説明

流路チップ及び治具

【課題】製作性に優れるとともに安定したセンシングを可能とすることができる流路チップを提供する。
【解決手段】流体を流すための流路11を備えた流路チップ1であって、光を透過可能な材料からなり、流路11を形成するための溝が形成された基板2と、光を透過可能な材料からなり、感圧型接着剤により基板2に貼り付けられて溝を封止するフィルム3と、を備えることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流路チップ、特に、微細な流路を備えたマイクロ流路チップ及びこれに関連する技術に関するものである。
【背景技術】
【0002】
マイクロ流路チップは、マイクロマシン技術等を応用して作成される化学分析チップとして知られている。一つのチップ上に様々な機能を集積することができ、高度な検体検出を実現するものとして、医療や環境、食品、マイクロ化学合成等、種々の分野で利用されている(特許文献1、2等)。マイクロ流路チップを用いた反応検出方法としては、蛍光分子を利用する方式や、吸光度測定、電気化学的な測定、表面プラズモン共鳴法などが従来から知られている。また、マイクロ流路チップ上では、混合、分離等の液体操作のみを行なって、検出はチップ外部で行なうような使用方法もある。
【0003】
マイクロ流路チップは、深さが数十um(マイクロメートル)、幅が数十〜数百umの非常に微細な流路を利用して、混合、分離等の液体操作や流路内の液体の反応検出等が行なわれる。このような微細な流路を備えるマイクロ流路チップには、次のような利点がある。例えば、拡散反応時間は拡散距離の2乗に比例するので、微細な流路による狭い空間により反応時間を短縮することができる。また、単位体積に対する界面の面積(比界面積)が広くなり、流路内で異なる液を接触させたときの面積の割合を大きく取れるので、拡散効果が大きい。また、熱容量が小さいため、急速な加熱、冷却が可能である。
【0004】
図29及び図30に従来技術に係るマイクロ流路チップの構成を示す。図29は、従来技術に係るマイクロ流路チップの模式的斜視図である。図30は、従来技術に係るマイクロ流路チップの模式的断面図である。図に示すように、従来のマイクロ流路チップ100は、流路を形成するための溝が形成された基板101と、カバーである基板102とにより構成されている。基板101の溝形成面に基板102を貼り合わせることにより、溝が封止されて送液用の流路103が形成される。
【0005】
流路封止の手法としては、一定時間圧力と熱を加えることにより接合面を溶解させて接合させる熱圧着方式が一般的である。その他、基板に熱可塑性樹脂を使用し超音波振動と加圧により瞬時に溶融・接合させる方法や(特許文献3)、接合面に紫外線硬化樹脂を塗布し、UV照射して接合する方法も知られている(特許文献4)。
【0006】
しかし、これら従来の流路封止方法には次のような課題がある。
【0007】
熱圧着方式による流路封止では、熱による流路変形や圧力ムラによる接合不良が生じやすく、流路がつぶれてしまったり、接合面間に漏れ流路が形成されてしまう等、プロセス安定性が低いという問題がある。また、加熱工程に付随して徐冷等の工程が必要となるため、工程数が多くなりプロセススループットが低い。また、超音波方式による流路封止においても、摩擦熱による流路変形が生じやすく、UV接着方式では、流路形状に応じた接着剤のパターニングが必要となるため、生産コストが増大するとともに、接着層厚さのばらつきも大きくなりやすい。
【0008】
さらに、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)センサに使用する場合(特許文献5参照)には、流路上のセンサ表面に種々の抗体を付着させて使用するが、抗体は熱の影響を受けやすく加熱やUV照射により失活しやすい。
【0009】
また、該センサにおいては、センサ表面に光を照射するためのプリズムを流路チップに一体的に密着させて使用されるが、プリズムと流路チップが別構造のため取り扱いが煩雑なものとなっていた。例えば、プリズムとチップとの接合面にマッチングオイルを滴下するマッチングオイル方式では、マッチングオイルの塗布、拭き取りが煩雑であり、気泡によるエラー等が発生することがある。また、オプトゲルをプリズムと流路チップとの接合面に介在させるオプトゲル方式では、オプトゲルの汚れ、気泡によるエラーが発生することがあり、オプトゲルへの押し付け機構が別途必要となる。このような煩雑性を解消するために、プリズムと流路チップとが予め一体化されたデバイスとすることが考えられるが、流路封止の際の熱によりプリズムが変形してしまうため実現が困難であった。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2008−76208号公報
【特許文献2】特開2008−175795号公報
【特許文献3】特開2008−216121号公報
【特許文献4】特開2007−240461号公報
【特許文献5】特開2008−216055号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、製作性に優れるとともに安定したセンシングを可能とすることができる流路チップを提供することにある。
【課題を解決するための手段】
【0012】
本発明は、上記課題を解決するために以下の手段を採用した。
【0013】
すなわち、本発明における流路チップは、
流体を流すための流路を備えた流路チップであって、
光を透過可能な材料からなり、前記流路を形成するための溝が形成された基板と、
光を透過可能な材料からなり、感圧型接着剤により前記基板に貼り付けられて前記溝を封止するフィルムと、
を備えることを特徴とする。
【0014】
本発明によれば、基板に設けられた溝の封止を常温により行うことができる。すなわち、加熱することなく流路封止が可能となる。したがって、加熱による基板の変形等、熱による影響が排除され、プロセス安定性が高められる。また、熱による変形が抑制されることで形状精度の高い製品とすることができ、精度の高いセンシングに寄与することができる。また、加熱工程が不要となることにより、加熱工程に付随する徐冷等の他の工程も不要となるため、プロセススループットが向上される。また、熱を加えず製造することができるのでバイオセンサとして使用する場合における抗体の失活の問題も生じない。
【0015】
前記基板は、プリズムが一体化されているとよい。
【0016】
本発明によれば、加熱することなく常温による流路封止が可能なので、プリズムを基板に予め一体化しておくことができる。すなわち、従来のように後からプリズムをチップと一体化する等の煩雑な工程をなくすことができる。これにより、プロセススループットを大きく向上させることができる。
【0017】
前記流路と外部とを疎通する貫通孔を、前記基板に設けるとよい。
【0018】
このように、流路開口部をフィルムよりも剛性の高い基板に設けたことにより、外部流路系との接続(例えば、チューブやシール部材の押し付け)によって、流路の変形やつぶれ等の発生を回避することができる。
【0019】
前記貫通孔の外部側の開口部は、外部に向かってテーパ状に拡がって開口しているとよい。また、前記開口部は、外部に向かって拡径度合が大きくなるように角度の異なる複数のテーパ部で構成されるとさらに好適である。
【0020】
これにより、外部流路系のチューブ等の流路部材と流路チップ開口部との接続において、テーパ面がガイドとなり、流路部材と開口部との位置決めを容易にすることができる。
【0021】
前記基板は、樹脂成形品であり、
前記流路の路面の広さを、前記貫通孔が開口する領域において前記貫通孔の開口部よりも広くするとよい。
【0022】
これにより、基板を射出成形で作製する場合において、金型の流路溝形成部と貫通孔形成部の位置ずれや樹脂の伸縮等による流路と貫通孔の位置ずれを吸収することができ、基板の成形性の向上を図ることができる。
【0023】
前記流路は、前記基板上において互いに流通しない少なくとも2つの流路で構成され、
前記基板は、前記フィルムとの接合面において、前記少なくとも2つの流路の一方の路面の一部を含む領域に形成される第1の金属膜と、前記少なくとも2つの流路の他方の路面一部を含む領域に形成される第2の金属膜と、が互いに連続しないで設けられるとよい。
【0024】
例えば、金属膜上にSAM膜を形成して使用する場合において、2つの金属膜が連続して設けられていると、金属膜上に形成したSAM膜によって生じる基板とフィルタとの接着面間の微小隙間により、2つの流路間の流体漏れを生じることが懸念される。本発明によれば、2つの金属膜を互いに連続させないで設けることにより、2つの流路が互いに疎通して流体漏れを生じてしまうのを抑制することができる。
【0025】
光を透過可能な材料からなり、前記フィルムの前記基板との接着面とは反対側の面に当接する平坦面を有する支持部材を備えるとよい。
【0026】
これにより、流路内を流れる流体の圧力の増加に伴うフィルムの変形を抑制することができる。これにより、フィルムの変形による流路面積の変動を抑制することができ、安定したセンシングを可能とすることができる。
【0027】
前記フィルムが、前記平坦面に接着されるとよい。
【0028】
これにより、流量変動等により流路内部に陰圧が発生した場合のフィルムの変形を抑制することができる。これにより、流路面積の変動をより効果的に抑制することができ、さらなる安定したセンシングを可能とすることができる。
【0029】
前記流路は、前記流路内を流れる流体に光を照射するための流路であるとよい。
【0030】
上述のように、本発明によれば形状精度の高い流路形成が可能となるので、流路内の流体に光を照射してセンシングする用途において、センシングの精度向上に寄与することができる。
【0031】
また、本発明における治具は、
上記流路チップを保持するための治具であって、
前記流路チップが前記基板を下にして載置される台座と、
光を透過可能な材料からなり、前記フィルムの前記基板との接着面とは反対側の面に当接する平坦面を有するカバーと、
を備えることを特徴とする。
【0032】
本発明によれば、カバーの平坦面がフィルムに当接することにより、流路内を流れる流体の圧力の増加に伴うフィルムの変形を抑制することができる。これにより、フィルムの変形による流路面積の変動を抑制することができ、安定したセンシングを可能とすることができる。
【発明の効果】
【0033】
以上説明したように、本発明により、製作性に優れるとともに安定したセンシングを可能とすることができる。
【図面の簡単な説明】
【0034】
【図1】実施例1に係る流路チップの模式図。
【図2】実施例1に係る流路チップの模式的斜視図。
【図3】SPRセンサの構成を説明する模式図。
【図4】各加熱温度における抗体活性を示すグラフ。
【図5】比較例に係る流路チップの模式的断面図。
【図6】比較例に係る流路チップの模式的断面図。
【図7】実施例1に係る流路チップの模式的断面図。
【図8】基板における溝と貫通孔の位置関係を説明する模式図。
【図9】比較例について説明する模式図。
【図10】各流路における信号の時間変化を示すグラフ。
【図11】本実施例について説明する模式図。
【図12】各流路における信号の時間変化を示すグラフ。
【図13】金薄膜パターニング用治具の構成を示す模式図。
【図14】金属膜スパッタリングについて説明する模式図。
【図15】基板とマスクとの寸法関係を説明する模式的断面図。
【図16】評価実験の結果を示す図表。
【図17】流路封止用治具の構成について説明する模式図。
【図18】スキージ先端の寸法設定について説明する模式的断面図。
【図19】スキージ先端の寸法設定について説明する模式的断面図。
【図20】実施例1に係る保持治具の構成を示す模式的断面図。
【図21】流路の変形の様子を説明する模式図。
【図22】各流速におけるフィルム表面移動量を示すグラフ。
【図23】センシングに対する流路変形の影響を説明する模式図。
【図24】センシングに対する流路変形の影響を説明する模式図。
【図25】局在型SPRセンサの構成を示す模式図。
【図26】実施例1の流速変化と信号変化との関係を示すグラフ。
【図27】実施例2に係る流路チップの模式的断面図。
【図28】実施例2の流速変化と信号変化との関係を示すグラフ。
【図29】従来技術に係るマイクロ流路チップの模式的斜視図。
【図30】従来技術に係るマイクロ流路チップの模式的断面図。
【発明を実施するための形態】
【0035】
以下に図面を参照して、この発明を実施するための形態を、実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0036】
(実施例1)
図1及び図2を参照して本発明の実施例1に係る流路チップについて説明する。図1は、本実施例に係る流路チップの模式図であり、(A)は模式的平面図、(B)は(A)のAA断面である。図2は、本実施例に係る流路チップの模式的斜視図であり、(A)は基板とフィルムが分離した状態、(B)は基板にフィルムが貼り付けられた状態を示している。
【0037】
なお、本実施例では、本発明に係る流路チップをいわゆる表面プラズモン共鳴センサのセンサチップとして用いる場合の構成について例示するが、他の用途への適用を否定するものではない。
【0038】
<流路チップ>
図1に示すように、流路チップ1は、略長方形の薄板状のチップ本体10と、チップ本体10の内部を延びる流路11と、流路11をチップ本体外部と疎通させる開口部12と、チップ本体10に一体成形されたプリズム13と、チップ本体10内部であってプリズム13の上方に形成される金属膜14と、を備えている。
【0039】
本実施例に係る流路チップ1は、2チャンネルのフローセル(反応空間)を備えたセンサチップである。すなわち、流路11は、第1の流路(セル1)11aと第2の流路(セル2)11bの2つの流路で構成されており、これら2つの流路により2つのフローセルが形成される(以下、区別して説明する必要がない場合は、2つの流路11a、11bをまとめて流路11として説明する)。2つの流路11a、11bは、それぞれ、チップ本体10内部をチップ本体10の長手方向に沿って延びるとともに、プリズム13の上方で互いに逆向に折り返すことにより、流路チップ1上において互いに疎通しない構成となっている。
【0040】
開口部12は、2つの流路11a、11bに対してそれぞれ2箇所ずつ設けられており、各流路の流入口と排出口を構成する。
【0041】
金属膜14は、2つの流路11a、11bに対応してチップ本体10内の2箇所に形成されている。金属膜14が形成される領域は、流路11の路面の一部を含むチップ本体10の内部領域であってプリズム13を介して光が照射される領域である。具体的には、2つの流路11a、11bのそれぞれの押し返し部及びその近傍に、第1の金属膜14a、第2の金属膜14bとしてそれぞれ形成される(以下、区別して説明する必要がない場合は、2つの金属膜14a、14bをまとめて金属膜14として説明する)。第1の金属膜14aと第2の金属膜14bは、チップ本体10内部において互いに独立して形成される。
【0042】
図2に示すように、流路チップ1(チップ本体10)は、基板2にフィルム3を貼り合わせることで形成される。
【0043】
基板2は、基板本体20と、流路11を形成する溝21と、開口部12を形成する貫通孔22と、を備えており、溝21の折り返し部の下方にプリズム13が一体成形されている。基板2は、光を透過可能な材料で作成され、材料としては、例えば、プラスチック等の透明樹脂やガラス等が挙げられる。基板本体20の下面には、不図示の固定治具に位置
決めするための凹部24が設けられている。
【0044】
溝21は、基板本体20のフィルム3との接合面上に形成されている。流路11は、基板2にフィルム3が貼り付けられて溝21が封止されることで形成される。貫通孔22は、溝21の溝底面から基板本体20の下面(フィルム3との接合面とは反対側の面)まで延びて基板本体20を貫通している。貫通孔22の外部側(基板下面側)の開口部は、外部に向かってテーパ状に拡がって開口している。このテーパ開口部は、外部に向かって拡径度合が大きくなる2段テーパとなっている。
【0045】
金属膜14は、基板本体20のフィルム3との接合面上において、溝21の折り返し部を含む一部の領域に積層形成されている。金属膜14の表面には、生体分子を固定化するための有機分子層が形成されている、すなわち、特定のタンパク質(抗原)と結合可能な抗体(プローブ)が固定化されている。
【0046】
フィルム3は、片面に感圧型接着剤が塗布された感圧接着式フィルムであり、接着対象に押し付けられる際の圧力により接着剤が接着性を発揮するように構成されている。フィルム自体は、光を透過可能な材料、例えば、プラスチック等の透明樹脂等で構成されている。
【0047】
フィルム3に塗布される感圧型接着剤は、光の透過性を備え、かつ、常温により接着性を発揮できるものであって基板2に対して十分な接着力を得られるものでれば、特に限定されるものではなく、従来公知のものを適宜用いればよい(例えば、特表2001−519455号公報等を参照のこと)。
【0048】
<SPRセンサ>
図3を参照して、本実施例に係る流路チップを用いたSPRセンサ(伝搬型)について説明する。図3は、SPRセンサの構成を説明する模式図であり、(A)はSPRセンサの光学系の構成を示す模式図であって(B)のBB断面に対応する図であり、(B)は流路チップを位置決め保持するための治具の構成を示す模式図であって(A)のCC断面に対応する図である。
【0049】
SPRセンサは、表面プラズモン共鳴を利用して、タンパク質など生体分子の相互作用を検出するセンサである。表面プラズモン共鳴とは、金属膜表面の自由電子と光の共鳴現象である。特定の波長や特定の入射角度においては、共鳴によって入射光のエネルギーが金属自由電子の振動に変化し、反射光の強度が著しく低下する。この共鳴条件(共鳴波長、共鳴入射角)は、金属膜周辺の物質の誘電率(屈折率)の変化に応じて変化する。SPRセンサは、金属膜表面に特定のタンパク質(抗原)と特異的に結合する抗体(プローブ)が予め固定化されており、検査試料中に含まれる抗原が抗体に結合することで金属膜周辺の屈折率が変化するように構成されている。これにより、検査試料の導入前後における共鳴波長や共鳴入射角の変化、それらの時間的変化を測定することで、検査試料中に抗原が含まれているか否か、どの程度の濃度で抗原が含まれているか等をセンシングすることができる。
【0050】
図3(A)に示すように、SPRセンサ4は、単色光源40、コリメータレンズ41、43、集光レンズ42、偏光板44、受光部45等により構成される光学系を備えている。流路チップ1は、治具5により、集光レンズ42で集光される光の光路上に位置決め保持される。
【0051】
単色光源40から出射された光は、コリメータレンズ41によりコリメートされ、集光レンズ42により集光されて流路チップ1のプリズム13に入射する。
プリズム13に入射した光は、流路チップ1の流路11内のセンシング領域(金属膜14が形成された領域)に入射する。
【0052】
センシング領域で反射してプリズム13から出射した反射光は、コリメータレンズ43によりコリメートされ、偏光板44により偏光されて受光部45に受光される。PC等のデータ処理装置46は、受光部45で受光した反射光から得られる情報(反射光の強度等)を基に、検出結果を出力する。
【0053】
図3(B)に示すように、治具5は、流路チップ1が載置される台座51と、台座51を貫通して設けられるチューブ52と、流路チップ1の上面に重ねられる平坦基板であるカバー53と、を備える。流路チップ1は、開口部12及びプリズム13が形成された側の面を下にして台座51に載せられる。チューブ52は、例えば、外形1/16インチのPEEKチューブであり、台座51の座面から突出した端部が流路チップ1の開口部12に接続される。チューブ52の外周にはOリング等のシール部材54が装着されている。シール部材54が流路チップ1と台座51との間で弾性圧縮されることで、開口部12とチューブ52との接続部が外部に対して封止され、外部への液漏れが防止される。カバー53は、台座部51の上方を開閉可能に治具本体50に軸支されている。
【0054】
流路チップ1の2つの流路11は、それぞれ、各流路内に検査試料溶液を給送するためのポンプ47と、各流路内を通過した検査試料溶液を回収するための廃液溜め48に接続されている。2つの流路は、一方がターゲット用のセルとして、他方がリファレンス用のセルとしてそれぞれ使用される。流路の表面(路面)には、金属膜に種々の抗体(プローブ)を固定化したセンサ表面が形成されている。なお、両方ともターゲット用及びリファレンス用のセルとして利用することもできる。
【0055】
一般的なセンサ表面の作製方法について、一例を簡単に説明する。洗浄した基板2の表面にAu、Ag等の金属膜を形成し、その金属膜上にSAM膜(自己組織化単分子膜:Self−assembled monolayer)を形成する。形成したSAM膜を、EDC(1−ethyl−3−(3dimethylaminopropyl)carbodiimide)、NHS(N−hydroxysuccinimide)により活性化し、IgG抗体(pH4.0〜6.0)を固定する。EthanolAmine(pH8.5)によりSAM膜を不活性化し、Gly−HCl(pH1.5〜2.5)によりトリートメントする。
【0056】
<本実施例の優れた点>
以下、本実施例に係る流路チップの優れた点について説明する。
【0057】
<<常温封止であること>>
本実施例によれば、流路チップの流路形成、すなわち、基板に設けられた溝の封止を常温により行うことができる。すなわち、加熱することなく流路封止が可能となる。したがって、加熱による基板の変形等、すなわち、流路の変形等が抑制され、形状精度の高い作製が可能となり、センシングの精度の向上に寄与することができる。
【0058】
また、加熱工程が不要となることにより、加熱工程に付随する他の工程も不要となるため、加熱工程が必要な従来品と比較して、大幅な作製時間の短縮、作製コストの低減を図ることができる。例えば、従来品では、加熱・加圧した後、加圧を維持しながら徐冷し、さらに加圧を解いてからも徐冷するといったような工程が必要となり、チップ作製時間が約7分/チップであった。本実施例では、封止工程(基板へのフィルムの貼り付け)のみとなり、約30秒/チップと作製時間が大幅に短縮された。
【0059】
また、本実施例によれば、熱を加えず製造することができるのでバイオセンサとして使用する場合における抗体の失活の問題が生じない。この点について図4を参照して説明する。図4は、各加熱温度における抗体活性を示すグラフである。
【0060】
ここで、本実験においては、高温における生体分子の活性(本来の機能を維持する)を確認するため、SPRセンサ(Biacore、GEヘルスケア社製)を用いた。また、生体分子としてはAFP抗体を用いた。AFPとは肝臓ガンの腫瘍マーカーである。実験方法は、銅の基板固定プレートを用いて50、80、120℃の各温度で6分間センサチップを加熱し、その後SPRセンサで信号検出を行った。
【0061】
図4に示すように、50℃では常温の約50%、80℃では約30%程度に活性が低下することが確認できる。したがって、センサチップに抗体を固定化して使用する場合には、流路封止の際の加熱によって抗体の失活が生じやすく、例えば、封止温度が80℃以上の従来品では、約70%の抗体の失活が生じてしまうことがわかる。一方、常温封止である本実施例では、このような失活が生じないことは言うまでもない。
【0062】
また、本実施例によれば、プリズムを基板に予め一体化しておくことができる。すなわち、本実施例は、常温により流路封止が可能なので、加熱によるプリズムの変形を懸念する必要がなく、プリズムと基板とを同時に作製することができる。したがって、従来のように後からプリズムをチップと一体化する等の煩雑な工程を排除することができる。これにより、作製時間の短縮、作製コストの低減を図ることができ、プロセススループットを大きく向上させることができる。
【0063】
<<貫通孔を基板に設けたこと>>
本実施例によれば、流路開口部12をフィルム3よりも剛性の高い基板2に設けたことにより、外部流路系との接続によって、流路の変形やつぶれ等の発生を回避することができる。この点について図5を参照して説明する。図5は、フィルタに貫通孔を設けた比較例に係る流路チップの模式的断面図である。
【0064】
図5に示すように、フィルム3に貫通孔32を設けた構成にすると、チューブ52とシール部材54の押し付けによって、フィルム3がたわんでしまい、流路11がつぶれてしまうことが懸念される。図5の比較例の構成において、このような不具合を回避するためには、フィルム3を内側から支える部材や構造等、チューブ52やシール部材54の押し付けに対してフィルム3の変形を抑制するための構成を追加する必要がある。本実施例によれば、剛性の確保が容易な流路基板側に貫通穴を設けることで、これらの問題を回避することができる。
【0065】
<<貫通孔の開口部にテーパを設けたこと>>
本実施例によれば、基板の貫通孔がテーパ状の開口部を有することにより、チューブ54と貫通孔22とのアライメントが容易となる。すなわち、開口部のテーパ面がガイドとなり、チューブ54と開口部12を容易に位置決めすることが可能となる。
【0066】
この点について、図6及び図7を参照して説明する。図6は、貫通孔の開口部にテーパを設けていない比較例に係る流路チップの模式的断面図であり、(A)は貫通穴の直径がチューブと同程度の比較例、(B)は貫通穴の直径がチューブより大きい比較例の断面をそれぞれ示している。図7は、本実施例に係る流路チップの模式的断面図であり、(A)は、貫通孔開口部のテーパが一段テーパの場合、(B)は2段テーパの場合をそれぞれ示している。
【0067】
図6(A)に示すように、流路チップ1の開口部12(貫通穴22)の径とチューブ5
2の外径とが同程度の場合、開口部12とチューブ52のアライメントが困難となる。図6(B)に示すように、開口部12の径がチューブ52より大きい場合、接合部の隙間から液漏れが発生することがある。
【0068】
図7(A)に示すように、本実施例では、貫通孔22は、外部側から流路11側に向かって、テーパ部22aと、端面部22bと、孔部22cと、で構成されている。
【0069】
テーパ部22aは、外部側(基板2の下面側)の径がチューブ52の外径よりも大きくシール部材54の外径よりも小さい範囲で設定されている。テーパ部22aは、端面部22bに向かって徐々に縮径し、端面部22bとの境における内部側径がチューブ52の外径と同等又は若干大きめとなっている。
【0070】
貫通孔22は、端面部22bにおいて孔径が絞られる構成となっている。テーパ部22aの深さ(貫通孔22の軸方向(貫通方向)におけるテーパ部22aの形成範囲)は、チューブ52の突出長さと同等又は若干浅めに設定されている。したがって、流路チップ1が台座52に載せられたときに、チューブ52先端の端面が端面部22bに当接する。
【0071】
孔部22cは、チューブ52の内径と略同径に設けられている。チューブ52の先端面と貫通孔22の端面部22bとが当接することにより、貫通孔22の孔部22cとチューブ52とにより連続的な流路が形成される。
【0072】
上記構成により、治具5の台座51に対する流路チップ1のアライメントが容易となる。すなわち、流路チップ1を台座51に載せる際、貫通孔22(開口部22)とチューブ52の位置が多少ずれていても、テーパ部22aがガイドとなって流路チップ1の位置が修正され、所望の位置へ容易に設置することが可能となる。
【0073】
また、チューブ52の先端面と貫通孔22の端面部22bが当接し、貫通孔22の孔部22cとチューブ52とにより連続的な流路が形成されることで、試料を無駄なく流路チップ1の流路11に送り込むことが可能となり、試料のデッドボリュームを最小限にすることができる。
【0074】
ここで、テーパ部22aのテーパ角度(端面部12bとなす角度)αは、90〜100°の範囲が好ましい。このような範囲にしておくことで、チューブ52の抜けや、液漏れを効果的に抑制することができる。
【0075】
また、図7(B)に示すように、2段階にテーパ角度を変化させる構成も好ましい。位置ズレの許容誤差を広くするには、テーパ部を大きく開口させる、すなわち、テーパ角度を大きくする必要がある。しかし、テーパ角度が大きくなると、チューブが抜けたり、液が漏れやすくなる。そこで、テーパ部22aを、チップアライメント用のテーパ22a1と、チューブ保持用のテーパ22a2の2種類を連続的に設けた構成とすることで、チップセット時の位置ズレ許容誤差(チップの置きやすさ)とチューブの保持の両方を達成することが可能となる。
【0076】
実施例では、チューブ保持用のテーパ22a2のテーパ角βを95°、アライメント用のテーパ22a1のテーパ角γを135°としている。
【0077】
また、上述した貫通孔22の構成は、射出成形による流路部分(溝21部分)との一括作製が可能であり、チップコストの低減が可能である。なお、本実施例では2段テーパとしているがこれに限られるものではなく、例えば、3段テーパ等のように、テーパ角度の変化を2段階よりもさらに複数回変化させる構成であってもよい。
【0078】
<<流路面広さを貫通孔開口領域において貫通孔開口部よりも広くしたこと>>
本実施例によれば、流路の路面の広さを貫通孔が開口する領域において貫通孔の開口部よりも広くしたことにより、基板を射出成形で作製する場合における基板の成形性の向上を図ることができる。
【0079】
本実施例に係る流路チップの基板を射出成形で作製する場合には、一方の金型に溝形成部(流路形状に沿って延びる凸状部)を設け、他方の金型に貫通孔形成部(根元がテーパのピン)を設けることになる。流路チップにおいて流路に送液する試料を少量化するためには、流路のデッドボリュームを低減する必要があり、そのためには、溝と貫通孔が互いの位置がずれて形成されてしまうことを回避する必要がある。
【0080】
本実施例では、基板形状を、流路の貫通孔開口領域における路面広さが貫通孔の開口部よりも広くなるように、すなわち、成形金型の形状を、溝形成部の上面の広さが貫通孔形成部のピン径(孔部22cの径)をよりも広くなるように構成した。これにより、金型におけるピンとピン嵌合部との位置ずれや樹脂の伸縮等による溝と貫通孔の位置ずれを吸収することができ、デッドボリュームの低減を図ることができる。
【0081】
この点について、図8を参照して説明する。図8は、基板における溝と貫通孔の位置関係を説明する模式図であり、(A)は比較例、(B)は本実施例、(C)〜(E)は変形例をそれぞれ示している。なお、各図において左側が基板の上面図、右側が基板の断面図をそれぞれ示している。
【0082】
図8(A)は、一方の金型に溝形成部と貫通孔形成部を形成する場合の構成を示している。この場合、溝と貫通孔のアライメントは不要であり、流路のデッドボリュームは無い。
【0083】
しかしながら、本実施例では貫通孔22のテーパ部22aがアンダーカット部となるため、このような金型構成を採用することができない。
【0084】
図8(B)に示すように、本実施例では、貫通孔22が開口する領域における溝21の底面形状を貫通孔22と略同心の略円形状部とし、かつ該略円形状部の径を貫通孔22の径よりも大きくした。すなわち、成形金型において、貫通孔成形部のピンの先端径よりも溝形成部におけるピン嵌合部が広くなるように構成した。具体的には、貫通孔形成部におけるピン先端径をφ360umとし、溝形成部におけるピン嵌合部の径をφ700umとした。これにより、ピンと嵌合部の位置ずれを回避することが可能となる。
【0085】
なお、図8(C)に示すように、成形時に樹脂が流路方向に伸縮することを考慮して、流路方向にピン嵌合部を拡大した形状にすることで位置ズレを回避することもできる。また、図8(D)に示すように、ピンの先端の断面形状を長方形または楕円形にすることで、より簡便に位置ずれを回避することもできる。さらに、図8(E)に示すように、ピン嵌合部の広さよりもピン先端面積を大きくすることで、位置ずれを回避するようにしてもよい。
【0086】
<<金属膜を複数の流路に対応して複数の領域に分けて形成したこと>>
本実施例によれば、流路チップの複数の流路の路面に金属膜を形成してセンサ面として使用する場合、金属膜を複数の流路に対応して複数の領域に分けて形成することにより、複数の流路間の流体漏れを抑制することができる。
【0087】
この点について、図9〜図12を参照して説明する。図9は、金属膜を複数に分けずに
形成した比較例について説明する模式図であり、(A)は流路チップの上面図であり、(B)は(A)のDD断面図である。図10は、各流路における信号の時間変化を示すグラフであり、(A)は一方の流路(セル1)における信号変化を示し、(B)は他方の流路(セル2)における信号変化を示している。図11は、本実施例について説明する模式図であり、(A)は流路チップの上面図であり、(B)は(A)のEE断面図である。図12は、各流路における信号の時間変化を示すグラフであり、(A)は一方の流路(セル1)における信号変化を示し、(B)は他方の流路(セル2)における信号変化を示している。
【0088】
図9(A)及び図9(B)に示すように、比較例に係る流路チップ1´では、2つの流路11a、11bのそれぞれの路面上にセンシング用の金属膜を形成するために、1つの金属膜14の層を基板2とフィルム3との間に形成している。上述したように、金属膜14の表面には、フィルム3を基板2に積層する前に、センシング用抗体を固定化するためのSAM膜15が形成される。
【0089】
上記構成の比較例に係る流路チップ1´について液漏れ実験を行った。まず、流路11a(セル1)と流路11b(セル2)の両方にバッファー(HBS−P)を流速80ul/minで導入した。セル1にバッファーが満たされた状態でセル2に純水(Mill−Q)を流速20ul/minで導入した。
【0090】
図10(A)及び図10(B)に示すように、上記実験の結果、セル1においてセル2と同じSPRの信号変化が発生した。すなわち、セル1にバッファーが満たされた状態で、図中の矢印Bの時点において、セル2を純水に切り替えたところ、矢印Cの時点で再びセル2をバッファーに切り替えるまでの間(BC間)、セル1においてセル2と同じSPRの信号変化が発生した。本来であれば、流体の切り替えがないセル1には信号変化は生じないはずであり、この結果は、セル2の純水がセル1への液漏れが発生したためと考えられる。また、この液漏れは、2つのセル間のSAM膜が引き起こしていると考えられる。すなわち、2つのセル間にあるSAM膜により基板2とフィルタ3との接着面間に微小な隙間が発生し、毛細管現象により試料溶液が通過してしまうためであると考えられる。
【0091】
図11(A)及び図11(B)に示すように、本実施例に係る流路チップ1では、金属膜14を形成する領域を2つに分けた。すなわち、一方の流路11aの一部を含む領域に第1の金属膜14aを、他方の流路11bの一部を含む領域に第2の金属膜14bをそれぞれ設け、両金属膜の間に金属膜が形成されない領域を設けた(2つの金属膜を互いに連続させないで設けた)。SAM膜は金属膜上に形成されるため、両金属膜間の領域には、基板2とフィルム3との間に何も介在せず、基板2とフィルム3とが直接接着される。なお、図では隙間が形成されているように図示しているが、実際には、フィルム3が基板2に押し付けられて貼り付けられるため、2つの金属膜の間の隙間はつぶれた状態となる。
【0092】
図12(A)及び図12(B)に示すように、本実施例の流路チップ1について上記と同様の液漏れ実験を行ったところ、比較例のような液漏れが発生しないことが確認された。すなわち、まず、図中の矢印Aの時点において、セル1及びセル2にバッファー(HBS−P)を流速80ul/minで導入した。次いで図中の矢印Bの時点において、セル1にバッファーが満たされた状態で、セル2に純水(Mill−Q)を流速20ul/minで導入した。そして、図中の矢印Cの時点において、セル2をバッファーに切り替えた。その結果、図12(A)に示すように、セル1ではセル2と異なりSPRの信号が変化しないことが確認された。よって、流路間にSAM膜が無いことで液漏れが防止されることが確認された。以上より、金薄膜形成時に流路形状に応じたパターニングを行うことで、液漏れの無いセンサチップの作製が可能である。
【0093】
<金薄膜パターニング>
図13〜図16を参照して、本実施例に係る流路チップにおける金薄膜パターニングについて説明する。図13は、金薄膜パターニング用治具の構成を示す模式図である。図14は、金属膜スパッタリングについて説明する模式図であり、(A)はスパッタリングの様子を示す基板とマスクの模式的断面図、(B)は基板2の模式的断面図である。図15は、基板とマスクとの寸法関係を説明する模式的断面図である。図16は、評価実験の結果を示す図表である。
【0094】
図13に示すように、金薄膜パターニング用治具6は、基板2が保持固定される固定治具60と、スパッタリング用のマスク61と、で構成される。固定治具60には、基板2を嵌め込むことができる凹部62が複数設けられている。マスク61は、金属膜の形成領域を規定する開口部63が複数設けられている。金属膜のスパッタリングは、固定治具60の凹部62に基板2を嵌め込んで固定し、マスク61を被せ、基板2において金属膜を形成すべき領域のみを外部に露出させることにより行う。これにより所望の金属膜14がパターニングされた基板2を作製することができる。
【0095】
図14(A)に示すように、マスク61の開口部63の大きさ(幅)が溝21と同程度であると、斜めから入ってくるスパッタ粒子が、溝21の中央部のみに到達し、溝21の端には到達しない。その結果、図14(B)に示すように、マスクを使用しない場合よりも溝21内における金属膜14の厚みのばらつきが大きくなり、溝21中央部での厚みが端に比べて厚くなる。この厚みのばらつきは、金属膜をSPR用として用いる際に、光学特性面内ばらつきの原因となる。
【0096】
図15に示すように、本実施例では、スパッタ時のマスク61による金属膜14の厚さばらつきを抑制すべく、マスク61の開口部63のサイズとマスク61の厚さが適切なものを用いた。すなわち、溝幅をWr、溝深さをTr、マスク61の厚さをTmとしたときに、マスク61の開口幅Wmが次式の関係を満たすマスクを使用した。

【0097】
例えば、溝幅(Wr)0.5mm、溝深さ(Tr)50umの基板2に対して、厚さ(Tm)0.1mmのマスク61を使用する場合、マスク61の開口幅は2.5mm以上であることが望ましい。このようなマスク61を用いることにより、溝内のスパッタ面内ばらつきを、マスク61を用いない場合と同等とすることができた。
【0098】
図16に示すように、上記関係式の評価実験を行った。図16(A)は、評価実験の条件を示す図表であり、図16(B)は、マスクサイズとばらつきの関係を示すグラフである。図16(A)に示すようにマスクの条件を変えて金属膜スパッタリングを実施し、各条件における膜厚ばらつきを評価した。その結果、

としたときにWm≧Aの条件において膜厚のばらつきは小さくなり、ほぼ飽和することが確認された。このことから、次の条件を満たすマスクでのスパッタリングが望ましいといえる。

【0099】
<流路封止用治具>
図17〜図19を参照して、本実施例に係る流路チップ1の流路封止用治具について説明する。図17は、流路封止用治具の構成について説明する模式図であり、(A)は複数のフィルム3が形成されたフィルムシート30の模式図、(B)は基板2を固定保持するための固定治具70の模式図、(C)は流路封止の様子を示す模式図である。図18は、流路封止におけるスキージ先端の好適な寸法設定について説明する模式的断面図であり、(A)はスキージ押し付け前、(B)はスキージ押し付け後の状態をそれぞれ示す。図19は、流路封止におけるスキージ先端の好適な寸法設定について説明する模式的断面図であり、(A)はスキージ押し付け前、(B)はスキージ押し付け後の状態をそれぞれ示す。
【0100】
図17(A)〜図17(C)に示すように、本実施例は、基板2を位置決め保持する固定治具70と、基板2にフィルム3を押し付けるためのスキージ71と、からなる流路封止用治具7により、一回の作業で同時に複数の流路封止が可能である。
【0101】
図17(A)に示すように、フィルムシート30は、フィルム3が長手方向に平行に複数形成されるとともに、固定治具70とのアライメント用の貫通孔31が形成されている。フィルムシート30は、基板2の封止部分(溝21が形成されている面)と同じサイズ(48mm×6mm)にカットされている。シート30の感圧型接着剤が塗布された面には保護シートが貼り付けられている。
【0102】
図17(B)に示すように、固定治具70は、基板2が嵌め込まれる複数の凹部72と、フィルムシート30とのアライメント用のピン73と、を有している。凹部72は、フィルムシート30のフィルム3の形成ピッチと同様のピッチで、基板2を長手方向に複数並列配置できるように構成されている。
【0103】
図17(C)に示すように、固定治具70の基板3を並列に並べた面に、保護シートを剥離したフィルム3を貫通孔31にピン73を通して重ね合わせ、スキージ71をフィルムシート30の背面に押し付けながら長手方向にスライドさせる。フィルム3と基板3の位置合わせは、ピン73と貫通孔31により簡易かつ精度よく行うことができる。本実施例では、フィルムシート30の貫通穴31の径を4mm、ピッチを34.3mmとし、固定治具70のピン73の径を3.9mm、ピッチを34.3mmとした。スキージ71は、複数並べられた流路チップの幅を満足する幅を有し、一回のスライド操作により流路チップの流路封止を複数同時に行うことができる。
【0104】
ここで、図18に示すように、スキージ71の先端半径Rが小さすぎると、フィルム3が溝21の底まで到達してしまい、流路11内の液の流れを阻害してしまう。そのため、スキージ71の先端半径Rは適切なサイズであることが望まれる。
【0105】
フィルム3の厚さが薄い場合(厚さを無視できる場合)、

スキージ71(フィルム3の流路側の面)が流路の底に付かないためには、

この式をRについて解くと、

の関係を満たすスキージ71を用いることが望ましい。
【0106】
例えば、流路深さ50um(Tr)、流路幅0.5mm(Wr)の場合、R>0.65mmである。実施例では、スキージ先端R=1.5mmとしている。なお、複数の異なる流路が存在する場合は、それらのうち最大となるRよりも大きく設定する。
【0107】
図19に示すように、フィルム3の厚さを無視しない場合(フィルム厚さが流路深さに対して十分小さくない場合)、フィルム厚さも考慮してスキージ71の先端半径Rを決めても良い。このとき、フィルム3の厚さ分だけスキージ71のみかけの半径が大きくなるので、次式の関係を満たすスキージを用いることが望ましい。

【0108】
例えば流路深さ50um(Tr)、流路幅0.5mm(Wr)、フィルム3の厚さ10
0umの場合、R>0.55mmである。本実施例ではR=1.5mmとした。複数の流路が存在する場合は、最大となるRよりも大きく設定する。
【0109】
<保持治具>
図20〜図24を参照して、本発明の実施例に係る流路チップの保持治具について説明する。図20は、本実施例に係る保持治具の構成を示す模式的断面図である。図21は、流路の変形の様子を説明する模式図であり、(A)は送液前の状態、(B)は送液中の状態、(C)は(B)のFF断面図である。図22は、各流速におけるフィルム表面移動量を示すグラフである。図23は、センシングに対する流路変形の影響を説明する模式図であり、(A)は流路チップの模式的断面図、(B)は流速変化時の信号変化を示すグラフである。図24は、本実施例におけるセンシングに対する流路変形の影響を説明する模式図であり、(A)は流路チップの模式的断面図、(B)は流速変化時の信号変化を示すグラフである。
【0110】
本実施例に係る保持治具5は、図3に示すSPRセンサ等の検出装置において、流路チップ1を位置決め保持するための治具である。その概略構成は、図3(B)に示した構成と同様であり、説明は省略する。ここでは、特徴となる部分についてのみ説明する。
【0111】
本実施例に係る保持治具5は、カバー53を、流路チップ1の上面に重ねられる平坦基板により構成したことを特徴とする。カバー53を構成する平坦基板としては、例えば、ガラス板等が挙げられる。このような平坦なカバー53を流路チップ1の上面に重ねることにより、流路内の流体圧力によるフィルム3のたわみ等の変形を抑え、検出精度への影響を少なくすることができる。
【0112】
ここで、図21〜図23を参照して、本実施例のような平坦なカバーによるフィルタ3のたわみ押えを設けない場合の影響について説明する。
【0113】
図21に示すように、フィルム3によって封止された流路11へ送液すると、流体圧力によりフィルム3がたわみ、流路11の略中央部において流路面積が大きく変化する。また、図22に示すように、流体圧力(流速)の増加に伴い、フィルム表面の移動量は増加する。
【0114】
図23に示すように、フィルム3の変形による流路11の変形は、センシングにも影響を与える。ここで、圧力変動時のセンサ信号への影響について、特許文献5に記載の局在SPRセンサを用いて確認した。
【0115】
図23(A)に示すように、このセンサは、センサ表面に対して垂直に白色光を入射させ、その反射光の反射率の極小値を得る波長(ピーク波長)をセンシングする。局在SPRセンサ表面に深さ200umの流路11を設け、フィルム3で封止した流路チップ1に純水を送液して局在SPRの信号を検出した。
【0116】
図23(B)に示すように、流速を20ul/minから40ul/minに変化させたときに信号変化が発生した。これはフィルム3のたわみによって反射率が変化したことによると考えられる。
【0117】
図24に示すように、フィルム3上に平坦基板によるカバー53を設けることで、フィルム3のたわみの影響が無くなり流速変化時に信号が変化しないことが確認された。これにより、安定したセンサ信号を得ることが可能となる。
【0118】
<局在方SPRセンサ>
図25を参照して、本実施例に係る流路チップ1を局在型SPRセンサに使用する場合の構成例について説明する。図25は、局在型SPRセンサの構成を示す模式図である。なお、ここで説明する構成例は一例であって、かかる構成に限定されるものではなく、従来周知の種々の構成を適宜適用可能であることは言うまでもない。また、上述した図3に示す構成例と同様の構成については説明を省略し、異なる点についてのみ説明する。
【0119】
図25に示すように、局在SPRセンサ8は、ハロゲンランプ等の光源80と、虹彩絞り81、84と、コリメータレンズ82、偏光板83、ハーフプリズム85、集光レンズ86、分光器87等により構成される光学系を備えている。流路チップ1は、治具5により、集光レンズ86で集光される光の光路上に位置決め保持される。
【0120】
光源80から出射された光は、虹彩絞り81によって絞られてコリメータレンズ82へ導かれる。コリメータレンズ82によってコリメートされた光は、直線偏光だけが偏光板83を通過する。偏光板83を通過した直線偏光は虹彩絞り84によって絞られてハーフプリズム85に入射する。ハーフプリズム85に入射した光は、入射光量の約1/2がハーフプリズム85を真っ直ぐに透過し、集光レンズ86を通過して、流路チップ1のセンシング領域に集光される。
【0121】
流路チップ1のセンシング領域に照射された光は、センシング領域で反射して元の方向に戻り、集光レンズ86を通過して再びハーフプリズム85に入射する。ハーフプリズム85に入射した光は、その光量の約1/2がハーフプリズム85内で90度方向を変えて反射される。ハーフプリズム85で方向を変えられた反射光は、分光器87を通過して各波長の光に分光され、分光器87に一体化された光検出器で受光される。分光器87は、各波長毎に光強度の検出が可能に構成されている。本実施例では、分光器87としてOcean Optics社製の分光器(品名:USB4000)を使用した。PC等のデータ処理装置88は、分光器87で検出される各波長毎の光強度と、予めデータとして与えられている各波長毎の光強度と、を比較して、流路チップ1における各波長毎の反射率の分光特性(反射率スペクトル)などを求めることができる。
【0122】
流路チップ1は、局在型SPRセンサに使用される場合と、上述した伝搬型SPRセンサ(図3)に使用される場合とで構成が若干異なる。局在型SPRセンサに使用される場合、基板2にプリズムは一体化されていない。また、流路11のセンシング領域においては、金属層14の表面に複数の微細な凹部(金属膜による凹構造)が形成されている。金属層14に入射した光のエネルギーが表面プラズモン共振によって凹部へ集中することで、金属層14へ入射した光の一部が吸収される。これにより、分光器87で受光する光から求められる反射率は特定の波長(共鳴波長)において小さくなる。この特定の波長は、
検査試料の屈折率によって変化するので、反射率の極小点の波長又はその変化を調べることで検査試料に含まれる誘電体物質の屈折率や種類などをセンシングすることができる。また、特定のタンパク質を特異的に結合させる抗体などを用いて、検査試料中の特定のタンパク質の有無や含有量などのセンシングも可能である。
【0123】
<その他>
本実施例の流路チップ1の使用例としては、上記に限られるものではなく、例えば、蛍光分子を利用する方式や、吸光度測定、電気化学的な測定、など従来既知の利用に供することができることは言うまでもない。また、マイクロ流路チップ上では、混合、分離等の液体操作のみを行なって、検出はチップ外部で行なうような使用方法であってもよい。
【0124】
また、溝が形成される基板は、上述したように金型を用いて射出成形等により製作されるものに限られるものではなく、エッチング等によって基板上に流路パターンを掘り込むことにより製作されるものであってもよい。
【0125】
(実施例2)
図26〜図28を参照して本発明の実施例2に係る流路チップについて説明する。図26は、実施例1に係る流路チップにおける流速変化と信号変化との関係を示すグラフである。図27は、実施例2に係る流路チップの模式的断面図である。図28は、実施例2に係る流路チップにおける流速変化と信号変化との関係を示すグラフである。ここでは、実施例1と同様の構成については、説明を省略し、実施例1と異なる点についてのみ説明する。
【0126】
図26に示すように、流量が大きく変動する場合、実施例1のように、フィルム3の外面に平坦基板を当てるだけでは、フィルム3の変動を抑えるのに不十分な場合がある。特に、高流速から低流速に変動する場合、流路11内部に陰圧が発生するためフィルム3が流路11側へ変動しようとすることが分かる。
【0127】
図27に示すように、本実施例に係る流路チップ1aでは、フィルム3の外側面にガラス等の光を透過可能な材料からなる基板(保持部材)9を接着剤90により接着する構成とした。フィルム3がフィルム3よりも剛性の高い基板9に接着されることにより、流量変動時におけるフィルム3の変動を抑制することができる。基板9の接着は、例えば、光を透過可能な透明な接着剤を、ローラ等によりフィルム3の表面に塗布し、その上に基板9を置いて接着する。
【0128】
図28に示すように、流量が変化しても信号変化はほとんど発生していないことが分かる。すなわち、保持部材としての基板9によってフィルム3の変動が抑えられていることが確認できる。
【0129】
基板9としては、プラスチックなどの透明基板でもよい。保持部材の形状としては平坦な基板9に限られるものではなく、フィルム3の変動を抑制することができ、センシングへの影響がないものであれば種々の形状を採用することができる。
【符号の説明】
【0130】
1 流路チップ
10 チップ本体
11 流路(セル)
12 開口部
13 プリズム
14 金属膜
2 基板
20 基板本体
21 溝
22 貫通孔
4 SPRセンサ
40 単色光源
41 コリメータレンズ
42 集光レンズ
43 コリメータレンズ
44 偏光版
45 受光部
46 データ処理装置
47 ポンプ
48 廃液溜め
5 治具
50 治具本体
51 台座
52 チューブ
53 カバー
54 シール部材

【特許請求の範囲】
【請求項1】
流体を流すための流路を備えた流路チップであって、
光を透過可能な材料からなり、前記流路を形成するための溝が形成された基板と、
光を透過可能な材料からなり、感圧型接着剤により前記基板に貼り付けられて前記溝を封止するフィルムと、
を備えることを特徴とする流路チップ。
【請求項2】
前記基板は、プリズムが一体化されていることを特徴とする請求項1に記載の流路チップ。
【請求項3】
前記流路と外部とを疎通する貫通孔を、前記基板に設けたことを特徴とする請求項1又は2に記載の流路チップ。
【請求項4】
前記貫通孔の外部側の開口部は、外部に向かってテーパ状に拡がって開口していることを特徴とする請求項3に記載の流路チップ。
【請求項5】
前記開口部は、外部に向かって拡径度合が大きくなるように角度の異なる複数のテーパ部で構成されることを特徴とする請求項4に記載の流路チップ。
【請求項6】
前記基板は、樹脂成形品であり、
前記流路の路面の広さを、前記貫通孔が開口する領域において前記貫通孔の開口部よりも広くしたことを特徴とする請求項4または5に記載の流路チップ。
【請求項7】
前記流路は、前記基板上において互いに流通しない少なくとも2つの流路で構成され、
前記基板は、前記フィルムとの接合面において、前記少なくとも2つの流路の一方の路面の一部を含む領域に形成される第1の金属膜と、前記少なくとも2つの流路の他方の路面一部を含む領域に形成される第2の金属膜と、が互いに連続しないで設けられたことを特徴とする請求項1から6のいずれかに記載の流路チップ。
【請求項8】
光を透過可能な材料からなり、前記フィルムの前記基板との接着面とは反対側の面に当接する平坦面を有する支持部材を備えることを特徴とする請求項1から7のいずれかに記載の流路チップ。
【請求項9】
前記フィルムは、前記平坦面に接着されることを特徴とする請求項8に記載の流路チップ。
【請求項10】
前記流路は、前記流路内を流れる流体に光を照射するための流路であることを特徴とする請求項1〜9のいずれかに記載の流路チップ。
【請求項11】
請求項1〜10のいずれかに記載の流路チップを保持するための治具であって、
前記流路チップが前記基板を下にして載置される台座と、
光を透過可能な材料からなり、前記フィルムの前記基板との接着面とは反対側の面に当接する平坦面を有するカバーと、
を備えることを特徴とする治具。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2011−196716(P2011−196716A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−61254(P2010−61254)
【出願日】平成22年3月17日(2010.3.17)
【出願人】(000002945)オムロン株式会社 (3,542)
【Fターム(参考)】