説明

波形フィルタ材およびフィルタ要素

費用対効果が高く、製造が容易な、種々の高性能、高効率のフィルタ材を提供する。特に、表面積の増加をもたらす波形構造を有する少なくとも一つの層を有し、それによってフィルタ材の種々の特性を改良する、種々のフィルタ材を提供する。フィルタ材は、種々の用途に用いるための種々のフィルタ要素を形成するのに使用することが可能である。

【発明の詳細な説明】
【技術分野】
【0001】
[関連する出願の相互参照]
本出願は、2007年11月9日に提出された、発明の名称が『波形フィルタ材およびフィルタ要素』である米国特許仮出願第60/986,626号、および2007年2月28日に提出された、発明の名称が『曲線状フィルタ材』である米国特許仮出願第60/892,025号に対する優先権を主張し、前記仮出願はその全体を参照することによって、本願書に組み込まれる。
【0002】
本発明は、ろ過、特に高容量フィルタ材およびフィルタ要素に関する。
【背景技術】
【0003】
浮遊粒子状汚染物質の空気からの除去は、全ての人の関心事である。気相粒子ろ過は、伝統的に、織物の又は不織の布帛(fabric)またはウェブ(web)を利用する方法によって行われてきた。そのような系の性能は、粒子寸法の関数としての粒子の除去または補集の初期効率、ガス流速または前面風速の関数としての、空気流またはガス流に対する系の初期抵抗、およびフィルタ要素に粒子状汚染物質が充填されるに従ってこれらのファクターの両方が変化する方法によって特徴付けられる。一般的測定の一つは、フィルタ材のアルファ値であり、前記アルファ値は圧力損失とろ過効率の積であり、以下のように計算する:

α=−100*log((100−(効率))/100)/(圧力損失)
【0004】
通常、特定のフィルタ材がより高いアルファ値を有することは、フィルタ材が低い圧力損失および高い効率を有することを示しているので、望ましい。例えば、ASHRAEバグフィルタに使用されるガラス材料は、12〜16の範囲(フィルタ材の特定の効率に依存する)のアルファ値(DOP試験で得られる)を有し、このアルファ値を達成するために、いずれの種類の静電荷にも依存しない。ガラスペーパーは約12〜13のアルファ値を有することが可能であり、膜材料は、約20のアルファ値を有することが可能であり、エレクトロスピニングによるナノファイバー材料は約5〜12の範囲のアルファ値を有することが可能である。これらの材料はいずれも、アルファ値を達成するために、いずれの種類の帯電にも依存しない。
【0005】
メルトブロー法による材料、スパンボンド法による材料、カーディングされた不織材料、および湿式合成材料を用いて形成されたフィルタ材は、帯電した場合、非常に高いアルファ値を有し得る。しかし、電荷を除去した場合、これらのフィルタ材のアルファ値は、他の材料を用いて作製されるフィルタ材のアルファ値よりかなり小さい水準まで、著しく減少する。
【0006】
従って、改良したフィルタを提供する必要性、特に、改良された放電アルファ値を有するフィルタ材およびフィルタ要素を提供する必要性が依然として存在する。
【発明の概要】
【0007】
一の態様において、細繊維ろ過層、および前記細繊維ろ過層を波形構造に保持し、ろ過層の隣り合う波の山および谷の間隔を維持する粗支持層を有するフィルタ材を提供する。フィルタ材の層および各々の層の種々の特性は、様々なものであってよい。一の態様において、粗支持層は、谷における繊維の質量よりも大きい繊維の質量を、山において有する。別の態様において、細繊維ろ過層は、平面構造の細繊維ろ過層の表面積よりも少なくとも50%、より好ましくは100%大きい表面積を有し得る。別の態様において、粗支持層は下流の粗支持層であってよく、フィルタ材は、上流の粗支持層を更に含んでよい。細繊維ろ過層を、上流の粗支持層と下流の粗支持層との間に設けてよい。フィルタ材は、下流の粗支持層と上流の粗支持層との間に設けられた、少なくとも一つの追加のろ過層を含んでよい。一の例示的な態様において、前記少なくとも一つの追加のろ過層は、細繊維ろ過層を形成する繊維の平均繊維径よりも大きい平均径を有する繊維から形成してよい。
【0008】
種々の層の繊維径は様々なものであってよい。一の態様において、上流の粗支持層は、細繊維ろ過層を形成する繊維の平均径よりも大きく且つ下流の粗支持層を形成する繊維の平均径以下である平均径を有する繊維から形成してよい。一の例示的態様において、上流の粗支持層、細繊維ろ過層、および下流の粗支持層は全て、波形構造を有する。一の例示的態様において、フィルタ材は1インチ当たり約2〜6個の波を有する。上流および下流の粗支持層は、例えば短繊維層から形成してよく、細繊維ろ過層は、メルトブロー層およびガラス繊維層の少なくとも一つであってよい。粗支持層は、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成してもよい。
【0009】
別の態様において、フィルタ材は、上流の粗支持層の上流に設けられた平面層および下流の粗支持層の下流に設けられた平面層の少なくとも一つを含んでよい。前記平面層は、上流の粗支持層および下流の粗支持層を形成する繊維の平均径より小さく、細繊維ろ過層を形成する繊維の平均径より大きい平均径を有する繊維から形成してよい。別の態様において、前記平面層は、上流および下流の粗支持層並びに細繊維ろ過層よりも大きい平均径を有する繊維から形成してよい。そのような態様において、前記平面層は好ましくは、下流の粗支持層の下流に設けられる。
【0010】
フィルタ材は、種々の特性を有することも可能である。例えば、フィルタ材は、
約9よりも大きい、より好ましくは約11よりも大きいDOPアルファ値;
1.5インチHOの圧力損失にまで充填されたASHRAE試験塵埃を用いた、25FPMの前面速度における少なくとも約8g/ftの塵埃保持容量;
25FPMの前面速度における、0.26μの粒子がおよそ60mg/100cm充填された後の約50mmHO未満のNaCl充填量;
約10CFM〜300CFMの範囲の空気透過性;約70gsm〜1100gsmの範囲の坪量;および/または
約1.5mm〜25mm
の範囲の厚さを有し得る。
【0011】
更に別の態様において、複数の波を形成する波形構造を有する第1繊維層を有するフィルタ材を提供し、各々の波は任意の波型および高さを有し、各々の波は山および谷を有し、隣り合う山は互いに離れた間隔で配置され、隣り合う谷は互いに離れた間隔で配置される。
【0012】
一の態様において、第1繊維層は、平面構造の第1繊維層の表面積よりも少なくとも約50%大きい、より好ましくは100%大きい表面積を有することが可能である。前記第1繊維層は、例えば、第2繊維層を形成する繊維の平均径よりも小さい平均径を有する細繊維から形成してよい。第1繊維層の繊維の平均径は、約5μ未満であってよく、第2繊維層の繊維の平均径は、約10より大きい。別の態様において、第2繊維層は、第1繊維層の谷付近における繊維の密度よりも大きい繊維の密度を、第1繊維層の山付近において有してよい。第2繊維層は、第1繊維層の下流に設けてよく、フィルタ材は、第1繊維層の上流に設けられた第3繊維層を含むことも可能である。一の例示的態様において、前記第3繊維層は、第2繊維層を形成する繊維の平均径以下の平均径を有する繊維から形成され、第2繊維層を形成する繊維の径は、第1繊維層を形成する繊維の平均径よりも大きい。第1、第2、および第3繊維層は、波形構造を有してよく、フィルタ材は、第3繊維層の上流に設けられ、平面構造を有する第4層、および第2繊維層の下流に設けられ、平面構造を有する第5層の少なくとも一つを含むことも可能である。特定の例示的態様において、第1繊維層はメルトブロー層またはガラス繊維層であり、第2繊維層は、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成される。
【0013】
更に別の態様において、細繊維層と、バインダー繊維および非バインダー繊維の混合物から形成される少なくとも一つの粗支持層とから形成される曲線状ウェブを有する複層フィルタ材を提供する。前記少なくとも一つの粗支持層は、細繊維層の隣り合う山の間の間隔を維持すること、および細繊維層の隣り合う谷の間の間隔を維持することが可能である。フィルタ材は、曲線状ウェブと組み合わされた平面状ウェブを含むことも可能である。
【0014】
一の態様において、細繊維層はメルトブロー層またはガラス層であってよく、前記少なくとも1つの粗支持層は、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成してよい。前記少なくとも一つの粗支持層は、細繊維層の上流に設けられた第1粗支持層、および細繊維層の下流に設けられた第2粗支持層を含んでよい。平面状ウェブを第1粗支持層の上流に設けてよい。一の例示的態様において、第2粗支持層は、第1粗支持層を形成する繊維の平均繊維径よりも大きい平均繊維径を有する繊維から形成され、第2粗支持層を形成する繊維の平均繊維径は、平面状ウェブを形成する繊維の平均繊維径よりも大きく、平面状ウェブを形成する繊維の平均繊維径は、細繊維層を形成する繊維の平均繊維径よりも大きい。他の要旨において、細繊維層は、平面構造の細繊維層の表面積よりも、少なくとも約50%大きい表面積を有し得る。
【0015】
他の要旨において、波形構造を有し、その結果フィルタ材が約2インチまたはそれより小さい高さを有する複数の不均一な波を含む、少なくとも二つの繊維層を備えたフィルタ材を有するフィルタ要素を提供する。繊維層の少なくとも1つはメルトブロー層またはガラス層等の細繊維ろ過層であってよく、繊維層の少なくとも一つは粗繊維支持層であってよい。フィルタ要素は、フィルタ材の外周の周りに設けられたハウジングを含むことも可能である。一の態様において、フィルタ材の外周の一部を硬化させることによってハウジングを形成してよい。別の態様において、ハウジングはフィルタ材の外周の周りに設けられた枠(またはフレーム)であってよい。フィルタ材は好ましくは7〜16のMERV評価を有する。
【0016】
別の態様において、複数の山および谷を有する波形フィルタ材を形成するために一緒に組み合わされたろ過層および支持層を有する、プリーツ状フィルタ要素を提供する。前記波形フィルタ材は、プリーツ状である。一の例示的態様において、波形フィルタ材は、当該波形フィルタ材がプリーツ形状を維持できるようにするのに十分な硬さの裏材を含む。これに代えて又は付加的に、波形フィルタ材は、波形フィルタ材がプリーツを維持できるようにするための剛性を有してよい。一の例示的態様において、波形フィルタ材は、プリーツ形成の前に約0.5インチまたはそれより薄い厚さを有し、プリーツ形成した場合に約12インチまたはそれより薄い、より好ましくは約2インチまたはそれより薄い厚さを有する。プリーツ状波形フィルタ材は、フィルタ材の外縁の周りに設けられたハウジングを含んでもよい。一の例示的態様において、プリーツ状フィルタ材は、7〜16のMERV評価を有する。
【0017】
別の要旨において、ハウジングおよび前記ハウジングと組み合わされた複数のフィルタを有するバグフィルタを提供する。各々のフィルタは、そのフィルタに形成されたポケットを有してよく、そのポケットを通じて空気の流れを受けるように構成することが可能であり、各々のフィルタは、山および谷を形成するために第2繊維層によって波形構造に保持された、メルトブロー層またはガラス層等の第1繊維層を有するフィルタ材から形成してよい。ハウジングは、例えば枠であってよく、各々のフィルタの開放端を、前記枠と組み合わせてよい。フィルタは、互いに平行に設置してよい。フィルタは、前記フィルタ内に設けられ、フィルタの向かい合う側壁を互いに所定の間隔で保持するように適合された、少なくとも一つのスペーサーをオプションとして含んでもよい。一の例示的態様において、フィルタ材は、約2インチまたはそれより薄い、より好ましくは約0.5インチまたはそれより薄い厚さ、および/または約7〜16、より好ましくは約10〜16の範囲のMERV評価を有する。フィルタ材は、第1繊維層の、第2繊維層とは反対の側に設けられた第3繊維層を含んでもよい。
【図面の簡単な説明】
【0018】
【図1A】図1Aは、フィルタ材の一の態様の側面図である。
【図1B】図1Bは、フィルタ材の別の態様の側面図である。
【図1C】図1Cは、図1Aのフィルタ材の一の層の側面図である。
【図2A】図2Aは、パネルフィルタの一の態様の斜視図である。
【図2B】図2Bは、図2Aのパネルフィルタの、直線2Bを横切る垂直断面図である。
【図3】図3は、パネルフィルタの別の態様の側面図である。
【図4A】図4Aは、プリーツ状フィルタ要素の一の態様の斜視図である。
【図4B】図4Bは、プリーツ状フィルタ要素の別の態様の垂直断面図である。
【図4C】図4Cは、プリーツ状フィルタ要素の更に別の態様の垂直断面図である。
【図5A】図5Aは、バグフィルタであって、当該バグフィルタ内に設けられた複数のフィルタバッグを有するバグフィルタの一の態様の斜視図である。
【図5B】図5Bは、図5Aのフィルタバッグの一つの斜視図である。
【図5C】図5Cは、図5Bのフィルタバッグの垂直断面図である。
【図6】図6は、種々のフィルタ材に関する、圧力損失に対する放電DOP透過率を示すグラフである。
【図7】図7は、種々のフィルタ材に関する塵埃保持容量を示すグラフである。
【図8】図8は、種々のフィルタ材に関するNaCl充填量を示すグラフである。
【図9】図9は、種々のフィルタ材に関するマルチパス液体試験を示すグラフである。
【発明を実施するための形態】
【0019】
本明細書において開示される装置の構造、機能、製造および使用、並びに方法の原理の全面的理解を提供するために、特定の例示的態様をここで説明する。ここで特に説明する装置および方法が限定的でない例示的態様であること、および本発明の範囲が特許請求の範囲のみによって規定されることを当業者は理解するであろう。一の例示的態様に関連して説明した特徴は、他の態様の特徴と組み合わせてよい。そのような変更および変形は、本発明の範囲内に含まれるように意図されている。
【0020】
本発明は概括的には、費用対効果が高く製造が容易で、高性能、高効率の種々のフィルタ材を提供する。特に、表面積の増加をもたらす波形構造を備えた少なくとも1つの層を有する、種々のフィルタ材を提供し、前記表面積の増加によって、フィルタ材の種々の特性が向上する。フィルタ材は、種々の用途に使用するための様々なフィルタ要素を形成するのに用いることが可能である。
【0021】
[フィルタ材]
概略的に言えば、1以上の追加の繊維層によって波形または曲線状構造に保持された、少なくとも一つの繊維層を有する種々のフィルタ材を提供する。波形構造の結果として、フィルタ材は、増加した表面積を有し、増加した表面積はろ過特性の向上をもたらす。フィルタ材は、種々の繊維層を含んでよく、いくつかの層のみ又は全ての層を波形にすることが可能である。図1Aはフィルタ材の一の例示的態様を示しており、少なくとも一つのろ過層と、前記ろ過層を波形構造に保持して当該ろ過層の隣り合う波の山および谷の間隔を維持する少なくとも一つの粗支持層とを有するフィルタ材10を示す。図示した態様において、フィルタ材10は、細繊維ろ過層12、下流の第1粗支持層14、および細繊維ろ過層12の反対側に設けられた上流の第2粗支持層16を含む。支持層14、16は、細繊維ろ過層12及び場合により追加のろ過層のいずれをも波形構造に維持するのに役立つ。二つの粗支持層14、16を示しているが、フィルタ材10は両方の支持層を必ずしも含む必要はない。ただ一つの粗支持層を提供する場合、前記粗支持層は、(1以上の)ろ過層の上流または下流に設けてよい。
【0022】
フィルタ材10は、場合により、フィルタ材10の最も上流側および/またはもっとも下流側に位置する、1以上の外部層または被覆層を含んでもよい。図1Aは、フィルタ材10の上流側に設けられた、上流塵埃保持層として機能する最上層18を図示する。最上層18は、審美的な層としても機能し得、前記最上層を以下により詳細に説明する。図示した態様における層は、最上層18を空気の入る側(符号I)に設け、第2粗支持層16を最上層18のすぐ下流に、細繊維ろ過層12を第2粗支持層16のすぐ下流に設け、第1粗支持層14を第1層12の下流の空気の出る側(符号O)に設けるように配置される。空気流の方向(即ち空気の入口Iから空気の出口Oへの方向)を、符号Aの矢印で示す。
【0023】
これに代えて又は付加的に、外部層または被覆層は、フィルタ材10に構造的一体性を与えて波形構造の維持を助ける強化成分として機能する、フィルタ材10の下流側に設けられた底部層であってよい。(1以上の)外部層または被覆層は、耐剥離性を与えるためにも機能し得る。図1Bは、図1Bのフィルタ材10と類似した別の態様のフィルタ材10Bを図示する。この態様において、フィルタ材10Bは、最上層を含まないが、その代わり、細繊維ろ過層12B、前記細繊維ろ過層12Bのすぐ下流に設けられた第1粗支持層14B、空気入口側Iにおいて細繊維ろ過層12Bのすぐ上流に設けられた第2粗支持層16B、および空気出口側Oにおいて第1粗支持層13Bのすぐ下流に設けられた底部層18Bを有する。当業者は、種々の他の構造が可能であること、およびフィルタ材が任意の数の層を種々の配置で含んでよいことを理解するであろう。
【0024】
[細繊維層]
上で示したように、一の例示的態様において、フィルタ材10は、少なくとも一つの細繊維ろ過層12を含む。一の例示的態様において、細繊維から形成された単一のろ過層12を用いるが、フィルタ材10は、下流粗支持層と上流粗支持層との間に設けられた、細繊維ろ過層12と隣り合った、またはフィルタ材内の他のいずれかの場所に設けられた、任意の数の追加のろ過層を含んでよい。図示していないが、(1以上の)追加のろ過層を、細繊維ろ過層12と共に波形構造に維持することが可能である。特定の例示的態様において、フィルタ材10は、細繊維ろ過層12の上流に設けられた1以上の追加のろ過層を含んでよい。前記追加の(1以上の)ろ過層は、細繊維から形成してよく、より好ましくは、細繊維ろ過層12を形成する繊維の平均繊維径よりも大きい平均繊維径を有する繊維から形成してよい。
【0025】
細繊維ろ過層12は、種々の繊維から形成してよいが、一の例示的態様において、細繊維ろ過層12は、約10μ未満、より好ましくは約5μ未満、より好ましくは約3μ未満の平均繊維径を有する繊維から形成される。特定の例示的態様において、繊維は約1.5μまたはそれより小さい平均繊維径を有することが可能であり、前記繊維には、約1μ未満の平均径を有するナノ繊維が含まれる。
【0026】
任意の追加のろ過層を設ける場合、種々の繊維から同様に形成してよいが、一の例示的態様において、(1以上の)追加のろ過層は、約5μより大きいが好ましくは約10μより小さい平均繊維径を有する繊維から形成される。
【0027】
繊維を形成するために種々の材料が使用でき、合成材料でも非合成材料でもよい。一の例示的態様において、細繊維ろ過層12、および(1以上の)任意の追加のろ過層は、メルトブロー繊維から形成する。これらに限定しないが、例えば、ポリプロピレンおよびポリエチレン等のポリオレフィン;ポリブチレンテレフタレートおよびポリエチレンテレフタレート等のポリエステル;ナイロン等のポリアミド;ポリカーボネート;硫化ポリフェニレン;ポリスチレン;ポリウレタン等を材料とできる。別の態様において、細繊維ろ過層12は、ガラス繊維から形成してよい。ガラス繊維ウェブを形成するために種々の製造技術を用いてよく、前記ウェブには湿式ウェブおよび乾式ウェブが含まれる。ガラス繊維の種類および寸法もまた、様々であり得るが、一の例示的態様においては、前記ガラス繊維は、ロータリー(rotary)法またはフレーム・アティニュエーション(flame attenuation)法を用いて作製されたA型またはE型のガラス繊維等の、約0.2μ〜5μの範囲の平均繊維径を有するマイクロガラス繊維である。他の適切な材料には、ポリビニルアルコールおよびフッ化ポリビニリデンが限定的でない例として含まれる。細繊維ろ過層12および(1以上の)任意の追加のろ過層は、当該技術分野で公知の種々の他の技術を用いて形成してもよく、前記技術には、湿式技術、エアレイド(air laid)技術、カーディング(carding)、エレクトロスピニング(electrospining)、およびスパンボンディング(spunbonding)が含まれる。
【0028】
得られる細繊維ろ過層12および(1以上の)任意の追加のろ過層は、所望の用途の要求に応じて、種々の厚さ、空気透過性、坪量、およびろ過効率を有することも可能である。一の例示的態様において、細繊維ろ過層12は、平面構造において測定する場合、約2mil〜30milの範囲の厚さ、約10CFM〜300CFMの範囲の空気透過性、約3gsm〜50gsmの範囲の坪量、および約20%〜99%の範囲のDOPろ過効率を有する。いずれかの追加のろ過層を提供する場合、特定の例示的態様において、各々の追加のろ過層は、平面構造で測定した場合、約2mil〜30milの範囲の厚さ、約10CFM〜300CFMの範囲の空気透過性、約3gsm〜50gsmの範囲の坪量、および約20%〜99%の範囲のDOPろ過効率を有する。
【0029】
[粗支持層]
上でも示したように、フィルタ材10は、少なくとも一つの粗繊維支持層を含んでよい。一の例示的態様において、フィルタ材10は、細繊維ろ過層12の空気流出側Oに設けられた下流の粗支持層14を含み、前記下流の粗支持層14は、細繊維ろ過層12を波形構造に保持するのに有効である。フィルタ材10は、下流の粗支持層14と対向する、細繊維ろ過層12の空気流入側Iに設けられた上流の粗支持層16を含んでもよい。上流の粗支持層16は、細繊維ろ過層12を波形構造に維持するのに同様に役立つ。上に示したように、フィルタ材10がいずれの数の層をも含んでもよいこと、および前記フィルタ材が二つの粗支持層または最上層を含むことを必ずしも必要としないことを、当業者は理解するであろう。特定の例示的態様において、フィルタ材10は、細繊維ろ過層12および単一の隣り合う粗支持層14または16から形成してよい。他の態様において、フィルタ材は、種々の構造に配置された、いずれの数の追加の層をも含んでよい。個々の数および種類は、フィルタ材の使用目的に依って変えてよい。
【0030】
粗支持層14、16は、種々の種類および寸法の繊維から形成してよい。一の例示的態様において、下流の粗支持層14は、細繊維ろ過層12、上流粗支持層16、および形成されているならば最上層18の平均繊維径よりも大きい平均繊維径を有する繊維から形成され、上流の粗支持層16は、下流の粗支持層14の平均繊維径よりも小さいが、細繊維ろ過層12および最上層18の平均繊維径よりも大きい平均繊維径を有する繊維から形成される。特定の例示的態様において、下流の粗支持層14は、約5μ〜40μの範囲、より好ましくは約20μ〜30μの範囲である平均繊維径を有する繊維から形成してよく、上流の粗支持層16は、約10μ〜40μの範囲、より好ましくは約15μ〜20μの範囲である平均繊維径を有する繊維から形成してよい。
【0031】
粗支持層14、16の繊維を形成するために、合成材料および非合成材料を含む種々の材料を用いることも可能である。一の例示的態様において、粗支持層14、16は、短繊維から形成され、特にバインダー繊維と非バインダー繊維との組み合わせから形成される。適切な繊維組成物の一つは、少なくとも約20%のバインダー繊維と残りの非バインダー繊維との混合物である。本発明のフィルタ材は、種々の種類のバインダー繊維および非バインダー繊維を用いて形成してよい。バインダー繊維は、層間の熱接合を促進するように、非バインダー繊維の溶融温度よりも低い活性化温度を有するいずれの材料からも形成してよい。バインダー繊維は、単一成分繊維、または数多くの異相構造バインダー繊維の内のいずれか一つであってよい。一の態様において、バインダー繊維は、異相構造繊維であってよく、各々の成分は、異なる溶融温度を有してよい。例えば、バインダー繊維は、芯および鞘であって、鞘の活性化温度が芯の溶融温度よりも低い芯および鞘を含んでよい。このことによって、芯の前に鞘が溶けて鞘が層内の他の繊維と結合し、その一方で芯がそれ自体の構造的完全性を維持することが可能になる。このことは、ろ液を補集するためのより密着した層の作製において、特に好都合である。前記芯鞘バインダー繊維は同心性または非同心性であり得、芯と鞘のバインダー繊維には例えば以下のものが含まれてよい:ポリエステル芯/コポリエステル鞘、ポリエステル芯/ポリエチレン鞘、ポリエステル芯/ポリプロピレン鞘、ポリプロピレン芯/ポリエチレン鞘、およびそれらの組み合わせ。他の異相構造バインダー繊維としては、例えばスプリットファイバー(split fiber)、サイドバイサイド型繊維、および/または海島型(island in the sea)繊維が含まれてよい。更に、異相構造バインダー繊維には例えばTrevira Types 254、255、および256;Invista Cellbond(登録商標)Type 255;Fiber Innovations Tyoes 201、202、215、および252;並びにES Fibervisions AL−Adhesion−C ESC 806Aが含まれてよい。
【0032】
非バインダー繊維は、合成および/または非合成であってよく、一の例示的態様において、非バインダー繊維は約100%合成であってよい。湿気、熱、長時間のエージング、および微生物分解に対する耐性に関しては、通常、非合成繊維よりも合成繊維が好ましい。合成非バインダー繊維には、例えばポリエステル、アクリル樹脂、ポリオレフィン、ナイロン、レーヨン、およびそれらの組み合わせが含まれてよい。これに代えて、フィルタ材を形成するのに用いる非バインダー繊維には、ガラス繊維、グラスウール繊維、セルロースパルプ繊維(例えばウッドパルプ繊維)等の非合成繊維、およびそれらの組み合わせが含まれてよい。合成非バインダー繊維には、例えばTrevira Type 290、並びにWellman Fortrel(登録商標)Types 204、289、および510が含まれてよい。
【0033】
粗支持層14、16は、当該技術分野において公知の種々の技術を用いて形成してもよく、例えば、メルトブロー法、湿式技術、エアレイド技術、カーディング、エレクトロスピニング、およびスパンボンディングを用いることができる。しかし、一の例示的態様において、粗支持層14、16は、カーディングされたウェブまたはエアレイドウェブである。得られる層14、16は、所望の用途の要求に応じて、種々の厚さ、空気透過性、および坪量を有することも可能である。一の例示的態様において、下流の粗支持層14および上流の粗支持層16は、平面構造で測定する場合、各々、約10mil〜60milの範囲の厚さ、約300CFM〜1000CFMの範囲の空気透過性、および約10gsm〜100gsmの範囲の坪量を有する。
【0034】
[外部層または被覆層]
上で示したように、フィルタ材10は、場合により、空気流入側Iおよび/または空気流出側Oに設けられた、1以上の外部層または被覆層を含んでもよい。図1Aは、フィルタ材10の空気流入側Iに設けられた最上層18を図示する。最上層18は、塵埃充填層として機能し得、および/または審美的な層として機能し得る。一の例示的態様において、最上層18は、細繊維ろ過層12および粗支持層14、16を波形にした後に、フィルタ材10と組み合わされた平面層である。従って、最上層18は、見た目の良い最上部の表面を与える。最上層18は、種々の種類および寸法の繊維から形成してよいが、一の例示的態様において、最上層18は、最上層18のすぐ下流に設けられた上流の粗支持層16の平均繊維径より小さいが、細繊維ろ過層12の平均繊維径よりも大きい平均繊維径を有する繊維から形成される。特定の例示的態様において、最上層18は、約5μ〜20μの範囲の平均繊維径を有する繊維から形成される。結果として、最上層18は、以下で更に詳細に説明するように、フィルタ材10のアルファ値に影響を及ぼすことなく、塵埃保持層として機能することが可能である。
【0035】
これに代えて又は付加的に、図1Bに示すように、フィルタ材10Bは、フィルタ材10Bの空気流出側Oに設けられた底部層18Bを含んでよい。底部層18Bは、フィルタ材10Bに構造的一体性を与えて波形構造の維持を助ける強化成分として機能することが可能である。底部層10Bは、耐剥離性を与えるために機能することも可能である。このことは、使用する間に最外層が摩耗にさらされるASHRAEバッグ用途において、特に望ましい。底部層18Bは、上で論じたように、最上層18と類似の構造を有してよい。しかし、一の例示的態様において、底部層18Bは、好ましくは最も粗い層である。即ち、底部層18Bは、フィルタ材の他の全ての層を形成する繊維の平均繊維径よりも大きい平均繊維径を有する繊維から形成される。底部層は例えばスパンボンド層であるが、種々の構造を有する種々の他の層を用いてよい。
【0036】
外部層または被覆層の繊維を形成するために、合成材料および非合成材料を含む種々の材料を用いてもよい。一の例示的態様において、外部層又は被覆層(例えば最上層18および/または底部層18B)は、短繊維から、特にバインダー繊維と非バインダー繊維との組み合わせから形成される。一の適切な繊維組成物は、少なくとも約20%のバインダー繊維と残りの非バインダー繊維との混合物である。本発明のフィルタ材を形成するために、粗支持層14、16に関して上で先に論じたものを含む、種々の種類のバインダー繊維および非バインダー繊維を用いてよい。
【0037】
外部層または被覆層(例えば最上層18および/またはいずれかの底部層)は、当該技術分野において公知の種々の技術を用いて形成してもよく、前記技術には、メルトブロー法、湿式技術、エアレイド技術、カーディング、エレクトロスピニング、およびスパンボンディングが含まれる。しかし、一の例示的態様において、最上層18はエアレイド層であり、底部層18Bはスパンボンド層である。得られる層は、所望の用途の要求に応じて、種々の厚さ、空気透過性、および坪量を有してもよい。一の例示的態様において、外部層または被覆層は、平面構造で測定する場合、約2mil〜50milの範囲の厚さ、約100CFM〜1200CFMの範囲の空気透過性、および約10gsm〜50gsmの範囲の坪量を有する。
【0038】
図1Aは4層のフィルタ材を図示しているが、フィルタ材は任意の数の層を種々の構造で含んでよいことを、当業者は理解するであろう。ろ過作用を向上させるため、支持を与えるため、構造を変更するため、または他の種々の目的のために、種々の層を加えてよい。限定的でない例として、フィルタ材は、種々のスパンボンド湿式セルロース層、乾式合成不織層、湿式合成層、および湿式マイクロガラス層を含んでよい。
【0039】
[製造方法]
種々の製造技術を用いて、いくつかの層または全ての層を波形構造に成形してよいが、一の例示的態様において、細繊維ろ過層12、任意の追加のろ過層、および好ましくは粗支持層14、16の少なくとも一つを、互いに隣接して空気流入側から空気流出側へ所望の配置で設置し、その組み合わせた層を、例えば第1表面の速度よりも遅い速度で第2表面が移動するような、異なる速度で移動する第1移動表面と第2移動表面との間に運ぶ。第1移動表面に向けて層を引っ張るために、およびその後、層が第1移動表面から第2移動表面に移動するときに第2移動表面に向けて層を引っ張るために、吸引力(真空力等)を用いてよい。それらの層が第2移動表面に移るときに、速度差が、層にZ方向の波の形成を引き起こし、従って、層に山および谷が形成される。所望の1インチ当たりの波数を得るために、各々の表面の速度を変化させることが可能である。山および谷の大きさ(または振幅)を規定するために、表面間の距離もまた、変化させることが可能であり、一の例示的態様においては、距離を0〜2インチの間に調節する。所望のフィルタ材構造を得るために、異なる層の特性を変化させることも可能である。一の例示的態様において、フィルタ材は、約0.025インチ〜2インチの範囲の高さ(全体の厚さ)を備えた、1インチ当たり約2〜6個の波を有するが、これは、目的とする用途に応じて著しく変化し得る。図1Aに示すように、一つの波Wは、一の山の中央から隣り合う山の中央にわたる。
【0040】
図1Aに示す態様において、細繊維ろ過層12および粗支持層14、16が波形である場合、得られる細繊維ろ過層12は、図1Cに示すように、その各々の表面(即ち空気流入側Iおよび空気流出側O)において複数の山Pおよび谷Tを有するだろう。粗支持層14、16は、山Pを越えて広がり、かつ谷Tの中に広がり、その結果、粗支持層14、16もまた、波形構造を有する。当業者は、細繊維ろ過層12の空気流入側Iにおける山Pが、対応する谷Tを空気流出側Oにおいて有するであろうことを理解するだろう。従って、下流の粗支持層14は、谷Tの中に広がり、反対に、同じTは山Pであり、前記山Pを越えて上流の粗支持層16が広がるであろう。下流の粗支持層14が、細繊維ろ過層12の空気流出側Oにおける谷Tの中に広がるので、下流の粗支持層14は、空気流出側Oにおける隣り合う山Pを、互いに離れた距離で維持し、空気流出側Oにおける隣り合う谷Tを、互いに離れた距離で維持するであろう。上流の粗支持層16は、形成されている場合、細繊維ろ過層12の空気流入側Iにおける隣り合う山Pを互いに離れた距離で同様に維持することが可能であり、細繊維ろ過層12の空気流入側Iにおける隣り合う谷Tを互いに離れた距離で維持することが可能である。その結果、細繊維ろ過層12は、平面構造における細繊維ろ過層の表面積と比較して、著しく増加した表面積を有する。特定の例示的態様において、波形構造における表面積は、平面構造における同じ層の表面積と比較して、少なくとも約50%増加し、一部の場合においては120%も増加する。以下により詳細に論ずるように、表面積の増加によってろ過効率の増加がもたらされる。
【0041】
特定の例示的態様において、下流および/または上流の粗支持層14、16は、谷における繊維の密度または質量よりも大きい繊維の密度または質量を山において有してよい。このことは、細繊維ろ過層12と比較して、下流および/または上流の粗支持層14、16が粗いことに起因することがある。特に、層が第1移動表面から第2移動表面に移るときに、細繊維ろ過層12の相対的に細かいという特性によって、細繊維ろ過層12に形成された波の周りに下流および/または上流の粗支持層14、16を固めることが可能となるだろう。粗支持層14、16が山Pを越えて広がる場合、移動距離は、各々の層14、16が谷を満たすために移動する距離よりも小さいであろう。その結果、粗支持層14、16は、山において束になり、従って、谷と比較して増加した繊維の質量を山において有し、それによって、層は移動してループ状構造を形成する。
【0042】
一旦層を波形構造に形成すると、バインダー繊維を活性化させて繊維の結合を生じさせることによって、波形形状を維持することが可能である。バインダー繊維を活性化させるために、種々の技術を用いてよい。例えば、芯および鞘を有する異相構造バインダー繊維を用いる場合、熱を用いることによってバインダー繊維を活性化してよい。単一成分バインダー繊維を用いる場合、熱、蒸気、および/または他の形態の温蒸気を用いることによって、バインダー繊維を活性化してよい。最上層18(図1A)および/または底部層18B(図1B)を、上流の粗支持層16(図1A)の最上部または下流の粗支持層14B(図1B)の底部に各々設けてもよく、上流の粗支持層16または下流の粗支持層14Bと、結合等によって同時に又は後で組み合わせてよい。場合により、バインダー繊維を用いる以外の種々の技術を用いて層を互いに組み合わせてよいことをも、当業者は理解するであろう。他の適切な組み合わせ技術には、接着、ニードリング、ハイドロエンタングルメント(hydroentanglement)、および化学結合剤が含まれる。層は、個別に結合された層であってもよく、かつ/またはそれらの層は、波形にする前に、互いに組み合わせてよい(結合を含む)。
【0043】
材料を乾燥させる前に、場合により含浸剤(saturant)を塗布してもよい。繊維の溶融温度よりも低い温度における層の形成を促進するために、種々の含浸剤を本発明のフィルタ材に用いてよい。含浸剤には、例えば、水性溶媒または有機溶媒中に存在する、フェノール樹脂、メラミン樹脂、尿素樹脂、エポキシ樹脂、ポリアクリル酸エステル、ポリスチレン/アクリレート、塩化ポリビニル、ポリエチレン/塩化ビニル、ポリビニルアセテート、ポリビニルアルコール、並びにそれらの組み合わせ及び共重合体が含まれ得る。
【0044】
他の態様において、得られるフィルタ材は、以下に示す特性の少なくとも一つ、場合により全てにおいて傾斜を有してもよい:バインダー繊維および非バインダー繊維の組成、繊維径、固体性(solidity)、坪量、および含浸剤含有量。例えば、一の態様において、フィルタ材は、軽量の、かさ高い(lofty)、粗繊維の、少し結合した、かつ少し飽和したシートを上流に有してよく、より重い、より高密度の、細繊維の、多く結合した、かつ多く飽和したシートを下流に有してよい。このことによって、より粗い粒子を上流の層において補集することが可能になり、底部層の早期の飽和を防ぐ。他の態様において、最も上流の層は、最も下流の層よりも軽量かつ/またはかさ高くてよい。即ち、上流の層は、下流の層よりも小さい固体性(solidity)(例えばウェブにおける繊維の固体体積比率(solid volume fraction))及び坪量を有してよい。更に、フィルタ材が含浸剤を含む態様において、フィルタ材は、最も上流の層および最も下流の層における含浸剤の量に関して傾斜を有してよい。当業者は、フィルタ材が有し得る種々の特性を理解するであろう。
【0045】
エレクトレット繊維ウェブを形成するために、静電荷をフィルタ材に又はフィルタ材の種々の層に与えることもまた、場合により可能である。エレクトレットフィルタ材を形成するために、永久双極子を重合体ウェブに与えるための様々な技術がよく知られている。AC(または交流)および/またはDC(または直流)コロナ放電ユニットおよびそれらの組み合わせを用いることによって、帯電を行ってよい。個々の放電特性は、電極の形状、極性、ギャップの寸法、およびガスまたはガス混合物によって決まる。摩擦に基づく帯電技術を含む他の技術を用いて、帯電を行ってもよい。
【0046】
フィルタ材は、波形構造に形成した後にプリーツ形成してもよく、種々の例示的構造を以下に更に詳細に論じる。波形フィルタ材にプリーツ形成するために、当該技術分野において公知のプリーツ形成技術のいずれを用いることも実質的に可能であることを、当業者は理解するであろう。通常、複数の平行な折り線をフィルタ材に形成させることによって、および各々の折り線で折り目を形成させることによって、フィルタ材にプリーツを施す。
【0047】
[フィルタ材の特性]
上で示したように、得られたフィルタ材の特性は、フィルタ材の構造および目的とする用途に応じて様々であってよい。一の例示的態様において、波形構造は、フィルタ材10の表面積を増加させるのに有効であり、それが今度は、平面構造を有する他の点では類似のフィルタ材よりも改良されたろ過特性を有するフィルタ材をもたらす。
【0048】
フィルタの性能を異なる基準に基づいて評価してよいが、フィルタまたはフィルタ材を、ろ取すべき汚染物質のフィルタを横切る透過率の低さによって特徴付けることが望ましい。しかし同時に、フィルタを横切る圧力損失または抵抗が比較的低くあるべきである。透過率(多くの場合パーセンテージとして表される)は以下のように定義される:

(透過率)=C/C

ここでCは、フィルタを通過した後の粒子濃度であり、Cは、フィルタを通過する前の粒子濃度である。フィルタ効率は以下のように定義される。

100−(透過率)(%)
【0049】
有効なフィルタが、フィルタを横切る透過率および圧力損失の両方に関してできるだけ低い値を維持することが望ましいので、アルファ(α)と呼ばれる値(透過率の対数の、フィルタを横切る圧力損失に対する傾き)に従ってフィルタを評価する。傾きが急なほど又はアルファ値が高いほど、フィルタ性能がより良いことを示している。アルファは、以下の式に従って表現される。

α=−100log(C/C)/DP

ここで、DPはフィルタ材を横切る圧力損失である。
【0050】
多くのろ過状況において、高い初期アルファ値を有することが重要である。しかし、それほど重要ではない場合、許容可能なアルファ値をろ過工程の中でうまく維持することが同様に重要である。例えば、呼吸器の用途において、製造規格は、最終的な呼吸器フィルタ(呼吸器マスク等)をエージングの影響をシミュレーションするために高温度に付すことを命じている。従って、フィルタ材は、熱に付されたときに高いアルファ値を維持することが可能でなければならない。
【0051】
特定の用途(HVAC等)においては、放電性能もまた、重要である。合成フィルタ材は、ろ過性能を高めるために、多くの場合帯電している。フィルタを使用する間にこの帯電が消失することが懸念されるため、フィルタの考え得る最も低い効率をユーザーに知らせるという動向が存在する。EN779:2002(粗フィルタおよび細フィルタのための欧州規格)は、性能低下の可能性が存在するか否かを測定するための、放電前および後における、平らなフィルタ片に対する義務的な試験を包含する。試験方法は、完全に放電したフィルタ材をもたらすいずれの手順を用いてもよい。提案された手順には、イソプロパノール若しくは界面活性剤水溶液に浸すこと、またはディーゼルガスに曝すことが含まれる。イソプロパノールによる処理では、未処理のフィルタ材試料の効率を最初に測定する。次に、試料をイソプロパノール100%溶液に浸し、フィルタ試料がイソプロパノールでぬれた後に、乾燥のためのドラフトチャンバー(fume cupboard)内の平らな不活性表面に試料を置く。24時間乾燥した後に、効率の測定を繰り返す。
【0052】
DOP(ジオクチルフタレート)試験は、TSI,Inc.から購入した、油発生器を備えた自動フィルタ試験ユニット(8130)を採用する。その機器は、115L/分またはそれより遅い流速において、フィルタ材を横切る圧力損失、および結果として得られる透過率の、ある瞬間に基づく又は「充填中の」値を測定する。瞬間の読み込みは、一つの圧力損失/透過率の測定として定義する。TSIの仕様書によれば、油発生器は、DOP、DEHS、パラフィン、またはEmory 3004を用いて0.33ミクロンの質量中央径(mass mean diameter)、0.20ミクロンの個数中央径(count mean diameter)を発生させる。本明細書におけるDOPアルファに対する全ての言及は、100cmの試料寸法を適用したDOP試験に関して言及している。空気の流速は、10.5fpmの前面速度を生み出す32lpm、または25fpmの前面速度を生み出す76lpmであった。
【0053】
別の例示的試験は、NaCl(塩化ナトリウム)試験であり、これはTSI,Inc.の、塩化ナトリウム発生器を備えた8130CertiTest(商標)自動フィルタ試験ユニットを採用している。塩粒子発生器によって作製した平均粒子寸法は0.26ミクロンの質量中央径、または0.07ミクロンの個数中央値である。機器は、115L/分(lpm)またはそれより遅い流速における、フィルタ材を横切る圧力損失、および結果として得られる透過率の瞬間的値を測定する。8130は、一つの圧力損失/透過率を、ほぼ毎分読み込む連続モードにおいて運転することができる。本明細書におけるNaClアルファに対する全ての言及は、フィルタに充填される細粒子を表すために、流速76lpm(前面速度25fpm)における、100cmの試料へのNaCl粒子の連続的充填について言及している。試料100cm当たりおよそ60mgのNaClを充填するために、60分間15mg(NaCl)/m(空気)の濃度で試料を充填した。
【0054】
F5〜F8のEN779等級を満たすガラスフィルタ材が、上述のようにイソプロピルアルコールを用いて放電する前および後に前面速度5.3cm/sで試験した場合、DOPまたはDEHS(ジオクチルセバケート、DOPと同等のものであると認められる)を用いて約12〜16の範囲のアルファ値を有することがわかっている。本発明のフィルタ材は、イソプロピルアルコールを用いて放電した後に、9、更に好ましくは約11より大きい、最も好ましくは16より大きいDOPアルファの最小値を達成し、従って、ガラスフィルタ材の適切な代替物を提供する。DOPアルファ9に対して、IPAに浸した後の対応するNaClアルファは約12であり、DOPアルファ11に対して、IPAに浸した後の対応するNaClアルファは約14であり、DOPアルファ16に対して、IPAに浸した後の対応するNaClアルファは約20である。しかし、本発明のフィルタ材のアルファ値は、フィルタ材またはフィルタ材を含むフィルタ要素の構造に応じて様々であってよい。
【0055】
フィルタの、空気から粒子を取り除く能力を説明するために、MERV(最小効率報告値、Minimum Efficiency Reporting Value)評価が、HVAC(暖房、換気、および空気調節、Heating,Ventilating and Air Conditioning)産業に用いられている。MERV評価は、種々の寸法範囲における粒子に対するフィルタ効率に由来しており、ASHRAE 52.2に記載された方法に従って計算する。MERV評価がより高いことは、より良好なろ過およびより優れた性能を意味する。一の例示的態様において、本発明のフィルタ材は約7〜16の範囲のMERV評価を有するが、前記評価は、目的とされる用途に応じて様々であってよい。
【0056】
得られるフィルタ材は、所望の用途の要求に応じて、種々の厚さ、空気透過性、坪量、および、塵埃保持容量を有することも可能である。厚さは、本明細書において言及する場合、適切なキャリパーゲージを用いて、TAPPI T411に従って測定する。坪量は、本明細書において言及する場合、ASTM D−846に従って測定する。塵埃保持容量は、本明細書において言及する場合、バッグの代わりに平面シートにおける塵埃の充填を試験するための、ASHRAE 52.1を変更したものに基づいて試験する。1ftの試料を横切る圧力損失は、前面速度25fpmにて測定する。ASHRAE 52.1に記載されているASHRAE塵埃を、1.5インチHOの圧力損失に達するまで、1グラムの増加量で加える。この圧力損失に達するためのグラム数は、gram/ftで言及される。
【0057】
例えば、一の態様において、得られるフィルタ材は、図1Aに示すように、約1.5mm〜25mmの範囲の厚さt、約10CFM〜300CFMの範囲の空気透過性を有し得る。得られるフィルタ材は、約70gsm〜1100gsmの範囲の坪量、1.5インチHOの圧力損失まで充填するASHRAE塵埃を用いた、前面速度25FPMにおける少なくとも約8g/ftの塵埃保持容量、および/または前面速度25FPMにて0.26μの粒子をおよそ60mg/100cm充填した後の、約50mmHOより少ないNaCl充填量を有することも可能である。
【0058】
[フィルタ要素]
先に示したように、本明細書において開示するフィルタ材は、液体および空気ろ過の両方の用途を含む種々の用途に用いるための、様々なフィルタ要素に組み込むことが可能である。用途としては、例えばASHRAEバグフィルタ、プリーツ形成可能なHVACフィルタ、液体バグフィルタフィルタ材、塵埃バグハウスフィルタ、住居用炉フィルタ(residential furnace filter)、塗装スプレーブースフィルタ(paint spray booth filter)、外科用フェイスマスク、工業用フェイスマスク、客室用エアフィルタ、商業用ASHRAEフィルタ、呼吸器フィルタ、自動車の吸気フィルタ、自動車の燃料フィルタ、自動車の潤滑油フィルタ、室内空気清浄機フィルタおよび真空掃除機の排気フィルタが含まれる。フィルタ要素は、種々の構造を有し得、特定の例示的フィルタ要素の構造を以下により詳細に論じる。これらに限定しないが、例えば放射状のフィルタ要素であってその中に設けられた円柱形フィルタ材を含むフィルタ要素、液体ろ過のためのミクロン等級のベッセルバグフィルタ(ソックフィルタとも呼ぶ)、フェイスマスク等をフィルタ要素とできる。
【0059】
[パネルフィルタ]
一の例示的態様において、フィルタ材は、パネルフィルタにおいて用いることが可能である。特に、フィルタ材10は、その周りに設けられたハウジングを含んでよい。ハウジングは種々の構造を有してよく、個々の構造は、目的とする用途に基づいて様々であってよい。一の態様において、図2Aに示すように、ハウジングは、フィルタ材10の外周の周りに設けられた枠20の形状である。図示した態様において、枠20は、通常長方形であるフィルタ材10の四辺全てを囲むような長方形構造を通常有するが、個々の形状は様々であってよい。枠20は、ボール紙、金属、ポリマー等を含む種々の材料から形成することができる。特定の例示的態様において、枠20は、約12インチまたはそれより薄い、より好ましくは約2インチまたはそれより薄い厚さtを有し得る。図2Bは、枠の垂直断面図を図示しており、前記図は、前記枠内に設けられた波形フィルタ材を示している。別の態様において、枠は、フィルタ材の縁から形成することが可能である。特に、図3に示すように、フィルタ材10’の周囲は、熱シールしてその周りに枠20’を形成することができる。パネルフィルタは、枠、スペーサー等と比較してフィルタ材を安定化させるための安定化機能等の、当該技術分野において公知である種々の他の機能を含むことも可能である。
【0060】
使用において、パネルフィルタ要素は、商業用および住居用のHVACフィルタ;自動車の客室用空気フィルタ;自動車の吸気フィルタ;および塗装スプレーブースフィルタを含む、種々の用途に用いることが可能である。フィルタ要素の個々の特性は、目的とする用途に基づいて様々であり得るが、特定の例示的態様においては、フィルタ要素は7〜16の範囲のMERV評価、および約0.1インチ〜1インチHOの範囲の圧力損失を有する。
【0061】
[プリーツ状フィルタ]
波形フィルタ材は、プリーツ形成すること及びプリーツ形成したフィルタを用いることも可能である。上で論じたように、波形楳体、またはそれらの種々の層は、所定の距離でたがいに離れている折り線を形成し、フィルタ材を保持することによってプリーツ形成することが可能である。しかし、当業者は、他のプリーツ形成技術を用いることができることを理解するであろう。フィルタ材を一旦プリーツ形成すると、図2Aのパネルフィルタと同様に、フィルタ材をハウジング内に組み込むことができる。図4Aは、枠30の中に設けられたプリーツ状フィルタ材32の一の態様を図示する。図2Aに関連して上で論じたように、枠は、種々の形状および寸法を有してよい。フィルタ材は、枠の寸法および目的とする用途に応じて、任意の数のプリーツを有してよい。特定の例示的態様において、フィルタ材は、1インチ当たり1〜2個のプリーツ、および約0.75インチ〜2インチの範囲のプリーツ高さを有する。しかし、いくつかの用途においては12インチまでの高さを有する山が利用される。
【0062】
プリーツ形成を容易にするために、フィルタ材は、自立性であってよい(即ち、プリーツ形成を可能にする剛性を有してよい)。特定の例示的態様において、フィルタ材の最小の剛性は、プリーツ形成を可能にするために、約200mgである(ガーレー剛性試験機(Gurley Stiffness tester)による)。これに代えて又は付加的に、フィルタ材は種々の硬化成分を含んでよい。限定的でない例として、図4Bおよび4Cは、フィルタ材32a、32bの空気流出側に(例えば接着剤または他の接合技術を用いて)接着した安定化ストラップ34a、34bを含む、プリーツ形成された波形フィルタ材32a、32bを図示する。フィルタ材32a、32bが枠30a、30bの中に設けられていることも示す。図4Bは、フィルタ材32aを硬化させてプリーツ状構造の保持を助けるためにフィルタ材32a上に設けられたスクリーン状裏材(screen backing)36aを更に図示する。スクリーン状裏材36aはエキスパンデッドメタルワイヤーまたは押出し成形されたプラスチックメッシュであってよい。
【0063】
使用において、プリーツ状の波形フィルタ要素は、プリーツ形成可能なHVACフィルタ、住居用炉フィルタ、客室用エアフィルタ、商業用ASHRAEフィルタ、自動車用吸気フィルタ、自動車用燃料フィルタ、自動車用潤滑油フィルタ、室内空気清浄機フィルタ、および真空掃除機排気フィルタを含む、種々の用途に用いることが可能である。フィルタ要素の個々の特性は、目的とする用途に依って様々であり得るが、特定の例示的態様において、フィルタ要素は、7〜16の範囲のMERV評価、約0.1〜1インチHOの範囲の圧力損失を有する。フィルタ材は、プリーツ形成前に約0.5インチまたはそれより薄い厚さ、およびプリーツ形成後に約2インチまたはそれより薄い厚さを有することも可能である。しかし、特定の用途において、プリーツ形成後の厚さは12インチまで可能である。
【0064】
[バグフィルタ/ポケットフィルタ]
更に別の態様において、フィルタ材は、暖房、空気調節、換気、および/または冷蔵に用いるためのバグフィルタまたはポケットフィルタ;およびミクロン等級の液体フィルタバッグの中に組み込むことが可能である。二つのフィルタ材を一緒に置き(または一つのフィルタ材を半分に折りたたみ)、3辺(または折りたたんでいる場合には2辺)を互いに合わせて1辺のみが開いたままになるようにし、それによってフィルタ内にポケットを形成することによって、バグフィルタまたはポケットフィルタを形成することができる。図5Aに示すように、複数のフィルタポケット42を枠44に取り付けてフィルタ要素40を形成することができる。各々のポケット42は、開口端が枠内に位置し、従って、空気が、線Aで示す方向で各々のポケット42の中に流れ込むことが可能となるように設けることができる。枠は、各々のポケットの中に広がってそれらを保持する長方形の環を含んでよい。枠が実質的にどんな構造をも有してよいこと、およびポケットを枠に接合するために当該技術分野において公知の種々の接合技術を用いてよいことを、当業者は理解するであろう。更に、枠は、任意の数のポケットを含んでよいが、バグフィルタは通常、6〜10個の間のポケットを含む。
【0065】
図5Bは、1個のポケット42を図示しており、三つの端42a、42b、42cが閉じており、一つの端42dが開口してそれによって線Aで示すような空気流を受けるようになっていることを示している。図5Bに更に示すように、ポケットフィルタ42は、対向する側壁を互いに離れた所定の距離で保持するために構成された、前記ポケットフィルタ42の中に設けられた任意の数のスペーサー43をも含んでよい。スペーサーは、スレッド(thread)、または両方の側壁の間に伸びる他のいずれかの要素であってよい。図5Cは、図5Bのポケットフィルタ42の断面図を図示しており、スペーサー43が側壁の間に伸びていることを示している。空気流の方向を、再び線Aで示す。バグフィルタまたはポケットフィルタに用いるための、当該技術分野において公知の種々の特性を、本明細書において開示されたフィルタ材の中に組み込んでよいことを、当業者は理解するであろう。
【0066】
フィルタ要素の個々の特性は、目的とする用途に基づいて様々であってよいが、特定の例示的態様において、フィルタ要素は、約7〜16、より好ましくは10〜16の範囲のMERV評価、および約0.1〜1インチHOの範囲の圧力損失を有する。フィルタ材は、約2インチ又はそれより薄い、より好ましくは約0.5インチまたはそれより薄い厚さを有することも可能であるが、厚さは、目的とする用途に応じて様々であってよい。
【0067】
限定的でない例として、標準的な8ポケットASHRAEバグフィルタは通常、24インチ×24インチの枠内に30インチの深いポケットを有し、80平方フィートのフィルタ材を与える。同じ大きさを有するが本発明の波形フィルタ材を利用するASHRAEバグフィルタは、176平方フィートのフィルタ材を与えるだろう。
【0068】
以下の限定的でない例は、本発明を更に説明するのに役立つ。
【実施例】
【0069】
[例1]
(比較試料A(対象標準))
試料Aは、Johns Manvilleによって製造された、CM285B−2として販売されている平面状フィルタ材であり、80〜85%ガラスマットフィルタ材である。フィルタ材の特性を、試料Aの下で試験し下記の表1に列挙した。
【0070】
全ての試料に関して、イソプロピルアルコールを用いてフィルタ材を放電させた後に、DOP透過率およびDOPアルファを測定した。詳述すると、100%イソプロピルアルコール溶液の入った容器内に試料を置き、およそ5分間または完全な飽和が達成されるまで浸漬させた。その後、溶液から試料を取り出し、およそ30分間、溶液を排出させた。その後、試料を換気装置/真空フード(vacuum hood)に置き、空気乾燥した。乾燥時間は試料厚さに大きく依存し、20分から48時間まで様々であった。その後、DOP透過率およびDOPアルファ試験を行った。
【0071】
(比較試料B(対象標準))
試料Bは、Hollingsworth&Vose Companyによって製造された、AS8020DDとして販売されている平面状フィルタ材であり、80〜85%合成フィルタ材である。フィルタ材の特性を試験し、下記の表1において試料Bの下に列挙した。
【0072】
(試料C)
四つの層を用いて試料Cを形成し、前記4つの層を上流(空気入口)から下流(空気流出)の順に以下のように並べた:(1)最上部エアレイド層、(2)上流エアレイド粗支持層、(3)細繊維メルトブロー層、および(4)下流のエアレイド粗支持層。
【0073】
最上部エアレイド層は、Invistaから入手可能な6mm Type 255異相構造繊維による2デニール50%、およびWellmanから入手可能な6mm Type 510ポリエチレンテレフタレート(PET)繊維による0.9デニール50%から形成した。最上部エアレイド層を、炉内で結合させた。最上部エアレイド層は、25gsmの坪量、30milの厚さ、および850CFMの空気透過性を有した。
【0074】
上流のエアレイド粗支持層は、Invistaから入手可能な6mm Type 255異相構造繊維による2デニール70%、Wellmanから入手可能な6mm Type 510 PET繊維による0.9デニール20%、およびWellmanから入手可能な6mm Type 341 PET繊維による15デニール10%から形成した。上流のエアレイド粗支持層は、40gsmの坪量、40milの厚さ、および800CFMの空気透過性を有した。
【0075】
細繊維メルトブロー層は、1.4μの平均繊維径を有するポリプロピレン繊維から形成した。メルトブロー層の坪量は、20gsmであり、厚さは7milであり、空気透過性は56CFMであった。
【0076】
下流のエアレイド粗支持層は、Invistaから入手可能な6mm Type 255繊維による2デニール50%、およびWellmanから入手可能な6mm Type 341 PET繊維による15デニール50%から形成した。下流のエアレイド粗支持層は、40gsmの坪量、40milの厚さ、2000CFMの空気透過性を有した。
【0077】
上流の粗支持層、細繊維メルトブロー層、および下流の粗支持層は、約25m/分の速度で移動する第1移動表面上に層を設置することによって、波形構造に成形した。層は、第1移動表面から、約10m/分の速度で移動する第2移動表面へ移動し、その結果、1インチ当たり4個の波が形成された。その後、波形のウェブおよび最上層を、炉内で130℃にて熱的に結合させた。得られたフィルタ材の特性を試験し、下記の表1において試料Cの下に列挙した。
【0078】
(試料D)
試料Dを形成するために試料Cを繰り返したが、細繊維メルトブロー層は、10gsmのポリプロピレンスパンボンドにおいて0.6μの平均繊維径を有するポリプロピレン繊維から形成した。メルトブロー層の坪量は、7gsmであった。得られたフィルタ材の特性を試験し、下記の表1において試料Dの下に列挙した。
【0079】
(試料E)
試料Eを形成するために試料Cを繰り返した。得られたフィルタ材の特性を試験し、下記の表1において試料Eの下に列挙した。
【0080】
【表1】

【0081】
表1に示すように、試料C、D、およびEは、試料AおよびBと比較して、改良された塵埃保持容量、およびイソプロピルアルコールを用いて放電した後の、より高いまたは同等のDOPアルファを有した。試料A〜Eの種々の特性を、図6〜9に記載されているグラフにおいて比較する。
【0082】
図6は、圧力損失に対する放電DOP透過率を図示する。示されているように、試料Bは高い初期圧力損失を有し、前記初期圧力損失は、透過率の増加に従って著しく減少する。一方、試料A、C、D、およびEは低い初期圧力損失を有し、前記初期圧力損失は、透過率の増加に従ってゆっくりと減少する。従って、試料C、D、およびEは、ガラス繊維マットである試料Aに匹敵する特性を有し、メルトブロー層である試料Bよりも優れた特性を有する。従って、図6は、試料C、D、およびEの波形構造が、透過率の関数としての圧力損失をうまく改良し、従って、ガラスマット繊維ウェブに対する適切な代替物を提供することを図示している。
【0083】
図7は、試料A〜Eの塵埃保持容量を図示する。示されているように、試料AおよびBは、試料C、D、およびEと比較して著しく低い塵埃保持容量を示す。従って、試料C、D、およびEの波形構造は、試料AおよびBの平面構造と比較して、改良された塵埃保持容量をもたらす。
【0084】
[例2]
第1平面状細繊維メルトブロー層(メルトブローCと呼ぶ)を、試料Cの細繊維メルトブロー層と同じ構造を有するように製造した。メルトブローCの坪量は20gsmであった。
【0085】
第2平面状細繊維メルトブロー層(メルトブローDと呼ぶ)を、試料Dの細繊維メルトブロー層と同じ構造を有するように製造した。メルトブローDの坪量は、20gsmであった。
【0086】
メルトブローCおよびメルトブローDに対するNaCl充填量、および上述の例1の試料Cおよび試料DにおけるNaCl充填量を試験し、76lpmにおけるNaCl充填量を図8に示した。示されているように、試料CおよびDの波形フィルタ材は、メルトブローCおよびメルトブローDと比較して、より長い時間にわたって抵抗が低いままであるような、NaCl充填量における著しい改良を示す。
【0087】
[例3]
(比較試料F)
四つの層を用いて試料Fを形成し、前記四つの層を上流(空気流入)から下流(空気流出)の順に以下のように並べた:(1)最上部のカーディングされた不織層、(2)細繊維メルトブロー層、および(3)下流のカーディングされた不織層。
【0088】
最上部および底部の不織層は、FITから入手可能な1.75インチ Type 202異相構造繊維による3デニール45%、およびPooleから入手可能な2インチ Type N39 PET繊維による3デニール30%から形成した。最上部および底部の不織層を各々、炉内で結合させた。頂部および底部不織層は各々、160gsmの坪量、155milの厚さ、および420CFMの空気透過性を有した。
【0089】
細繊維メルトブロー層を、1.1μの平均繊維径を有するポリプロピレン繊維から形成した。メルトブロー層の坪量は、35gsmであり、厚さは11milであり、空気透過性は39CFMであった。
【0090】
最上部および底部の不織層を、細繊維メルトブロー層の対向する側に配置して平面状フィルタ材を形成させた。得られたフィルタ材の特性を試験し、表1において試料Fの下に列挙した。
【0091】
(試料G)
試料Gは、四つの層を用いて形成し、前記四つの層を上流(空気流入)から下流(空気流出)の順に以下のように並べた:(1)最上部エアレイド層、(2)上流のエアレイド粗支持層、(3)細繊維メルトブロー層、および(4)下流のエアレイド粗支持層。
【0092】
最上部エアレイド層は、Invistaから入手可能な6mm Type 255異相構造繊維による2デニール50%、およびWellmanから入手可能な6mm Type 510ポリエチレンテレフタレート(PET)繊維による0.9デニール50%から形成した。最上部エアレイド層を炉内で結合させた。最上部エアレイド層は、25gsmの坪量、40milの厚さ、および850CFMの空気透過性を有した。
【0093】
上流のエアレイド粗支持層は、Invistaから入手可能な6mm Type 255異相構造繊維による2デニール70%、Wellmanから入手可能な6mm Type 510 PET繊維による0.9デニール20%、およびWellmanから入手可能な6mm Type 341 PET繊維による15デニール10%から形成した。上流のエアレイド粗支持層は、40gsmの坪量、40milの厚さ、および800CFMの空気透過性を有した。
【0094】
細繊維メルトブロー層は、試料Fの細繊維メルトブロー層と一致する(または対応する)ように形成した。詳述すると、細繊維メルトブロー層は、1.1μの平均繊維径を有するポリプロピレン繊維から形成した。メルトブロー層の坪量は、35gsmであり、厚さは11milであり、空気透過性は39CFMであった。
【0095】
下流のエアレイド粗支持層は、Invistaから入手可能な6mm Type 255繊維による2デニール50%、およびWellmanから入手可能な6mm Type 341 PET繊維による15デニール50%から形成した。下流のエアレイド粗支持層は、38gsmの坪量、40milの厚さ、および2000CFMの空気透過性を有した。
【0096】
上流の粗支持層、細繊維メルトブロー層、および下流の粗支持層は、約25m/分の速度で移動する第1移動表面上にそれらの層を設置することによって、波形構造に成形した。層は、第1移動表面から、約10m/分の速度で移動する第2移動表面へ移動し、その結果、1インチ当たり四つの波が形成された。その後、波形ウェブと最上層とを、炉内で140℃にて熱的に結合させた。得られたフィルタ材の特性を試験し、下記の表2において試料Gの下に列挙した。
【0097】
【表2】

【0098】
表2に示すように、波形の試料Gは、平面状の試料Fよりも小さいベータ75を有する。ベータ75は、ISO 16889によって定義されている。オクラホマ州スティルウォーターのFluid Technologies Inc.から入手可能なFTIマルチパスフィルタ試験台を用いて、ベースラインフィルタの圧力損失よりも大きい172KPaの末端圧力が得られるまで、1.7リットル/分の全体の流速に対して0.3リットル/分の速度で、モービルMIL−H−5606燃料の中に、A2細塵を供給する。試験時間にわたって等分に隔たった10の時点において、フィルタ材の上流および下流で選択された粒子寸法(この場合において4、5、7、10、15、20、25、および30ミクロン)の粒子数(1ミリリットル当たりの粒子)を数える。各々の選択された粒子寸法において、上流および下流の粒子数の平均をとる。上流における平均粒子数(注入、C)および下流における平均粒子数(通過、C)から、選択された各々の粒子寸法に対する液体ろ過効率試験値を、[(100−[C/C])*100%]の関係によって決定する。効率の別の表現は、ベータ評価である。ベータ75は、下流における個数(C)に対する上流における個数(C)の割合が75に等しい(効率が98.67%に等しい)ときの粒子寸法として定義される。ベータ評価が小さくなるにつれて、ある効率に対する粒子寸法が小さくなる。通常、効率は粒子寸法が小さくなるに従って低下する。
【0099】
図9は、ISO 16889による液体のろ過に関してマルチパス試験を用いて試験したときの、試料FおよびGの圧力を時間の関数として図示する。そのような試験の間、塵埃は油の中に分散し、その分散物は、所述の圧力損失(本試験においては172kPa)に達するまでに、フィルタ材を通過する。より長時間にわたって圧力が増加することがより望ましい。図9に示すように、比較できる試料Fの平面状シートは34分間充填されるが、試料Gは85分間充填される。
【0100】
[例4]
(試料H)
試料Hを、四つの層を用いて形成し、前記四つの層を上流(空気流入)から下流(空気流出)の順に以下のように並べた:(1)上流のカーディング繊維粗支持層、(2)細繊維メルトブロー層、(3)下流のカーディング繊維粗支持層、および(4)底部スパンボンド層。
【0101】
上流のカーディング繊維粗支持層は、Treviraから入手可能な1.5インチ Type 256異相構造繊維による2デニール70%、およびBarnetから入手可能な2インチ Type P320 PET繊維による3デニール30%から形成した。上流のカーディング繊維粗支持層は、35gsmの坪量、40milの厚さ、および800CFMの空気透過性を有した。
【0102】
細繊維メルトブロー層は、約0.7μの平均繊維径を有するポリプロピレン繊維から形成した。メルトブロー層の坪量は15gsmであり、厚さは5milであり、空気透過性は68CFMであった。
【0103】
下流のカーディング繊維粗支持層は、Treviraから入手可能な1.5インチ Type 256繊維による2デニール40%、およびBarnetから入手可能な2インチ Type P320 PET繊維による3デニール60%から形成した。下流のエアレイド粗支持層は、35gsmの坪量、40milの厚さ、および1000CFMの空気透過性を有した。
【0104】
底部のスパンボンド層は、Polymer Group,Inc.から購入したポリプロピレンスパンボンドであった。底部のスパンボンド層は、15gsmの坪量、3milの厚さ、および1200CFMの空気透過性を有した。
【0105】
上流の粗支持層、細繊維メルトブロー層、および下流の粗支持層は、約10m/分の速度で移動する第1移動表面上にそれらの層を設置することによって、波形構造に成形した。層は、第1移動表面から、約4m/分の速度で移動する第2移動表面へ移動し、その結果、1インチ当たり三つの波が形成された。その後、波形ウェブと底部のスパンボンド層とを、炉内で130℃にて熱的に結合させた。得られたフィルタ材の特性を試験し、下記の表3において試料Hの下に列挙した。
【0106】
(試料I)
試料Hのために試料Gを繰り返したが、結合されたカーディング繊維層を、底部スパンボンド層の代わりに用いた。底部のカーディング繊維層は、Treviraから入手可能な1.5インチ Type 256異相構造繊維による2デニール50%、およびBarnetから入手可能な1.5インチ Type P1842Bポリエチレンテレフタレート(PET)繊維による0.9デニール50%から形成した。底部のカーディング繊維層を、炉内で130℃にて予め結合させた。最上部エアレイド層は、25gsmの坪量、20milの厚さ、および890CFMの空気透過性を有した。得られたフィルタ材の特性を試験し、下記の表3において試料Iの下に列挙した。
【0107】
【表3】

【0108】
[例5]
(試料J)
試料Jのために試料Gを繰り返したが、細繊維メルトブロー層は6gsmの0.7μポリプロピレンメルトブローであった。細繊維メルトブロー層は、2.4milの厚さおよび167CFMの空気透過性を有した。得られたフィルタ材の特性を試験し、下記の表4において試料Jの下に列挙した。
【0109】
(試料K)
試料Kのために試料Gを繰り返したが、細繊維メルトブロー層は、22gsmの0.7μポリプロピレンメルトブローであった。細繊維メルトブロー層は、6.8milの厚さおよび37CFMの空気透過性を有した。得られたフィルタ材の特性を試験し、下記の表4において試料Kの下に列挙した。
【0110】
【表4】

【0111】
当業者は、上述の態様に基づいて本発明の更なる特徴および利点を理解するであろう。従って、本発明は、添付の特許請求の範囲によって示したものを除き、特に示し、記載したものによって限定されるものではない。本明細書において参照した全ての刊行物および参考文献は、それらの全体を参照することによって、本明細書に明確に組み込まれる

【特許請求の範囲】
【請求項1】
細繊維ろ過層、および前記細繊維層を波形構造に保持し、前記ろ過層の隣り合う波の山および谷の間隔を維持する粗支持層を含むフィルタ材であって、前記粗支持層が、谷における繊維の質量よりも、山における繊維の質量が大きい、フィルタ材。
【請求項2】
前記細繊維ろ過層が、平面構造の前記細繊維ろ過層の表面積よりも少なくとも約50%大きい表面積を有する、請求項1に記載のフィルタ材。
【請求項3】
前記粗支持層が下流の粗支持層を含み、前記フィルタ材が上流の粗支持層を更に含み、前記細繊維ろ過層が、上流の粗支持層と下流の粗支持層との間に設けられている、請求項1に記載のフィルタ材。
【請求項4】
前記下流の粗支持層と前記上流の粗支持層との間に設けられた、少なくとも一つの追加のろ過層を更に含む、請求項3に記載のフィルタ材。
【請求項5】
前記少なくとも一つの追加のろ過層が、細繊維ろ過層を形成する繊維の平均繊維径よりも大きい平均径を有する繊維から形成される、請求項4に記載のフィルタ材。
【請求項6】
前記上流の粗支持層、前記細繊維ろ過層、および前記下流の粗支持層の全てが波形構造を有する、請求項3に記載のフィルタ材。
【請求項7】
前記上流の粗支持層が、前記細繊維ろ過層を形成する繊維の平均径よりも大きく、かつ前記下流の粗支持層を形成する繊維の平均径と等しい又はそれより小さい平均径を有する繊維から形成される、請求項3に記載のフィルタ材。
【請求項8】
前記上流および下流の粗支持層が短繊維層を含み、前記細繊維ろ過層がメルトブロー層およびガラス繊維層の少なくとも一つを含む、請求項3に記載のフィルタ材。
【請求項9】
前記上流の粗支持層の上流に設けられた平面層および前記下流の粗支持層の下流に設けられた平面層の少なくとも一つを更に含む、請求項6に記載のフィルタ材。
【請求項10】
前記平面層が、前記上流の粗支持層および前記下流の粗支持層を形成する繊維の平均径より小さく、かつ前記細繊維ろ過層を形成する繊維の平均径よりも大きい平均径を有する繊維から形成される、請求項9に記載のフィルタ材。
【請求項11】
前記下流の粗支持層の下流に設けられた平面層を更に含み、前記平面層が、前記上流の粗支持層、前記下流の粗支持層、および前記細繊維ろ過層を形成する繊維の平均径よりも大きい平均径を有する繊維から形成される、請求項6に記載のフィルタ材。
【請求項12】
前記細繊維ろ過層がメルトブロー層を含む、請求項1に記載のフィルタ材。
【請求項13】
前記細繊維ろ過層がガラス繊維層を含む、請求項1に記載のフィルタ材。
【請求項14】
前記粗支持層が、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成される、請求項1に記載のフィルタ材。
【請求項15】
前記フィルタ材が1インチ当たり2〜6個の波を有する、請求項1に記載のフィルタ材。
【請求項16】
前記フィルタ材が、約9より大きい放電DOPアルファ値を有する、請求項1に記載のフィルタ材。
【請求項17】
前記フィルタ材が、約11よりも大きい放電DOPアルファ値を有する、請求項1に記載のフィルタ材。
【請求項18】
前記フィルタ材が、25FPMの前面速度において、1.5インチHOの圧力損失まで充填されたASHRAE塵埃を用いて測定した塵埃保持容量が、少なくとも約8g/ftである、請求項1に記載のフィルタ材。
【請求項19】
前記フィルタ材が、25FPMの前面速度において、0.26μの粒子をおよそ60mg/100cm充填した後に、約50mmHOより小さいのNaCl充填量を有する、請求項1に記載のフィルタ材。
【請求項20】
前記フィルタ材が、約10CFM〜300CFMの範囲の空気透過性を有する、請求項1に記載のフィルタ材。
【請求項21】
前記フィルタ材が約70gsm〜1100gsmの範囲の坪量を有する、請求項1に記載のフィルタ材。
【請求項22】
前記フィルタ材が約1.5mm〜25mmの範囲の厚さを有する、請求項1に記載のフィルタ材。
【請求項23】
複数の波を形成する波形構造を有する第1繊維層であって、各々の波がランダムな波の形状および高さを有し、各々の波が山および谷を有し、隣り合う山が互いに離れた間隔で配置され、隣り合う谷が互いに離れた間隔で配置される、第1繊維層と、
前記第1繊維層と組み合わされた、前記第1繊維層よりも粗い繊維から形成された第2繊維層と
を含む、フィルタ材。
【請求項24】
前記第1繊維層が、平面構造における第1繊維層の表面積よりも少なくとも約50%大きい表面積を有する、請求項23に記載のフィルタ材。
【請求項25】
前記第1繊維層が、前記第2繊維層を形成する繊維の平均径よりも小さい平均径を有する細繊維から形成される、請求項23に記載のフィルタ材。
【請求項26】
前記第1繊維層の繊維の平均繊維径が約5μより小さく、前記第2繊維層の繊維の平均径が約10μよりも大きい、請求項25に記載のフィルタ材。
【請求項27】
前記第2繊維層が、前記第1繊維層の谷付近における繊維の密度よりも、前記第1繊維層の山付近における繊維の密度が大きい、請求項23に記載のフィルタ材。
【請求項28】
前記第2繊維層が前記第1繊維層の下流に設けられ、フィルタ材が、前記第1繊維層の上流に設けられた第3繊維層を更に含む、請求項23に記載のフィルタ材。
【請求項29】
前記第3繊維層が、前記第2繊維層を形成する繊維の平均径と等しい又はそれより小さい平均径を有する繊維から形成されており、前記第2繊維層を形成する繊維の平均径が、前記第1繊維層を形成する繊維の平均径よりも大きい、請求項28に記載のフィルタ材。
【請求項30】
前記第1、第2、および第3繊維層が波形構造を有し、フィルタ材が、第3繊維層の上流に設けられ、平面構造を有する第4層、および第2繊維層の下流に設けられ、平面構造を有する第5層の少なくとも一つを更に含む、請求項28に記載のフィルタ材。
【請求項31】
前記第1繊維層が、メルトブロー層およびガラス繊維層から成る群から選択される、請求項23に記載のフィルタ材。
【請求項32】
前記第2繊維層が、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成される、請求項23に記載のフィルタ材。
【請求項33】
前記フィルタ材が、1インチ当たり2〜6個の波を有する、請求項23に記載のフィルタ材。
【請求項34】
前記フィルタ材が、約9より大きいDOPアルファ値を有する、請求項23に記載のフィルタ材。
【請求項35】
前記フィルタ材が、約11より大きいDOPアルファ値を有する、請求項23に記載のフィルタ材。
【請求項36】
前記フィルタ材が、25FPMの前面速度において、1.5インチHOの圧力損失まで充填されたASHRAE塵埃を用いて、少なくとも約8g/ftの塵埃保持容量を有する、請求項23に記載のフィルタ材。
【請求項37】
前記フィルタ材が、25FPMの前面速度において、0.26μの粒子をおよそ60mg/100cm充填した後に、約50mmHOより小さいNaCl充填量を有する、請求項23に記載のフィルタ材。
【請求項38】
前記フィルタ材が約10CFM〜300CFMの範囲の空気透過性を有する、請求項23に記載のフィルタ材。
【請求項39】
前記フィルタ材が、約70gsm〜1100gsmの範囲の坪量を有する、請求項23に記載のフィルタ材。
【請求項40】
前記フィルタ材が、約1.5mm〜25mmの範囲の厚さを有する、請求項23に記載のフィルタ材。
【請求項41】
細繊維層と、バインダー繊維および非バインダー繊維の混合物から形成される少なくとも一つの粗繊維層とから形成される、曲線状ウェブであって、前記少なくとも一つの粗支持層が、前記細繊維層の隣り合う山の間の間隔を維持し、かつ前記細繊維層の隣り合う谷の間の間隔を維持する曲線状ウェブと、
前記曲線状ウェブと組み合わされた平面状ウェブと
を含む複層フィルタ材。
【請求項42】
前記細繊維層が、細繊維メルトブロー層および細繊維ガラス層から成る群から選択される、請求項41に記載のフィルタ材。
【請求項43】
前記細繊維層が、約5μより小さい平均繊維径を有する繊維から形成される、請求項42に記載のフィルタ材。
【請求項44】
前記少なくとも一つの粗支持層が、前記細繊維層の上流に設けられた第1粗支持層、および前記細繊維層の下流に設けられた第2粗支持層を含む、請求項41に記載のフィルタ材。
【請求項45】
前記平面状ウェブが、前記第1粗支持層の上流に設けられている、請求項44に記載のフィルタ材。
【請求項46】
前記平面状ウェブが、前記第2粗支持層の下流に設けられている、請求項44に記載のフィルタ材。
【請求項47】
前記平面状ウェブが、前記第1および第2粗支持層並びに前記細繊維層を形成する繊維の平均繊維径よりも大きい平均繊維径を有する繊維から形成される、請求項46に記載のフィルタ材。
【請求項48】
前記第2粗支持層が、前記第1粗支持層を形成する繊維の平均繊維径と等しい又はそれより大きい平均繊維径を有する繊維から形成されており、前記第2粗支持層を形成する繊維の平均繊維径が、前記平面状ウェブを形成する繊維の平均繊維径よりも大きく、前記平面状ウェブを形成する繊維の平均繊維径が、前記細繊維層を形成する繊維の平均繊維径よりも大きい、請求項44に記載のフィルタ材。
【請求項49】
前記細繊維層が、平面構造における前記細繊維層の表面積よりも少なくとも50%大きい表面積を有する、請求項41に記載のフィルタ材。
【請求項50】
前記少なくとも一つの粗支持層が、少なくとも1種類のバインダー繊維および少なくとも1種類の非バインダー繊維から形成される、請求項41に記載のフィルタ材。
【請求項51】
前記フィルタ材が1インチ当たり2〜6個の波を有する、請求項41に記載のフィルタ材。
【請求項52】
前記フィルタ材が約9よりも大きいDOPアルファ値を有する、請求項41に記載のフィルタ材。
【請求項53】
前記フィルタ材が約11よりも大きいDOPアルファ値を有する、請求項41に記載のフィルタ材。
【請求項54】
前記フィルタ材が、25FPMの前面速度において、1.5インチHOの圧力損失まで充填されたASHRAE塵埃を用いて、少なくとも約8g/ftの塵埃保持容量を有する、請求項41に記載のフィルタ材。
【請求項55】
前記フィルタ材が、25FPMの前面速度において、0.26μの粒子をおよそ60mg/100cm充填した後に、約50mmHOより小さいNaCl充填量を有する、請求項41に記載のフィルタ材。
【請求項56】
前記フィルタ材が約10CFM〜300CFMの範囲の空気透過性を有する、請求項41に記載のフィルタ材。
【請求項57】
前記フィルタ材が約70gsm〜1100gsmの範囲の坪量を有する、請求項41に記載のフィルタ材。
【請求項58】
前記フィルタ材が約1.5mm〜25mmの範囲の厚さを有する、請求項41に記載のフィルタ材。
【請求項59】
約2インチまたはそれより小さい高さを有する複数の不均一な波をフィルタ材が含むような波形構造を有し、かつ少なくとも二つの繊維層を有するフィルタ材であって、前記繊維層の少なくとも一つが細繊維ろ過層であり、前記繊維層の少なくとも一つが粗繊維支持層であるフィルタ材と、
前記フィルタ材の外周の周りに設けられたハウジングと
を含むフィルタ要素。
【請求項60】
前記ハウジングが、前記フィルタ材の外周の一部分を硬化させることによって形成される、請求項59に記載のフィルタ要素。
【請求項61】
前記ハウジングが、前記フィルタ材の外周の周りに設けられた枠を含む、請求項59に記載のフィルタ要素。
【請求項62】
前記フィルタ材が7〜16のMERV評価を有する、請求項59に記載のフィルタ要素。
【請求項63】
前記細繊維ろ過層が、メルトブロー層およびガラスファイバー層の少なくとも一つを含む、請求項59に記載のフィルタ要素。
【請求項64】
前記細繊維ろ過層が、約5μより小さい平均繊維径を有する繊維から形成される、請求項63に記載のフィルタ要素。
【請求項65】
複数の山および谷を有する波形フィルタ材を形成するために一緒に組み合わされたろ過層および支持層を含み、前記波形フィルタ材に複数のプリーツが形成された、プリーツ状フィルタ要素。
【請求項66】
前記波形フィルタ材が、当該波形フィルタ材がプリーツを維持するのに十分な硬さの裏材を含む、請求項65に記載のフィルタ要素。
【請求項67】
前記波形フィルタ材が、当該波形フィルタ材がプリーツを維持するのに十分な剛性を有する、請求項65に記載のフィルタ要素。
【請求項68】
前記波形フィルタ材が、プリーツ形成前に約0.5インチまたはそれより薄い厚さを有する、請求項65に記載のフィルタ要素。
【請求項69】
前記プリーツ状フィルタ要素が、約12インチまたはそれより薄い厚さを有する、請求項65に記載のフィルタ要素。
【請求項70】
前記プリーツ状フィルタ要素が、約2インチまたはそれより薄い厚さを有する、請求項65に記載のフィルタ要素。
【請求項71】
前記フィルタ材の外周の周りに設けられたハウジングを更に含む、請求項65に記載のフィルタ要素。
【請求項72】
プリーツ状フィルタ材が7〜16のMERV評価を有する、請求項65に記載のフィルタ要素。
【請求項73】
ハウジングと、
前記ハウジングと組み合わされた複数のフィルタであって、各々のフィルタが、当該フィルタ内にポケットを有し、そこを通って空気流を受けるように構成されており、各々のフィルタが、第2繊維層によって波形構造に保持されて山および谷が形成される第1繊維層を有するフィルタ材から形成される複数のフィルタと
を含むバグフィルタ。
【請求項74】
前記ハウジングが枠を含み、各々のフィルタの開口端が前記枠と接合され、前記フィルタが互いに平行に配置される、請求項73に記載のバグフィルタ。
【請求項75】
前記各々のフィルタが、当該フィルタ内に設けられた少なくとも1個のスペーサーを含み、前記スペーサーが、フィルタの対向する側壁を所定の距離に互いに離れて保持する、請求項73に記載のバグフィルタ。
【請求項76】
前記フィルタ材が、約2インチまたはそれより薄い厚さを有する、請求項73に記載のバグフィルタ。
【請求項77】
前記フィルタ材が、約0.5インチまたはそれより薄い厚さを有する、請求項73に記載のバグフィルタ。
【請求項78】
前記各々のフィルタが、約10〜16の範囲のMERV評価を有する、請求項73に記載のバグフィルタ。
【請求項79】
前記第1繊維層が、メルトブロー層およびガラス繊維層の少なくとも一つを含む、請求項73に記載のバグフィルタ。
【請求項80】
前記第1繊維層が、約5μより小さい平均繊維径を有する繊維から形成されている、請求項79に記載のバグフィルタ。
【請求項81】
前記フィルタ材が、前記第1繊維層の、前記第2繊維層と対向する側に設けられた、第3繊維層を含む、請求項73に記載のバグフィルタ。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4A】
image rotate

【図4B】
image rotate

【図4C】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公表番号】特表2010−520049(P2010−520049A)
【公表日】平成22年6月10日(2010.6.10)
【国際特許分類】
【出願番号】特願2009−552011(P2009−552011)
【出願日】平成20年2月27日(2008.2.27)
【国際出願番号】PCT/US2008/055088
【国際公開番号】WO2008/106490
【国際公開日】平成20年9月4日(2008.9.4)
【出願人】(501475963)ホリングワース・アンド・ボーズ・カンパニー (5)
【Fターム(参考)】