説明

液体分注装置及び液体分注方法

【課題】 簡単な装置構成でありながら、吐出される液滴1滴毎の容量をリアルタイムで制御することができる液体分注装置を提供する。
【解決手段】 ノズル先端から液滴を飛翔させる方式の液体分注装置において、背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有することを特徴とする液体分注装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は液体分注装置及び液体分注方法に関する。更に詳細には、本発明はマイクロ化学チップのウエル又はポートなどにマイクロ量又はナノ量の極微量の液体を分注するための装置及び方法に関する。
【背景技術】
【0002】
最近、マイクロスケール・トータル・アナリシス・システムズ(μTAS)又はラブ・オン・チップ(Lab-on-Chip)などの名称で知られるように、基板内に所定の形状の流路を構成するマイクロチャネル及びポートなどの微細構造を設け、該微細構造内で物質の化学反応、合成、精製、抽出、生成及び/又は分析など各種の操作を行うことが提案され、一部実用化されている。このような目的のために製作された、基板内にマイクロチャネル及びポートなどの微細構造を有する構造物は総称して「マイクロチップ」と呼ばれる。
【0003】
マイクロチップは遺伝子解析、臨床診断、薬物スクリーニング及び環境モニタリングなどの幅広い用途に使用できる。常用サイズの同種の装置に比べて、マイクロチップは(1)サンプル及び試薬の使用量が著しく少ない、(2)分析時間が短い、(3)感度が高い、(4)現場に携帯し、その場で分析できる、及び(5)使い捨てできるなどの利点を有する。
【0004】
マイクロチップの材質や構造及び製造方法は例えば、特許文献1及び特許文献2などに提案されている。従来のマイクロチップ100は、例えば、図4に示されるように、合成樹脂(例えば、ポリジメチルシロキサン又はアクリル樹脂)などの基板102に少なくとも1本のマイクロチャネル104が形成されており、このマイクロチャネル104の少なくとも一端には、試薬類を出し入れするためのポート106が形成されている。基板102の下面側に透明又は不透明な素材(例えば、ガラス又は合成樹脂フィルム)からなる対面基板108が接着されている。この対面基板108の存在により、ポート106及びマイクロチャネル104の底部が封止される。マイクロチャネル104は対面基板108内に形成されることもある。
【0005】
ポート106の主な用途は薬液やサンプルの注入(分注)である。数μL以上の液体の分注は、一般的にピペット110を用い、次の手順で行う。
(a)ピペットチップ先端を目的の液体に浸し、ピペットを操作して所定量を吸引する;
(b)ピペットチップ先端を分注対象のウェルなどの上空またはその中に移動する;及び
(c)ピペットを操作して所定量をウエル内に吐出する。
ピペットの代わりに電動のシリンジポンプなどを用いて自動化することもできる。
【0006】
しかし、分注量(吐出量)が少なくなり、オーダーとして1μL以下になると、次の問題が発生する。
(イ)自重による液滴の落下が困難になる;
(ロ)ピペットチップ先端に液が付着して残り、そのため吐出量が不安定になる;
(ハ)ピペットチップ先端に付着して残った液を除去する為、チップタッチを行う必要が出てくるが、その場合も、コンタミネーションが問題となる;及び
(ニ)液質(粘度や表面張力)や周囲環境(温度や湿度)によって、吐出量が変化する。
【0007】
1μL以下の微量液体の分注に伴う前記の問題点を解消するために、先端に微細孔を設けたノズルから液滴を飛翔させる、いわゆるインクジェット方式の分注装置及び分注方法が用いられるようになってきた。この種の分注方式には、特許文献3に示すように、圧電アクチュエータを高速に動作させて液滴を飛翔させる方式や、特許文献4に示すように、ノズル先端近くで高速にピストンを動作させて気体と一緒に液滴を飛翔させる方式なども提案されている。
【0008】
分注方式に於いて最も重要なのは、1回の吐出量を正確に制御することである。従来の分注方式では、ポンプの吐出量がそのまま分注量であったが、このインクジェット方式では、その機器構成からも分かるように、直接的に分注量を制御することができない。例えば、特許文献3の液体吐出装置では、圧電素子にパルス電圧を印加することにより液体を0.01nL〜数十nLの液滴として所定速度で吐出するが、各液滴の容量を正確に制御することが困難である。また、特許文献4の分注方法では、分注量全体の分注精度自体は±10%程度に維持できるが、液滴1滴毎の容量自体を正確に制御することはできない。
【0009】
また、特許文献5には、高速プランジャー弁を例えば、1ミリ秒の時間ONさせることで、10nL〜20nLの範囲内で所要量の液体を分注する精密分注装置が記載されている。この分注量はパルス数とパルス時間とで制御される。しかし、この装置にあっては、液体の分注量が微量であるため、一定時間の停止毎に初期化しなければならない。すなわち、この装置では、連続的に液滴1滴毎の容量を制御することはできない。
【0010】
特許文献6には、試料吐出時に、ノズルの先端から滴下された各液滴を二次元画像として読み取り、この二次元画像から液滴の輪郭を抽出し、液滴の半径rを測定し、この半径から液滴の体積Vを求め、滴下された各液滴の体積Vを順次加算して試料の吐出量を体積として求める自動分注装置が記載されている。しかし、高速に飛翔する液滴の場合は撮影が困難であり、また、分注対象物の大きさなどによっては、カメラなどの設置が困難で撮影ができない場合があった。また、分注量がリアルタイムで分からない場合は、ノズルの詰まりなどの装置故障や周囲温度の変化などによる分注量の異常を見逃すことになった。
【0011】
【特許文献1】特開2001−157855号公報
【特許文献2】米国特許第5965237号明細書
【特許文献3】特開2000−329771号公報
【特許文献4】特開2004−251820号公報
【特許文献5】特開2004−61153号公報
【特許文献6】特開平7−333231号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
従って、本発明の目的は、簡単な装置構成でありながら、吐出される液滴1滴毎の容量をリアルタイムで制御することができる液体分注装置を提供することである。
本発明の別の目的は、吐出される液滴1滴毎の容量をリアルタイムで制御することができる液体分注方法を提供することである。
【課題を解決するための手段】
【0013】
前記課題を解決するための手段として請求項1に係る発明は、ノズル先端から液滴を飛翔させる方式の液体分注装置において、背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有することを特徴とする液体分注装置である。
【0014】
前記課題を解決するための手段として請求項2に係る発明は、前記ポンプは、電気的又は機械的に進退させることができるピストンを有するポンプであることを特徴とする請求項1記載の液体分注装置である。
【0015】
前記課題を解決するための手段として請求項3に係る発明は、前記ポンプは、電気的又は機械的に進退可能なプランジャーを有するプランジャーポンプであることを特徴とする請求項1記載の液体分注装置である。
【0016】
前記課題を解決するための手段として請求項4に係る発明は、前記共通管路に、システムリキッドを貯留するためのリザーバータンクから延びる別の管路が開閉バルブを介して接続されていることを特徴とする請求項1記載の液体分注装置である。
【0017】
前記課題を解決するための手段として請求項5に係る発明は、前記ノズルは少なくとも先端表面部分を低表面エネルギー樹脂で被覆されていることを特徴とする請求項1記載の液体分注装置である。
【0018】
前記課題を解決するための手段として請求項6に係る発明は、背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有する液体分注装置を用いてノズル先端から吐出された液滴の容量を検出する方法において、
(a)前記高速バルブを閉じて前記ポンプの吐出側圧力を予め設定された圧力となるように前記ポンプを駆動させるステップと、
(b)前記設定圧力を維持した状態で、前記高速バルブを短時間開き、その後閉じるステップと、
(c)前記高速バルブの開閉により生じた圧力変化を前記圧力センサにより検出して前記制御機構にフィードバックするステップと、
(d)前記フィードバックされた信号に基づき、前記ポンプを駆動して圧力を前記設定圧力にまで戻すステップと、
(e)前記ステップ(d)におけるポンプ駆動のピストン又はプランジャーの移動量から、吐出された液滴の容量を算出するステップとを有することを特徴とする液滴容量検出方法である。
【0019】
前記課題を解決するための手段として請求項7に係る発明は、(f)前記ステップ(e)において前記ピストン又はプランジャーの移動量により吐出された液滴の容量を求めると共に、その求めた容量と予め設定した吐出量とを比較し、その誤差に基づいて次回以降の分注時に前記ポンプの設定圧力及び/又は前記高速バルブの開時間を補正するステップを更に有することを特徴とする請求項6記載の液滴容量検出方法である。
【発明の効果】
【0020】
本発明の液体分注装置によれば、簡単な構成でありながら吐出される液滴1滴毎の容量をリアルタイムで制御することができる。また、吐出された液滴の容量もポンプのピストンの移動量から簡単に検出することができる。
【発明を実施するための最良の形態】
【0021】
以下、図面を参照しながら本発明の液体分注装置及び液体分注方法を具体的に説明する。図1は本発明の液体分注装置の構成の一例を示す概要図である。本発明の液体分注装置1は例えば、システムリキッド3を貯留するためのリザーバー5と、プランジャー7を有するプランジャーポンプ9と、圧力センサ11と、滴下ノズル13と、システムリキッド3用の開閉バルブ15と、滴下用高速バルブ17と、制御装置19とからなる。また、配管系として、リザーバー5と開閉バルブ15とを接続する管路21と、開閉バルブ15と高速バルブ17とを接続する管路23と、プランジャーポンプ9を管路23に接続するための管路25とからなる。圧力センサ11は管路25の接続点と高速バルブ17との間の管路23の途中に配設されている。図示されていないが、必要に応じて、ノズル13は適当なXYZテーブルなどのような公知慣用の移動機構に支持させることができる。
【0022】
本発明の液体分注装置1におけるリザーバー5は、システムリキッド3(主に蒸留水や純水)を蓄える。開放構造の他、密閉構造とすることもできる。システムリキッド3は、ポンプやバルブ、その他の配管ボリュームを空気の代わりにその液体で満たすことにより、ノズル13先端からの液体サンプル等の吸引や吐出の操作精度を上げる為に用いられる。また、ノズル13や近傍の配管内を洗浄する場合は、洗浄液としても用いられる。
【0023】
本発明の液体分注装置では、液体の吸引・吐出を行うポンプとして、耐圧が高く制御性がよいプランジャーポンプ9を使用する。プランジャーポンプ9はポンプ容器内をプランジャー7が前進・後退し、プランジャーの押し退け量が吐出量となる。プランジャーの駆動は主にステッピングモーターで行われ、制御装置19によりプランジャー7の位置や速度が自由に制御される。プランジャーはステッピングモータ以外の電気的手段によっても進退させることができる。プランジャーポンプ以外でも、耐圧が高く制御性を高めたシリンジポンプなども使用可能である。本発明の液体分注装置によるノズル先端からの液滴の飛翔は背圧を利用することにより行われる。従って、本発明の液体分注装置では、このポンプは背圧を発生させる目的でも使用される。本明細書で使用する「背圧」という用語は、高速ノズルとは反対側の管路内に封入された液体(システムリキッド又は液体サンプルなど)を、高速バルブが閉じた状態で、ノズル方向に予め所定の圧力で加圧することを意味する。印加する背圧は10KPa〜500KPaの範囲内であることが好ましい。背圧が10KPa未満では液滴を十分に飛翔させることができないばかりか、圧力変化の幅が不十分となり圧力制御に支障を来す。一方、背圧が500KPa超になると、管路が耐圧限界を超え、装置の破損につながる恐れがあるばかりか、液滴が吐出されるときの速度が高くなりすぎ、ウエル底に当たって跳ね返り、飛び散ってしまう恐れがある。
【0024】
圧力センサ11は、主に背圧を掛けた時の液体の圧力を測定する。よって、高速バルブ17の上流で、なるべくその近傍に設けることが好ましい。圧力センサの精度自体は一般的なもので十分対応可能である。圧力センサの取付配管や圧力センサ内部自身の余分な容積(デッドボリューム)が少なく、同時に空気溜まりが発生し難い構造であることが好ましい。
【0025】
ノズル13は、その先端に微細孔が設けられている。その内径は数10μmから数100μm程度である。微細孔がオリフィスの働きをし、液体を吐出する時の流速が高められ、液体は液滴となって飛翔される。ノズル13はガラス、金属、セラミック、プラスチックなど任意の材料から形成することができる。ノズル13の先端表面部分をテフロン(登録商標)などのような低表面エネルギー樹脂で被覆することもできる。この被覆の存在によりノズル13の先端部における液滴の「切れ」が良くなる。
【0026】
高速バルブ17は、ノズルの上流側の近傍に設けられる。極めて高い応答性(1ミリ秒オーダー)を持ち、専用のドライバー回路(図示せず)により、開閉を自由に制御できる。高速バルブの更に上流側の液体をある圧力(背圧)に保った状態で、高速バルブを一瞬開いてまた閉じる。開いている時間間隔は、例えば数ミリ秒のオーダーである。これにより、液体はノズル13より液滴となって飛翔する。飛翔される液滴の量(分注吐出量)は、ノズル形状や液種(粘度、表面張力、比重など)、ノズルから高速バルブまでの配管ボリューム、周囲の温度や湿度などにも影響されるが、主に背圧と高速バルブの開時間(バルブが開いている時間間隔)に大きく関係する。よって、目的の分注吐出量を得る為には、背圧と高速バルブの開時間を適宜最適なものに選択することが好ましい。
【0027】
管路21,23,及び25は内径が数十μm〜数百μmの範囲内の、ガラス、金属又はプラスチック製の毛細管である。柔軟性があり、かつ耐圧性がある点で、テフロン(登録商標)製チューブであることが好ましい。
【0028】
図1の液体分注装置1の動作例について説明する。
(1)先ず、開閉バルブ15を開き、一方、高速バルブ17を閉じ、プランジャーポンプ9を動作させて管路21からリザーバー5内のシステムリキッド3を吸引し、管路21,23にシステムリキッド3を満たす。その後、開閉バルブ15を閉じ、一方、高速バルブ17を開き、ノズル13の内腔を洗浄する。ノズル洗浄後、再び、管路21,23にシステムリキッド3を満たす。
(2)開閉バルブ15を閉じる。
(3)ノズル13を移動機構により目的とするサンプルや試薬類が充填されている液溜容器27又は29に移動させ、容器内の液体に浸し、プランジャーポンプ9を吸引動作させ、指定量を吸引する。吸引量は1回の吐出量よりも遙かに多い量とすることが好ましい。高速バルブ17の位置当たりまで吸引することが好ましい。この吸引により、目的とするサンプルや試薬類などの液体とシステムリキッド3との接触界面で液−液拡散が起こるが、ノズル13の先端部付近にまで拡散が起こるには長大な時間が掛かるので吸引から吐出までの時間を短くすれば、この接触界面における液−液拡散の悪影響は無視可能である。所望により、接触界面にエアーギャップを存在させることもできる。
(4)高速バルブ17を閉じる。
(5)プランジャーポンプ9を動作させ、管路25及び23内に背圧を発生させる。圧力センサ11の示度が所定の設定値に達したらプランジャーポンプ9を停止させるか、又は、圧力制御を実行し続けることもできる。
(6)ノズル13を移動機構により分注対象物(例えば、マイクロチップ100のウエル106)の上空に移動する。
(7)高速バルブ17を高速に1度開閉させ、液滴31を飛翔させる。
(8)液滴31の飛翔により管路23内の圧力が低下するので、この圧力低下を圧力センサ11で検出し、制御装置19により、低下した圧力を元の設定値にまで回復させるためにプランジャーポンプ9を動作させる。
(9)必要に応じて前記(7)と(8)の操作を繰り返し、目的の回数だけ分注操作を繰り返す。
(10)全ての吐出が終了した後は、開閉バルブ15により背圧を大気開放する。更に、必要に応じて、高速バルブ17を開いた状態でプランジャーポンプ9を吐出動作させ、排液と同時にノズル13や途中の管路21,23,25内を洗浄する。
【0029】
前記のように、本発明の液体分注装置1は、高速バルブ17の開閉により生じた系内の圧力(背圧)変化を圧力センサ11で検出し、背圧を設定値に戻すためにプランジャーポンプ9を動作させることを特徴とする。これらは全て制御装置19によりコントロールされる。図1における制御装置19の構成の一例を図2に示す。予め、CRT33やキーボード35などのマンマシンインターフェース手段により、所望の圧力設定値をデータ処理装置37に取り込み、メモリ39に記憶する。
高速バルブ17はメモリ39に記憶された高速バルブ制御プログラムに従って開閉制御される。例えば、高速バルブの開時間が5ミリ秒とプログラムされている場合、この命令がMPU41からデジタルI/Oインターフェース43を介してバルブドライバー45に出される。バルブ開命令はソレノイド47とバルブ機構49により実行される。
高速バルブ17の開閉により生じた系内の圧力変化は圧力センサ11により検出される。圧力センサ11の圧力値はアナログデータとして制御装置19に送られる。制御装置19内のデータ処理装置37は、このアナログデータをA/D変換器51によりデジタルデータとして内部に取り込む。メモリ39に記憶されたポンプ制御プログラムにより、圧力設定値と取り込んだ圧力センサの圧力値(現在値)との差を比較する。この比較はMPU41により行う。差を縮める方向に、通信インターフェース53を介してパルス発生器55にパルス出力要求を出す。この操作はMPU41が行う。パルス発生器55はモータードライバー57にパルスを出す。モータードライバー57はそのパルスに応じてステッピングモータ59を駆動する。ステッピングモータ59の駆動とプランジャー移動機構61によりプランジャー7が移動し、その結果、圧力変化が起こる。この動作を数ミリ秒で繰り返し、圧力を設定値に戻す。
A/D変換には時間がかかり、その間MPUが何もしないで待っていることは時間の無駄になるので、A/D変換器51が単独で変換処理を行い、結果が出るとA/D変換器51からMPU41に割り込みを掛け、それを合図にMPU41がA/D変換器51からデータを読み込むこともできる。A/D変換のタイミングは色々あるが、一般的には一定間隔(例えば、10ミリ秒毎)で変換するようにセットする。その結果、割り込みもほぼその間隔で発生する。変換データの内容(ゼロか否かなど)によって割り込みを発生するケースは少ないかもしれない。
【0030】
図3は本発明の液体分注装置1の制御系の一例を示すブロック線図である。圧力設定値から実際の液体の圧力が減算され、圧力偏差が計算される。圧力偏差に比例ゲインG(Gは定数)を掛けたものがステッピングモーターへの速度指令となる。ポンプ機構系は、その速度指令にしたがって応答する。その結果、液体の圧力が変化し、その値がフィードバックされる。圧力偏差が0となると、速度指令も0となり、ポンプはその近傍を維持する。図示されたフィードバック制御手法は比例ゲインを用いた比例制御によるものであるが、制御性を高めるために、PID(比例積分微分)制御を用いることもできる。なお、背圧を開放する場合は、圧力設定値をゼロとして圧力制御を行うことで容易に達成できる。
【0031】
図1に示された本発明の液体分注装置1は、液体分注量を計測できることが最も際だった特徴である。下記にその原理を説明する。
(イ)ポンプの圧力制御を開始し、目的の背圧に達すると、ポンプのプランジャーはほぼ一定の場所を維持する。まずその位置を記憶しておく。
(ロ)一定の背圧を維持した状態(圧力制御を実行している状態でも良いし、ポンプのプランジャーを停止させた状態でも良い)で、高速バルブを瞬間的に開閉し、目的の量の液滴を飛翔させる。ポンプの機械的応答性は高速バルブより劣る為、圧力制御が間に合わず、液滴の飛翔に伴い背圧が低下する。この背圧の低下は、一定の背圧を維持するために圧力制御を実行している状態とポンプのプランジャーを停止させた状態との間で殆ど差は無い。しかし、液滴の量に比べポンプ内部容積や配管ボリュームは格段に大きく(通常数100倍以上)、また、弾力性のある樹脂製の配管チューブなどを使用することにより、圧力の変動は抑えられ、液滴の飛翔には影響しない。(適度な圧力低下が起こるように配管することが肝要である。)
(ハ)液滴の飛翔が完了した後、圧力制御が有効に働き、僅かな時間遅れで背圧は元に戻って安定する。この時のプランジャー位置を記憶する。
(ニ)分注前のプランジャー位置と分注後のプランジャー位置との差を求め、その分に相当する液量を計算すると、それがすなわち分注された液滴の量に等しいことになる。
尚、圧力制御中はプランジャー位置が絶えず移動し、停止しない場合がある。圧力を一定に維持していても、プランジャーはある位置を中心に、その前後を小刻みに絶え間なく移動する、いわゆるハンチング現象を起こす場合がある。そのような時は、プランジャー位置の時間平均を求め、それを代表値として使用する。これらの計算や処理は制御装置19内のテ゛ータ処理装置43(図2参照)で行う。
【0032】
これまで液滴を飛翔させる分注方式で、液滴の量を計測できる実用的な方式はなかった。例えば、特許文献3に記載されるうような圧電アクチュエータを用いた場合でも、圧電アクチュエータに印加する電圧と、その時の変位量や液滴の量の関係を別途実験により求め、その結果を用いて分注を行っていた。実際の分注時には圧電アクチュエータの変位量や飛翔した液滴の量は一切感知していなかった。よって、液体が乾燥してノズルの微細孔に詰まるなどの異常が発生し、正しい量が分注できなくても、それを検知することができなかった。
【0033】
本発明の分注方式では、精密電子天秤やその他の、液滴を測定する手段を別途必要とせず、尚且つ毎回の液滴の飛翔量をその場で計測することができ、前述の問題も一挙に解決することができる。すなわち、毎回の分注直後に求められた分注量が、所望の分注量の許容範囲内に入っているかどうかを調べ、もし範囲外であれば適宜警報を出し分注操作を中断するなどの処理を行うことができる。
【0034】
また、分注量より少ない数回の液滴に分けて、目的の分注量に達するまで液滴の飛翔を繰り返して分注を行うこともできる。例えば1μLの分注を行う場合に、0.2μLづつ約5回に渡って行うなどである。対象液体の乾燥の進行度合いや、周囲温度の変化など、分注量に僅かに影響する誤差要因が発生した場合、装置を異常停止させることなく、分注量が不足する事態を回避できる。
【0035】
更に、1回の分注結果から分注量の適正を調べ、例えば不足気味なら次回の分注にはより高い背圧を用いるか、高速バルブの開時間をやや長めにするなど、柔軟に対応することができる。例えば、1μLの分注を行う場合に、最初の4回の吐出量の合計が0.7μLであったら、最後は0.3μL目標で分注する(すなわち、分注パラメータを少し変える)こともできる。また、周囲温度や装置の発熱などで徐々に分注環境が変化しても、自動的に追従することができる。この操作は人が介在して行うこともできるが、制御装置内のプログラムにより自動的に対応することも可能である。以上のことから分かるように、本発明は信頼性の高い分注が行えるものである。
【実施例1】
【0036】
0.5μLの微量分注を目的とし、図1に示される構成を有する液体分注装置において下記の条件で分注実験を行った。
(1)プランジャーポンプ:ポンプ内容積100μL、プランジャー移動分解能0.119nL/パルス。
(2)ノズル:微細孔径127μm(サファイア製)、ノズル全長9mm。
(3)圧力センサ:ハネウエル社製で測定可能圧力範囲が−200KPa〜+200KPaのものを使用した。
(4)分注対象液体:水
(5)システムリキッド:蒸留水
(6)制御装置:
比例制御(比例ゲインG=50μL/分/KPa、制御周期5ミリ秒)。
圧力偏差をKPa(キロパスカル)の単位とし、モーターへの速度指令を流量に換算してμL/分とした。
(7)高速バルブ:LEE社製のバルブを用いた。
(8)ポンプ以外の配管ボリューム:約100μL(配管は内径250μmのテフロンチューブを使用した)。
【0037】
動作手順は次のようにして行った。
(a)システムリキッドで管路内、ポンプ内及びノズル内を洗浄した後、ノズル内容積がほぼ液体で満たされた状態で、ポンプを駆動させ、圧力制御を開始した。
(b)背圧の設定値を100KPaとしたところ、100±0.1KPaでほぼ圧力が安定した。その時のプランジャー位置をポンプ残量に換算して記憶した(84.13μL)。
(c)高速バルブを5ミリ秒間開いた後、再び閉じた。液滴が飛翔した後、系内の背圧が約50KPaにまで低下した。
(d)ポンプを駆動させ、背圧が再び元の100±0.1KPaでほぼ安定した時のプランジャー位置をポンプ残量に換算して記憶した(83.62μL)。
(e)液滴の飛翔前後のポンプ残量の差は84.13−83.62=0.51μLであった。
(f)一方、同様の分注操作を5回繰り返し、同一のスライドガラス上に液滴を5個飛翔させた。スライドガラスの重量を精密電子天秤(分解能0.1mg)を用いて、液滴を飛翔する前と後で測定し、その差を求めると2.5mgであった。よって、液滴1個当たりの重量は0.5mgと推測される。また、水の比重は1であり、水1mLは1gである。すなわち、0.5mgの水の体積は0.5μLであり、上記の液滴の計測結果0.51μLとほぼ一致した。
【産業上の利用可能性】
【0038】
本発明の液体分注装置はマイクロチップのウエルに目的の液体を分注できるばかりか、マイクロタイタープレートのウエルに液体を分注する目的にも使用できる。その他、極微量の液体を正確に分注する必要がある全ての用途にも使用することができる。
【図面の簡単な説明】
【0039】
【図1】本発明の液体分注装置の構成の一例を示す概要図である。
【図2】図1における制御装置19の構成の一例を示すブロック図である。
【図3】本発明の液体分注装置1の制御系の一例を示すブロック線図である。
【図4】従来のマイクロチップの一例の部分概要断面図である。
【符号の説明】
【0040】
1 本発明の液体分注装置
3 システムリキッド
5 リザーバー
7 プランジャー
9 プランジャーポンプ
11 圧力センサ
13 ノズル
15 開閉バルブ
17 高速バルブ
19 制御装置
21,23,25 管路
27,29 液溜容器
31 液滴
33 CRT
35 キーボード
37 データ処理装置モータードライバー
39 メモリ
41 MPU
43 デジタルI/Oインターフェース
45 バルブドライバー
47 ソレノイド
49 バルブ機構
51 A/D変換器
53 通信インターフェース
55 パルス発生器
57 モータードライバー
59 ステッピングモーター
61 プランジャー移動機構
100 マイクロチップ
102 基板
104 マイクロチャネル
106 ポート
108 対面基板
110 ピペット

【特許請求の範囲】
【請求項1】
ノズル先端から液滴を飛翔させる方式の液体分注装置において、背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有することを特徴とする液体分注装置。
【請求項2】
前記ポンプは、電気的又は機械的に進退させることができるピストンを有するポンプであることを特徴とする請求項1記載の液体分注装置。
【請求項3】
前記ポンプは、電気的又は機械的に進退可能なプランジャーを有するプランジャーポンプであることを特徴とする請求項1記載の液体分注装置。
【請求項4】
前記共通管路に、システムリキッドを貯留するためのリザーバータンクから延びる別の管路が開閉バルブを介して接続されていることを特徴とする請求項1記載の液体分注装置。
【請求項5】
前記ノズルは少なくとも先端表面部分を低表面エネルギー樹脂で被覆されていることを特徴とする請求項1記載の液体分注装置。
【請求項6】
背圧を発生させるためのポンプと、背圧の変化を検出するための圧力センサと、高速で開閉することができるバルブと、前記バルブの先端に取設されたノズルとからなり、前記ポンプと圧力センサと高速バルブは共通の管路で接続されており、ノズルからの液滴の飛翔により生じた背圧の変化を前記圧力センサにより検出し、その背圧変化をフィードバックして予め設定した背圧値になるように前記ポンプを駆動させる制御機構を有する液体分注装置を用いてノズル先端から吐出された液滴の容量を検出する方法において、
(a)前記高速バルブを閉じて前記ポンプの吐出側圧力を予め設定された圧力となるように前記ポンプを駆動させるステップと、
(b)前記設定圧力を維持した状態で、前記高速バルブを短時間開き、その後閉じるステップと、
(c)前記高速バルブの開閉により生じた圧力変化を前記圧力センサにより検出して前記制御機構にフィードバックするステップと、
(d)前記フィードバックされた信号に基づき、前記ポンプを駆動して圧力を前記設定圧力にまで戻すステップと、
(e)前記ステップ(d)におけるポンプ駆動のピストン又はプランジャーの移動量から、吐出された液滴の容量を算出するステップとを有することを特徴とする液滴容量検出方法。
【請求項7】
(f)前記ステップ(e)において前記ピストン又はプランジャーの移動量により吐出された液滴の容量を求めると共に、その求めた容量と予め設定した吐出量とを比較し、その誤差に基づいて次回以降の分注時に前記ポンプの設定圧力及び/又は前記高速バルブの開時間を補正するステップを更に有することを特徴とする請求項6記載の液滴容量検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2006−308374(P2006−308374A)
【公開日】平成18年11月9日(2006.11.9)
【国際特許分類】
【出願番号】特願2005−129760(P2005−129760)
【出願日】平成17年4月27日(2005.4.27)
【出願人】(000100861)アイダエンジニアリング株式会社 (153)
【Fターム(参考)】