減を図ることが可能になる。
【図面の簡単な説明】
【0019】
【図1】本発明の実施形態に係る運転方法が適用される水電解システムの概略構成説明図である。
【図2】前記水電解システムを構成する単位セルの分解斜視説明図である。
【図3】前記運転方法を説明するフローチャートである。
【図4】製造される水素の圧力と水素透過量との関係説明図である。
【図5】水素製造量に対する透過水素用希釈流量と酸素用希釈流量との関係説明図である。
【図6】低温運転時の水素製造量に対する透過水素用希釈流量と酸素用希釈流量との関係説明図である。
【図7】特許文献1に開示されている水電解システムの概略説明図である。
【発明を実施するための形態】
【0020】
図1に示すように、本発明の実施形態に係る運転方法が適用される水電解システム10は、水(純水)を電気分解することによって酸素及び高圧水素(酸素よりも高圧な水素)を製造する高圧水電解装置12と、前記水を前記高圧水電解装置12に循環させる水循環装置14と、前記高圧水電解装置12から排出されるガス成分(酸素ガス及び水素ガス)を、前記水循環装置14内の水から分離し、前記水を貯留する気液分離装置16と、前記気液分離装置16に市水から生成された純水を供給する水供給装置18と、コントローラ20とを備える。
【0021】
高圧水電解装置12は、複数の単位セル24を積層して構成される。単位セル24の積層方向一端には、ターミナルプレート26a、絶縁プレート28a及びエンドプレート30aが外方に向かって、順次、配設される。単位セル24の積層方向他端には、同様にターミナルプレート26b、絶縁プレート28b及びエンドプレート30bが外方に向かって、順次、配設される。エンドプレート30a、30b間は、一体的に締め付け保持される。
【0022】
ターミナルプレート26a、26bの側部には、端子部34a、34bが外方に突出して設けられる。端子部34a、34bは、配線36a、36bを介して電源(直流電源)38に電気的に接続される。
【0023】
図2に示すように、単位セル24は、円盤状の電解質膜・電極構造体42と、この電解質膜・電極構造体42を挟持するアノード側セパレータ44及びカソード側セパレータ46とを備える。アノード側セパレータ44及びカソード側セパレータ46は、円盤状を有するとともに、例えば、カーボン部材又は金属板等で構成される。
【0024】
電解質膜・電極構造体42は、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜48と、前記固体高分子電解質膜48の両面に設けられるアノード側給電体50及びカソード側給電体52とを備える。
【0025】
固体高分子電解質膜48の両面には、アノード電極触媒層50a及びカソード電極触媒層52aが形成される。アノード電極触媒層50aは、例えば、Ru(ルテニウム)系触媒を使用する一方、カソード電極触媒層52aは、例えば、白金触媒を使用する。アノード側給電体50及びカソード側給電体52は、例えば、球状アトマイズチタン粉末の焼結体(多孔質導電体)により構成される。
【0026】
単位セル24の外周縁部には、積層方向に互いに連通して、水(純水)を供給するための水供給連通孔56と、反応により生成された酸素及び未反応の水(混合流体)を排出するための排出連通孔58と、反応により生成された水素を流すための水素連通孔60とが設けられる。
【0027】
アノード側セパレータ44の電解質膜・電極構造体42に向かう面44aには、水供給連通孔56に連通する供給通路62aと、排出連通孔58に連通する排出通路62bとが設けられる。面44aには、供給通路62a及び排出通路62bに連通する第1流路64が設けられる。この第1流路64は、アノード側給電体50の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。
【0028】
カソード側セパレータ46の電解質膜・電極構造体42に向かう面46aには、水素連通孔60に連通する水素排出通路66が設けられる。面46aには、水素排出通路66に連通する第2流路68が形成される。この第2流路68は、カソード側給電体52の表面積に対応する範囲内に設けられるとともに、複数の流路溝や複数のエンボス等で構成される。
【0029】
アノード側セパレータ44及びカソード側セパレータ46の外周端部を周回して、シール部材70a、70bが一体化される。このシール部材70a、70bには、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材が用いられる。
【0030】
図1に示すように、水循環装置14は、高圧水電解装置12の水供給連通孔56に連通する循環配管72を備える。この循環配管72は、循環ポンプ74及びイオン交換器76を配置するとともに、気液分離装置16を構成する貯留器78の底部に設けられた導出口78aに接続される。貯留器78の底部に設けられた導入口78bには、戻り配管80の一端部が連通する一方、前記戻り配管80の他端部は、高圧水電解装置12の排出連通孔58に連通する。
【0031】
貯留器78には、水供給装置18に接続された純水供給配管84と、希釈用空気を供給するブロア(送風部)86に接続された送風配管87と、前記貯留器78で純水から分離されたガス成分(酸素ガス及び水素ガス)を排出するための酸素排気配管88とが連結される。
【0032】
高圧水電解装置12の水素連通孔60には、高圧水素配管90の一端が接続される。この高圧水素配管90の他端は、図示しない高圧水素供給部(燃料タンクや燃料電池自動車等)に接続される。
【0033】
このように構成される水電解システム10の動作について、以下に説明する。
【0034】
水電解システム10の始動時には、水供給装置18を介して市水から生成された純水が、気液分離装置16を構成する貯留器78に供給される。一方、水循環装置14では、循環ポンプ74の作用下に、貯留器78内の水が循環配管72を介して高圧水電解装置12の水供給連通孔56に供給される。また、ターミナルプレート26a、26bの端子部34a、34bには、電気的に接続されている電源38を介して電圧が付与される。
【0035】
このため、図2に示すように、各単位セル24では、水供給連通孔56からアノード側セパレータ44の第1流路64に水が供給され、この水がアノード側給電体50内に沿って移動する。
【0036】
従って、水は、アノード電極触媒層50aで電気により分解され、水素イオン、電子及び酸素が生成される。この陽極反応により生成された水素イオンは、固体高分子電解質膜48を透過してカソード電極触媒層52a側に移動し、電子と結合して水素が得られる。
【0037】
これにより、カソード側セパレータ46とカソード側給電体52との間に形成される第2流路68に沿って水素が流動する。この水素は、水供給連通孔56よりも高圧に維持されており、水素連通孔60を流れて高圧水電解装置12の外部に高圧水素配管90を介して取り出し可能となる。
【0038】
一方、第1流路64には、反応により生成した酸素と、未反応の水とが流動しており、これらの混合流体が排出連通孔58に沿って水循環装置14の戻り配管80に排出される(図1参照)。さらに、第2流路68の水素は、第1流路64の混合流体よりも高圧に維持されており、前記水素の一部が固体高分子電解質膜48を透過して前記第1流路64にリークする。
【0039】
未反応ガスの水及びガス成分(酸素ガスと透過した水素ガス)は、貯留器78に導入されて気液分離された後、水は、循環ポンプ74を介して循環配管72からイオン交換器76を通って水供給連通孔56に導入される。水から分離されたガス成分は、ブロア86から供給される希釈用空気によって希釈された後、酸素排気配管88から外部に排出される。
【0040】
次いで、本実施形態に係る運転方法について、図3に示すフローチャートに沿って、以下に説明する。
【0041】
先ず、水電解システム10の運転条件が設定される(ステップS1)。具体的には、高圧水電解装置12の運転温度とカソード側に生成される水素の圧力とが設定される。これにより、図4に示すように、カソード側からアノード側に固体高分子電解質膜48を透過する透過水素流量が算出される(ステップS2)。なお、運転温度は、図4中、T1℃<T2℃<T3℃の関係を有しており、運転温度が高い程及び水素圧力が高い程、透過水素流量が多くなる。
【0042】
次いで、水素製造量Xが設定されると(ステップS3)、ステップS4に進んで、透過水素を希釈するために必要な透過水素用希釈流量M1及び酸素を希釈するために必要な酸素用希釈流量M2が算出される。
【0043】
この場合、透過水素濃度をV1以下にするための透過水素用希釈流量M1は、透過水素量n1、酸素流量0.5Xとすると、n1/(0.5X+M1+n1)≦V1の関係から、M1≧(1−V1)n1/V1−0.5Xが得られる(第1式)。
【0044】
一方、酸素濃度をV2以下にするための酸素用希釈流量M2は、(0.5X+M2・0.21)/(0.5X+M2+n1)≦V2の関係から、M2≧(1−V2)X/2(V2−0.21)−V2・n1/(V2−0.21)が得られる(第2式)。なお、上記の0.21は、空気中の酸素濃度である21%を示す。
【0045】
そこで、例えば、運転温度が60℃、水素圧力が35MPaの場合に、水素製造量Xを10(L/min)とすると、酸素流量0.5Xが5(L/min)、透過水素量n1が0.5(L/min)となる。
【0046】
このため、アノード側に透過する透過水素濃度V1を、例えば、0.5%以下にする透過水素用希釈流量M1は、第1式から、M1が約95(L/min)以上となる。また、アノード側の酸素濃度V2を、例えば、25%以下にする酸素用希釈流量M2は、第2式から、M2が約91(L/min)以上となる。
【0047】
従って、ステップS5では、透過水素用希釈流量M1>酸素用希釈流量M2であると判断され(ステップS5中、YES)、ステップS6に進む。このステップS6では、透過水素用希釈流量M1が希釈用空気流量M1に設定され、コントローラ20を介してブロア86が制御される(ステップS7)。
【0048】
また、透過水素用希釈流量M1と酸素用希釈流量M2とは、例えば、運転温度が60℃、水素圧力が35MPaの場合に、水素製造量Xを変更すると、図5に示す関係を有する。
【0049】
これにより、水素製造量Xが増加されると、透過水素用希釈流量M1<酸素用希釈流量M2の関係に移行する(ステップS5中、NO)。そして、ステップS8に進んで、酸素用希釈流量M2が希釈用空気流量M2に設定される。上記の工程は、水電解システム10の運転が停止されるまで(ステップS9)、継続して行われる。
【0050】
なお、運転温度が低温である際、例えば、運転温度が30℃、水素圧力が35MPaの場合に、水素製造量Xを10(L/min)とすると、酸素流量0.5Xが5(L/min)、透過水素量n1が0.18(L/min)となる。
【0051】
その際、アノード側に透過する透過水素濃度V1を、例えば、0.5%以下にする透過水素用希釈流量M1は、第1式から、M1が約31(L/min)以上となる。一方、アノード側の酸素濃度V2を、例えば、25%以下にする酸素用希釈流量M2は、第2式から、M2が約93(L/min)以上となる。この低温運転時の透過水素用希釈流量M1と酸素用希釈流量M2との関係は、図6に示されている。
【0052】
この場合、本実施形態では、高圧水電解装置12の運転温度とカソード側に生成される水素の圧力とが設定されるとともに、水素製造量Xが設定されている。これにより、透過水素を希釈するために必要な透過水素用希釈流量M1と、酸素を希釈するために必要な酸素用希釈流量M2とが算出されている。
【0053】
次いで、透過水素用希釈流量M1及び酸素用希釈流量M2の流量の多い方が、希釈用空気流量に選択され、コントローラ20の作用下にブロア86が制御されて気液分離装置16内に希釈用空気が供給されている。
【0054】
従って、高圧水電解装置12から戻り配管80に実際に排出される透過水素流量及び酸素流量に基づいて、最適量の希釈用空気が供給されるため、透過水素及び酸素の希釈処理が効率的且つ確実に遂行される。
【0055】
しかも、希釈用空気を供給するブロア86は、常時、最大水素濃度に対応する一定の出力で駆動されることがなく、過剰な希釈用空気の供給を抑制することができる。このため、ブロア86は、効率的に制御され、排出されるガス成分を良好に希釈するとともに、前記ブロア86の消費電力の削減及び騒音の低減を図ることが可能になるという効果が得られる。
【符号の説明】
【0056】
10…水電解システム 12…高圧水電解装置
14…水循環装置 16…気液分離装置
18…水供給装置 20…コントローラ
24…単位セル 38…電源
42…電解質膜・電極構造体 44…アノード側セパレータ
46…カソード側セパレータ 48…固体高分子電解質膜
50…アノード側給電体 52…カソード側給電体
56…水供給連通孔 58…排出連通孔
60…水素連通孔 64、68…流路
66…水素排出通路 72…循環配管
74…循環ポンプ 76…イオン交換器
78…貯留器 80…戻り配管
84…純水供給配管 86…ブロア
88…酸素排気配管 90…高圧水素配管

【特許請求の範囲】
【請求項1】
電解質膜の両側に給電体が設けられ、水を電気分解してアノード側に酸素を発生させるとともに、カソード側に前記酸素よりも高圧な水素を発生させる高圧水電解装置と、
前記水を前記高圧水電解装置に循環させる水循環装置と、
前記高圧水電解装置の前記アノード側から排出されるガス成分を、前記水循環装置内の前記水から分離するとともに、前記ガス成分を希釈用空気により希釈する気液分離装置と、
を備える水電解システムの運転方法であって、
前記ガス成分は、前記アノード側に生成される前記酸素と、前記カソード側に生成されて前記電解質膜を透過した透過水素とを含み、
前記高圧水電解装置から前記気液分離装置に排出される透過水素流量及び酸素流量を算出する工程と、
運転中の水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて前記透過水素を希釈するために必要な透過水素用希釈流量を算出する工程と、
運転中の前記水素製造量に対し、前記透過水素流量及び前記酸素流量に基づいて前記酸素を希釈するために必要な酸素用希釈流量を算出する工程と、
前記透過水素用希釈流量及び前記酸素用希釈流量を比較し、流量の多い方を希釈用空気流量に選択して前記気液分離装置内に前記希釈用空気を供給する工程と、
を有することを特徴とする水電解システムの運転方法。
【請求項2】
請求項1記載の運転方法において、前記高圧水電解装置の運転温度及び前記カソード側に生成される前記水素の圧力に基づいて、前記カソード側から前記アノード側に前記電解質膜を透過する前記透過水素流量を算出する工程を有することを特徴とする水電解システムの運転方法。
【請求項3】
請求項1又は2記載の運転方法において、前記希釈用空気は、前記気液分離装置に接続されるブロアを制御することにより供給されることを特徴とする水電解システムの運転方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−52208(P2012−52208A)
【公開日】平成24年3月15日(2012.3.15)
【国際特許分類】
【出願番号】特願2010−197406(P2010−197406)
【出願日】平成22年9月3日(2010.9.3)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】