説明

液体吐出ヘッド及び液体吐出ヘッドの製造方法

【課題】構造がより簡単で、より効率的に液滴を吐出することができる液体吐出ヘッド及びこの液体吐出ヘッドの製造方法を提供する。
【解決手段】圧電素子の変位を圧力室内の液体に伝達することで圧力室に連通するノズルの吐出孔から液体の液滴を吐出する液体吐出ヘッドにおいて、ノズルが体積抵抗率を1015Ω・m以上とする樹脂又はガラスより形成されているノズルプレートと、ノズルプレートに形成されているノズルが連通する圧力室となる圧力室溝がSi又は石英より形成されているボディプレートとを含み、圧電素子の第1の面は、圧力室内の液体に接する圧力室の壁の一部をなしている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体吐出ヘッド及び液体吐出ヘッドの製造方法に関する。
【背景技術】
【0002】
インクジェット記録方式は、ノンインパクト記録方式の1つであり、高速記録が可能であると共に、種々の記録媒体に対して記録が可能であり、しかも、高精細な画像が得られる。このような利点から、インクジェット記録方式は、コンピューターの周辺機器としてのプリンタばかりでなく、複写機、写真、各種印刷、産業用高精細パターニング等の記録手段として近年用途を拡大しながら急速に普及している。
【0003】
このようなインクジェット記録を行う記録ヘッドには、インク等の液体を飛翔させるためのノズルと、このノズルに連通する圧力室のインク等の液体に吐出のためのエネルギーを与えるエネルギー発生手段とを備えている。そして、エネルギー発生手段として電気機械変換素子である圧電素子(ピエゾ素子)を用いた液体吐出ヘッドは、圧電素子が発生した圧力波の伝搬によってノズル先端のメニスカスを制御して液滴を吐出させるもので、このような圧電素子の機械エネルギーを液体に伝搬させるための振動板を備えているものが知られている(例えば、特許文献1参照)。
【0004】
振動板と圧電素子との間には、圧力波を発生させるために圧電素子を変形させる電圧を印加するための電極が配置されている。よって、圧電素子の変形が吐出される液体に伝搬するまでには、上記の電極や振動板が介在しているため、圧電素子の駆動効率が低下してしまうという問題があった。
【0005】
上記の圧電素子の駆動効率を改善する方法として、複数のインク室と、これらのインク室に連通する噴出口と、各インク室に圧力を加えるための振動板を備えたインクジェットプリンタヘッドにおいて、上記の振動板を導電性無機材料で形成するとともに、この振動板に圧電素子を接合し、更にこの圧電素子上に駆動用電極を形成して、振動板と駆動用電極間に駆動用電圧を印加する方法がある(特許文献2参照)。
【特許文献1】特許第3218664号公報
【特許文献2】特開平10−305574号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
特許文献1においては、振動板として、厚み20μmから100μmのパイレックス(登録商標)ガラスやSi酸化物の薄膜が形成された42アロイ(Fe−Ni合金)が例として挙げられている。これらの振動板に電極を持った圧電素子を接着して設けている。
【0007】
また、特許文献2においては、圧電素子の変形が吐出される液体に伝搬するまでに介在するものは、導電性無機材料で形成される振動板が一方の圧電素子駆動用電極としても機能するためこの電極を別途設けることが不要となっているものの、導電性無機材料で形成される振動板が存在している。
【0008】
この振動板は、その厚みを薄くすればするほど、圧電素子の変形をより効率よく液体に伝達することができることから、振動板の変形量を同じとする場合、圧電素子の駆動電圧をより低くすることが可能であり、また駆動電圧の印加に対する圧電素子の変形の応答性がより良くなることは十分に期待される。
【0009】
本発明は、構造がより簡単で、より効率的に液滴を吐出することができる液体吐出ヘッド及びこの液体吐出ヘッドの製造方法を提供することである。
【課題を解決するための手段】
【0010】
上記の課題は、以下の構成により解決される。
【0011】
1. 圧電素子の変位を圧力室内の液体に伝達することで該圧力室に連通するノズルの吐出孔から該液体の液滴を吐出する液体吐出ヘッドにおいて、
前記ノズルが体積抵抗率を1015Ω・m以上とする樹脂又はガラスより形成されているノズルプレートと、
前記ノズルプレートに形成されている前記ノズルが連通する前記圧力室となる圧力室溝がSi又は石英より形成されているボディプレートとを含み、
前記圧電素子の第1の面は、前記圧力室内の液体に接する該圧力室の壁の一部をなしていることを特徴とする液体吐出ヘッド。
【0012】
2. 前記圧電素子は、該圧電素子の第2の面のみに1つの電極を有し、Ti、Zrの少なくとも一つと、Pbと、酸素と、を含んでいることを特徴とする1に記載の液体吐出ヘッド。
【0013】
3. 前記液体は、導電性であることを特徴とする1又は2に記載の液体吐出ヘッド。
【0014】
4. 前記ノズルの前記吐出孔が存在する最表面は、撥液処理されていることを特徴とする1乃至3の何れか一項に記載の液体吐出ヘッド。
【0015】
5. 前記ノズル内の前記液体と前記吐出孔が存在する面に対向して設けられた基材との間に電界を形成し静電吸引力を発生するための静電電圧印加手段を備えていることを特徴とする1乃至4の何れか一項に記載の液体吐出ヘッド。
【0016】
6. 吐出孔から液体を液滴として吐出するノズルと、圧力変化によって液滴を連通する前記ノズルの前記吐出孔から吐出させる圧力室と、前記圧力室内に圧力変化を生じさせる圧力発生手段とを備え、
前記ノズルが形成されたノズルプレートと、
前記ノズルプレートが被さって前記圧力室となる圧力室溝が形成されたボディプレートとが接合されてなる液体吐出ヘッドの製造方法において、
前記ボディプレートの前記圧力室溝が形成される面の反対面上にSiO2膜を形成する工程と、
前記SiO2膜上に(100)に優先配向するPt、Pdの少なくとも一つからなる第1の電極膜を形成する工程と、
前記第1の電極膜の上に前記圧力発生手段となる圧電体膜をスパッタリング法を用いて形成する工程と、
前記圧電体膜の上に第2の電極膜を形成する工程と、
前記圧力室溝の底部のボディプレートをなす部材を前記SiO2膜に達するまで除去する工程と、
前記圧力室溝の底部の前記SiO2膜を前記第1の電極膜に達するまで除去する工程と、
前記圧力室溝の底部の前記第1の電極膜を前記圧電体膜に達するまで除去する工程と、
を含むことを特徴とする液体吐出ヘッドの製造方法。
【0017】
7. 吐出孔から液体を液滴として吐出するノズルと、圧力変化によって液滴を連通するノズルの吐出孔から吐出させる圧力室と、前記圧力室内に圧力変化を生じさせる圧力発生手段とを備え、
前記ノズルが形成されたノズルプレートと、
前記ノズルプレートが被さって前記圧力室となる圧力室溝が形成されたボディプレートとが接合されてなる液体吐出ヘッドの製造方法において、
前記ボディプレートの前記圧力室溝が形成される面の反対面上にPt、Ti,Pd、Zrの少なくとも一つからなる第3の電極膜を形成する工程と、
前記第3の電極膜の上に前記圧力発生手段となる圧電体膜を形成する工程と、
前記圧電体膜の上に第4の電極膜を形成する工程と、
前記圧電体膜を加熱しながら、前記第3の電極膜と前記第4の電極膜との間に直流電圧を印加して前記圧電体膜の分極処理を行う工程と、
前記圧力室溝の底部のボディプレートをなす部材を前記第3の電極膜に達するまで除去する工程と、
前記圧力室溝の底部の前記第3の電極膜を前記圧電体膜に達するまで除去する工程と、
を含むことを特徴とする液体吐出ヘッドの製造方法。
【0018】
8. 前記ボディプレートは、Si又は石英から形成することを特徴とする6又は7に記載の液体吐出ヘッドの製造方法。
【0019】
9. 前記ノズルプレートは、体積抵抗率が1015Ω・m以上の樹脂又はガラスから形成することを特徴とする6乃至8の何れか一つに記載の液体吐出ヘッドの製造方法。
【0020】
10. 前記圧電体膜は、Ti、Zrの少なくとも一つと、Pbと、酸素とを含む材料より形成されることを特徴とする6乃至9の何れか一つに記載の液体吐出ヘッドの製造方法。
【0021】
11. 前記ノズルの前記吐出孔が存在する最表面に撥液処理を行う工程を有することを特徴とする6乃至10の何れか一項に記載の液体吐出ヘッドの製造方法。
【0022】
12. 6乃至11の何れか一項に記載の液体吐出ヘッドの製造方法で製造されたことを特徴とする液体吐出ヘッド。
【0023】
13. 前記ノズル内の前記液体と前記吐出孔が存在する面に対向して設けられた基材との間に電界を形成し静電吸引力を発生するための静電電圧印加手段を備えていることを特徴とする12に記載の液体吐出ヘッド。
【発明の効果】
【0024】
請求項1に記載の発明によれば、精度の良い加工が容易にされることができるSi又は石英より形成されているボディプレートが有する圧力室内の吐出される液体に圧電素子の第1の面が直接触れることが可能である。よって、圧電素子の変形は、精度良く加工された圧力室内に存在する、間に何も介在されることなくノズルから吐出される液滴となる液体に伝達されることになる。従って、構造がより簡単で、より効率的に液滴を吐出することができる液体吐出ヘッドを提供することができる。
【0025】
更に、液体を液滴として吐出する吐出孔を有するノズルが形成されているノズルプレートは、体積抵抗率を1015Ω・m以上とする樹脂又はガラスとしているため、圧力室内の液体に電界を印加すると、圧電素子の変形により吐出される液体にてノズル先端に形成されるメニスカスの先端部の電界強度を液滴の吐出が安定して行われることに十分な大きさとすることができることから、静電吸引型の液体吐出ヘッドとして利用可能とすることができる。
【0026】
請求項6、7及び12に記載の発明によれば、液体吐出ヘッドのボディプレートに形成される圧力室溝の底部は、ボディプレートの圧力室溝が形成される面の反対面に向かって、順に分極した圧電体膜、第2の電極膜又は第4の電極膜が存在することになる。分極した圧電体膜は、圧電素子として機能するため、圧力室をなす底面部は圧電素子となり、この圧電素子は圧力室内の液体に直接触れることが可能となる。よって、この圧電素子の変形は、間に何も介在されることなくノズルから吐出される液滴となる液体に伝達されることになる。従って、構造がより簡単で、より効率的に液滴を吐出することができる液体吐出ヘッドの製造方法及びこの製造方法により製造された液体吐出ヘッドを提供することができる。
【発明を実施するための最良の形態】
【0027】
以下、本発明に係る液体吐出ヘッドの実施形態に関して、図を参照して説明する。
【0028】
図1は、本実施形態の一例とする液体吐出ヘッド2(断面図)を使用した液体吐出装置1の全体構成を示す図である。なお、液体吐出ヘッド2は、いわゆるシリアル方式或いはライン方式等の各種の液体吐出装置に適用可能である。
【0029】
液体吐出装置1は、インク等の帯電可能な液体Lの液滴Dを吐出するノズル10が形成された液体吐出ヘッド2と、動作制御手段4と、液体吐出ヘッド2のノズル10に対向する対向面を有するとともにその対向面で液滴Dの着弾を受ける基材Kを支持する対向電極3とを備えている。
【0030】
液体吐出ヘッド2の対向電極3に対向する側には、複数のノズル10を有するノズルプレート11が設けられている。液体吐出ヘッド2は、ノズルプレート11の対向電極3に対向する吐出面12からノズル10が突出されない、或いはノズル10が30μm程度しか突出しないフラットな吐出面を有するヘッドとして構成されている。また、ノズル10は、断面形状が円に形成される代わりに、断面形状が多角形や星形等であってもよい。尚、断面形状が円でない場合の直径とは、対象とする断面の断面積を同じ面積の円形に置き換えた場合の直径とする。
【0031】
各ノズル10は、ノズルプレート11に穿孔されて形成されており、ノズルプレート11の吐出面12に吐出孔13を有する貫通した孔とされている。ここで、ノズル径とは、ノズル10の吐出孔13の直径を示し、吐出孔の開口形状が円でない場合の直径は、上記と同様に対象とする開口面の開口面積を同じ面積の円形に置き換えた場合の直径とする。
【0032】
ノズルプレート11は、後述する体積抵抗率が1015Ω・m以上とするガラス(以降、高抵抗ガラスと称する。)又は体積抵抗率が1015Ω・m以上とする樹脂(以降、高抵抗樹脂と称する。)から形成するのが好ましい。高抵抗ガラスとしては、例えば石英、合成石英、高純度ガラス等から適宜選べば良く、高抵抗樹脂としては、例えばPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PI(ポリイミド)等から適宜選べば良い。
【0033】
高抵抗ガラスにノズルを設けてノズルプレート11を作製する方法としては、特に限定されるものではなく、例えば高抵抗ガラス基板を用いてフッ化カーボン、フッ化水素化カーボン系ガスを反応ガスとするドライエッチング処理を行う方法がある。また、高抵抗樹脂にノズルを設けてノズルプレートを作製する方法としては、特に限定されるものはなく、例えば樹脂成形方法や塗布した樹脂膜に公知のフォトリソグラフィ技術を用いる方法がある。
【0034】
本実施形態では、ノズルプレート11のノズル10の内周面17及びこれに続く圧力室20の底面部には、例えばNiP等の導電素材よりなりノズル10内の液体Lに電圧を印加して帯電させることで後述する静電吸引力を生じさせるための静電電圧印加手段である帯電用電極16が設けられている。帯電用電極16は、ノズル内の液体Lに接するようになっている。
【0035】
この帯電用電極16は、図示しない配線により静電電圧電源18に接続されており、静電電圧電源18より帯電用電極16に静電電圧が印加されると、全ノズル10内の液体Lが同時に帯電され、液体吐出ヘッド2と対向電極3との間、特に液体Lと基材Kとの間に静電吸引力が発生させることができる。
【0036】
ノズルプレート11の吐出面12と反対側の面には、ボディプレート19が設けられている。ノズルプレート11に吐出孔13が設けられている面の反対側の各ノズル10の開口端に面するボディプレート19の部分には、ノズル10の開口より大きい内径を有する略円筒状の空間が形成されており、各空間は吐出される液体Lを一時貯蔵するための圧力室20とされている。
【0037】
また、ボディプレート19は、半導体製造プロセスに準じる加工方法が使用出来ることから精度の良い加工を容易にすることができ、複数の圧力室間のクロストークが少なくすることができる剛性の高いSi又は石英から形成するのが好ましい。Si基板または石英基板を用いて公知のフォトリソグラフィ技術(レジスト塗布、露光、現像)及びエッチング法を用いて圧力室20、共通流路、および共通流路と圧力室20とを結ぶ流路を設けることができる。Siを使用する場合のエッチング法としては、例えば反応ガスをCF4とするドライエッチング法があり、また石英を使用する場合は、上記のノズルプレートと同じくフッ化カーボン、フッ化水素化カーボン系ガスを反応ガスとするドライエッチング法がある。
【0038】
また、図示しない共通流路には、外部の図示しない液体タンクから液体Lを供給する図示しない供給管が連絡されており、供給管に設けられた図示しない供給ポンプにより或いは液体タンクの配置位置による差圧により流路や圧力室20、ノズル10等の液体Lに所定の供給圧力が付与されるようになっている。
【0039】
ここで、圧力室20の底部は厚みが1μmから数十μm程度の圧力発生手段としての圧電素子アクチュエータであるピエゾ素子22が形成されており、液体Lに圧力を生じさせる様に変形可能としている。
【0040】
ピエゾ素子22は、一方の面にのみ電極107が設けられており、他方の面は圧力室20内の液体Lに接している。また帯電用電極16も液体Lに接するように設けられている。ここで、液体Lを導電性とすることで、ピエゾ素子22を駆動するための駆動電圧電源23による駆動電圧の印加は、電極107と帯電用電極16との間にすることができるため、ピエゾ素子22に設ける電極は電極107の一つのみとすることができる。
【0041】
よって、ピエゾ素子22は、一方の面にのみ電極107を有していることから、低い駆動電圧でも容易に変形可能となり、また、その変形は間に何も介在されることなくノズル10内の液体Lに圧力を生じさせてノズル10の吐出孔13に液体Lのメニスカスをより効率良く形成させることができ、その結果、より効率的に液滴を吐出することができる。ピエゾ素子22に関して、以降でさら詳細に説明する。
【0042】
駆動電圧電源23および帯電用電極16に静電電圧を印加する静電電圧電源18は、それぞれ動作制御手段4に接続されており、それぞれ動作制御手段4による制御を受けるようになっている。
【0043】
動作制御手段4は、CPU25やROM26、RAM27等が図示しないBUSにより接続されて構成されたコンピューターからなっており、CPU25は、ROM26に格納された電源制御プログラムに基づいて静電電圧電源18および各駆動電圧電源23を駆動させてノズル10の吐出孔13から液体Lを吐出させるようになっている。
【0044】
ノズルユニット11の吐出面12の全面には、吐出孔13からの液体Lの滲み出しを抑制するための撥液層28が設けられている。撥液層28を設けることにより、吐出孔13からの液体Lの滲み出しが抑制され、ノズル10の吐出孔13部分に形成される液体のメニスカスが吐出孔13の周囲の吐出面に広がり難くされることでメニスカス先端部への電界集中の低下を効果的に防止することが可能となる。
【0045】
撥液層28は、例えば、液体Lが水性であれば撥水性を有する材料が用いられ、液体Lが油性であれば撥油性を有する材料が用いられるが、一般に、FEP(四フッ化エチレン・六フッ化プロピレン)、PTFE(ポリテトラフロロエチレン)、フッ素シロキサン、フルオロアルキルシラン、アモルファスパーフルオロ樹脂等のフッ素樹脂等が用いられることが多く、塗布や蒸着等の方法で吐出面12に成膜されている。なお、撥液層28は、ノズルプレート11の吐出面12に直接成膜しても良いし、撥液層28の密着性を向上させるために中間層を介して成膜しても良い。
【0046】
液体吐出ヘッド2の液体Lの吐出方向には、基材Kを支持する平板状の対向電極3が液体吐出ヘッド2の吐出面12に平行に所定距離離して配置されている。対向電極3と液体吐出ヘッド2との所定距離は、0.1〜3mm程度の範囲内で適宜設定される。
【0047】
本実施形態の液体吐出ヘッド2を用いた液体吐出装置1では、対向電極3は接地されており、常時接地電位に維持されている。そのため、静電電圧電源18から帯電用電極16に静電電圧が印加されると、ノズル10の吐出孔13の液体Lと対向電極3の液体吐出ヘッド2に対向する対向面との間に電界が生じるようになっている。また、帯電した液滴Dが基材Kに着弾すると、対向電極3はその電荷を接地により逃がすようになっている。
【0048】
なお、対向電極3または液体吐出ヘッド2には、液体吐出ヘッド2と基材Kとを相対的に移動させて位置決めするための図示しない位置決め手段が取り付けられており、これにより液体吐出ヘッド2の各ノズル10から吐出された液滴Dは、基材Kの表面に任意の位置に着弾させることが可能とされている。
【0049】
液体吐出装置1により吐出される液体Lは、導電性の液体とし、無機液体、有機液体、高電気伝導率の物質(銀粉等)が多く含まれるような導電性ペーストが挙げられ、導電性ペーストを使用する場合には、前述した無機又は有機液体に溶解又は分散させる上記の高電気伝導率の物質が、ノズル10で目詰まりを発生するような粗大粒子であることを除けば、特に制限されない。
【0050】
ここで上記の液体吐出ヘッド2の圧力室20の底部に形成されているピエゾ素子22に関して以下に詳しく説明する。
【0051】
図2は、図1における1つの圧力室20に注目して、その周辺を拡大して示した図である。ボディプレート19の圧力室20を有する面側には、SiO2膜101を有し、このSiO2膜101上に、Pt(白金)膜103を圧力室20の開口部の周囲に有し、このPt膜103上に圧力室20の空間を被う圧電体105を有し、更に圧電体105上に電極107を有している。ボディプレート19上に、この様なピエゾ素子22を形成することに関して以下に説明する。
【0052】
第1の実施形態として、圧力室の底部に分極処理を行うことなくピエゾ素子を形成する方法を図3に沿って説明する。
【0053】
図3は、ボディプレート上にピエゾ素子を形成する工程を1つのピエゾ素子に注目して模式的に示している。まず、Si基板を用いて、公知のフォトリソグラフィ技術(レジスト塗布、露光、現像)及びエッチング法を用いて圧力室300、図示しない共通流路及び共通流路と圧力室300とを結ぶ流路等を備えるボディプレート301を形成する(図3(a))。
【0054】
次に、圧力室300の底面の背面301aに厚みを0.1μmから2μm程度とするSiO2層302を形成する(図3(b))。SiO2層302の形成方法としては、特に限定されるものではなく、例えば、TEOS(テトラエトキシシラン)処理や熱酸化処理等が挙げられる。尚、このSiO2層302は、上記のTEOS処理等のSiO2層形成工程を独立した工程として設けなくても、例えば圧力室300やこれに連通する流路の形成工程中において形成される場合もある。従って、このSiO2層の形成工程は、必要に応じて独立した工程として設けなくても良い。
【0055】
次に、このSiO2層302の上に(100)に優先配向したPt(白金)又はPd(パラジウム)膜303をピエゾ素子を設ける領域に形成する(図3(c))。以降は、例としてこの膜をPt膜として説明する。この(100)に優先配向したPt(白金)膜303の形成方法は、本発明者らにより開示されているスパッタリング法を用いた薄膜製造装置(特開平6−108242号公報)による。この薄膜製造装置を用いてPt膜303をピエゾ素子を設ける領域に形成するに際し、不必要な領域にPt膜が形成されないように、例えば防着マスク等を用いるのが良い。
【0056】
次に、上記の(100)に優先配向したPt膜上に、ピエゾ素子となる圧電体膜304を形成する(図3(d))。この圧電体膜は、Ti(チタン)及びZr(ジルコニウム)の少なくとも1つと、Pb(鉛)と、酸素とを含んでいることが好ましい。圧電体膜304の形成方法は、特に限定されるものではなく、圧電体膜の公知の形成方法として知られているRFマグネトロンスパッタ法を用いても良い。このRFマグネトロンスパッタ法による圧電体膜304の成膜に使用するターゲットは、例えばPbZr0.52Ti0.483(チタン酸ジルコン酸鉛、90質量%)とPbO(酸化鉛、10体積%)とが混合されているものが挙げられる。圧電体膜304の成膜時のSi基板の温度は、550℃程度が好ましく、成膜速度は、0.01μm/分程度といった比較的低い成膜速度とするのが好ましい。上記の方法にて形成された圧電体膜304の配向性をX線回折の粉末法を用いて配向状態を確認することができ、この圧電体膜304は、ペロブスカイト構造を有し、分極軸が基板面に対して垂直方向に優先配向したc軸配向のエピタキシャル膜となっている。従って、特に分極処理を必要とすることなく、圧電素子として機能させることができる。
【0057】
次に、ピエゾ素子の電極となる金属膜305を設ける(図3(e))。金属膜305とする材料は、電極として使用可能であれば特に限定されるものではなく、例えばPt,Au,Al等が挙げられる。またこれらを材料とする金属膜305は圧電体膜304上へ直接成膜しても良いし、金属膜305の圧電体膜304への密着性を向上させるために中間層、例えばCr(クロム)を設けても良い。
【0058】
次に、ボディプレート301の圧力室溝300の底面部を圧電体膜304に達するまで掘り下げる(図3(f))。最初に圧力室溝300の底面のSiを、この背面に形成したSiO2層に達するまで、除去する。除去方法としては、公知の方法で良くて特に限定されるものではなく、例えばICP(Inductive Coupled Plasma:誘導結合プラズマ)を用いた異方性ドライエッチング法がある。この除去方法はSiO2をほとんど除去できないため、Si除去後はエッチングが停止するので除去条件の設定が容易であることから好ましい。
【0059】
次に、SiO2層302をPt膜303に達するまで除去する(図3(g))。SiO2層の除去方法としては、公知の方法で良くて特に限定されるものではなく、例えば反応ガスをCF4とするドライエッチング法がある。この除去方法はPt膜をほとんど除去できないため、SiO2除去後はエッチングが停止するので除去条件の設定が容易であることから好ましい。
【0060】
更に、Pt膜を圧電体膜304に達するまで除去する(図3(h))。Pt層の除去方法としては、公知の方法で良くて特に限定されるものではなく、例えばAr(アルゴン)によるプラズマ処理法がある。このプラズマ処理は、圧電体膜も除去可能な方法であるため、予め実験等により圧電体膜に不具合が生じないPt膜の除去条件を決めておくのが良い。
【0061】
上記のPt膜の除去が完了した時点で、ボディプレート301への圧電体膜304と電極305とから構成されるピエゾ素子の形成が完了したことになる。
【0062】
尚、上記のSi、SiO2及びPtの除去処理において、特にSiの除去処理において、ボディプレート301の圧力室溝300の底面部以外の圧力室溝300が形成されている面もエッチング処理されることになる。従って、これらの除去処理を考慮した圧力室溝300等の流路溝の形成、例えば流路溝形成時のマスクをこれらの除去処理を考慮した厚みとし、Si除去後にこのマスクを除去すれば良い。
【0063】
次に別途用意したノズルを有するノズルプレート310をボディプレート301の圧力室300を被うように接合することで液体吐出ヘッド320を完成させることができる。
【0064】
ノズルプレート310は、高抵抗ガラスを用いて、例えば反応ガスをCF4とするドライエッチング法を用いれば良い。
【0065】
また、ノズルプレート310のノズル312の内周面及びこれに続く圧力室を被う部分には、例えばNiP、Pt,Au等の導電素材よりなる帯電用電極314を設ける(図3(i))。この帯電用電極314を設ける方法は特に限定されるものではなく、公知の真空蒸着法、スパッタリング法等を用いれば良い。また、導電素材としては、上記の例に限定されるものではなく、吐出に用いられる液体に接することで腐食等を生じないものを適宜選択すれば良い。
【0066】
また、図3において、ノズルの吐出孔312が設けてある吐出面には、撥液層316が設けている。
【0067】
これで、第1の実施形態における液体吐出ヘッドが完成したことになる。
【0068】
第2の実施形態として、圧力室の底部に分極処理を行いピエゾ素子を形成する方法を図4に沿って説明する。
【0069】
図4に、ゾルゲル用PZT液を用いてボディプレート上にピエゾ素子を形成する工程を1つのピエゾ素子に注目して模式的に示す。まずSi基板を用いて、公知のフォトリソグラフィ技術(レジスト塗布、露光、現像)及びエッチング法を用いて圧力室400、図示しない共通流路及び共通流路と圧力室400とを結ぶ流路等を備えるボディプレート401を形成する(図4(a))。
【0070】
この圧力室400の底面の反対面401aのピエゾ素子を設ける領域に金属膜403を形成する(図4(b))。この金属膜403は、Pt、Ti、Pb、Zr及びInとするのが好ましい。これは、以降で行う圧電体の焼結を行うための500℃以上の熱処理に耐え、積層される圧電体膜と反応しない材料であることが必要なためである。この金属膜403の形成方法は、特に限定されるものではなく、例えばスパッタリング法等、公知の方法で良く、形成された金属膜の配向性は特に必要としない。
【0071】
次に、上記で金属膜403を形成した以外の領域にリフトオフのための膜、例えば厚み1μm程度のAl膜402’を形成する(図4(d))。この形成方法は、例えば公知の真空蒸着等によりAl膜402の成膜後(図4(c))、公知のフォトリソグラフィ処理及びエッチング処理を行って形成しても良く、特に限定されない。こうしてボディプレート401の圧力室溝400の底面の背面は、金属膜403又はAl膜402’の何れかの膜が形成されていることになる。
【0072】
次に、上記のAl膜402’及び金属膜403上にゾルのPZT液、例えばPZTアルコラート(商品名、Inostek社)、を塗布することで圧電体膜404aを形成する(図4(e))。具体的には、例えばスピンコート法による塗布により厚さ1μmの圧電体膜を形成後、乾燥及び仮焼結する。この圧電体膜は、Ti(チタン)、Zr(ジルコニウム)の少なくとも1つと、Pb(鉛)と、酸素とを含んでいることが好ましい。
【0073】
次に、Alエッチングを行うことで、金属膜403と金属膜403上の圧電体膜404bをボディプレート401に残して、Al膜402’とAl膜402’上の圧電体膜を取り除く(図4(f))。再度、Al膜402の成膜、ゾルのPZT液の塗布により更に厚さ1μmの膜形成後、乾燥及び仮焼結する工程(図4(c)から(f)まで)を繰り返して圧電体膜を積層することで、圧電体膜を所望の厚みとする。この後、本焼結のための500℃以上での加熱処理を行うことで圧電体膜404cを形成することができる。この時点での圧電体膜404cは、配向が十分に揃っていない多結晶状態である。
【0074】
ここで、本第2の実施の形態での圧電体膜の形成は、ゾルのPZT液の塗布としているが、第1の実施の形態と同じRFマグネトロンスパッタ法を用いても良い。但し、ここでRFマグネトロンスパッタ法で成膜された圧電体膜は、ペロブスカイト構造を有し、分極軸が基板面に対して垂直方向に優先配向したc軸配向のエピタキシャル膜とはならず、以降で説明する分極処理を必要とする。
【0075】
次に、ピエゾ素子の電極となる金属膜405を設ける(図4(g))。金属膜405とする材料は、電極として使用可能であれば特に限定されるものではなく、例えばPt,Au,Al等が挙げられる。またこれらを材料とする金属膜405は圧電体膜404c上へ直接成膜しても良いし、金属膜405の圧電体膜404cへの密着性を向上させるために中間層、例えばCrを設けても良い。
【0076】
次に、圧電体膜404cの部分を200℃から300℃程度で加熱しながら、金属膜403と金属膜405との間に50Vから100V程度の直流電圧を約1時間程度印加することで圧電体膜の分極処理を行う(図4(h))。これらの加熱温度、電圧及び処理時間は、分極処理の対象となる材料や厚み等を考慮し、予め実験等を行って決めれば良い。この分極処理後の圧電体膜は、X線回折により、ペロブスカイト構造のc軸に優先配向していることが確認できる。よって、圧電体膜404cは圧電素子として機能することができる。
【0077】
以降(図4(i)から(l))は、第1の実施形態と同じ工程を行うことで液体吐出ヘッド420が完成させることができる。
【0078】
これで、第2の実施形態における液体吐出ヘッドが完成したことになる。
【0079】
尚、第1の実施形態及び第2の実施形態では、ボディプレートがSiから形成され、ノズルプレートが高抵抗ガラスから形成される場合として説明しているが、ボディプレートが石英から形成され、ノズルプレートが高抵抗樹脂から形成される場合又はこれら組み合わせ変える場合も上記と同様にすることで液体吐出ヘッドを作製することができる。
【0080】
発明者らが、図5に示す液体吐出実験装置S’を使用して電極間の電界の電界強度が実用的な値である1.5kV/mmとなるように構成し、各種の絶縁体でノズルプレート11’を形成して下記の実験条件に基づいて行った実験では、ノズル10’から液滴D’が吐出される場合と吐出されない場合があった。
[実験条件]
ノズルプレート11’の吐出面12’と対向電極3’の対向面との距離:1.0mm
ノズルプレート11’の厚さ:125μm
ノズル径:10μm
静電電圧:1.5kV
駆動電圧:20V
液体吐出実験に使用した実験用液体吐出ヘッドA’のノズル10’には4°のテーパ角を持っている。このテーパ角は、ノズル10’の断面において、吐出面12’に対する垂線から吐出面12’から離れる方向に広がる角度を示している。尚、このテーパ角は、吐出に対する影響は小さく、液滴を安定に吐出する条件への依存性は大きくないことが後で説明するシミュレーションから得られている。
【0081】
ここで、液体吐出ヘッドにおける液体の吐出原理について図5を用いて説明する。実験用液体吐出ヘッドA’では、静電電圧電源63’から静電電圧印加手段である帯電用電極16’に静電電圧を印加し、ノズル10’の吐出孔13’の液体L’と対向電極3’の実験用液体吐出ヘッドA’に対向する対向面との間に電界を生じさせる。また、駆動電圧電源61’から圧力発生手段であるピエゾ素子22’に駆動電圧を印加してピエゾ素子22’を変形させ、それにより液体L’に生じた圧力でノズル10’の吐出孔13’に液体L’のメニスカスを形成させる。
【0082】
ノズル10’部の絶縁性が高くなると、図6にシミュレーションによる等電位線で示すように、ノズル10’の内部に、吐出面12’に対して略垂直方向に等電位線が並び、液体Lのメニスカス部分に向かう強い電界が発生する。
【0083】
特に、図6でメニスカスの先端部では等電位線が密になっていることから分かるように、メニスカス先端部では非常に強い電界集中が生じる。そのため、電界の静電力によってメニスカスが引きちぎられてノズル内の液体L’から分離されて液滴D’となる。さらに、液滴D’は静電力により加速され、対向電極3’に支持された基材K’に引き寄せられて着弾する。その際、液滴D’は、静電力の作用でより近い所に着弾しようとするため、基材K’に対する着弾の際の角度等が安定し正確に行われる。
【0084】
このように、実験用液体吐出ヘッドA’における液体L’の吐出原理を利用すれば、フラットな吐出面を有する実験用液体吐出ヘッドA’においても、高い絶縁性を有するノズル10’部を用い、吐出面12’に対して垂直方向の電位差を発生させることで強い電界集中を生じさせることができ、正確で安定した液体L’の吐出状態を形成することができる。
【0085】
この液体吐出実験装置S’による実験で、液滴D’がノズルから安定に吐出されたすべての場合について、メニスカス先端部の電界強度を求めた。実際には、メニスカス先端部の電界強度を直接測定することが困難であるため、電界シミュレーションソフトウエアである「PHOTO−VOLT」(商品名、株式会社フォトン製)によるシミュレーションにより算出した。ここでの電界強度は、電流分布解析モードによる、電圧印加後300秒後の電界強度を言う。その結果、すべての場合においてメニスカス先端部の電界強度は1.5×107V/m以上であった。また、この実験において、液滴D’がノズルから安定して吐出されない場合についても、上記と同様のシミュレーションによりメニスカス先端部の電界強度を算出した。その結果、1.5×107V/m未満であった。
【0086】
また、上記の実験条件と同様のパラメータを同ソフトウエアに入力してメニスカス先端部の電界強度を計算した結果、図7に示すように、電界強度はノズルプレート11’に用いる絶縁体の体積抵抗率に強く依存することが分かった。また、ノズル10’から液滴D’を安定に吐出させるためにはメニスカス先端部の電界強度が1.5×107V/m以上であることが必要であることが上記の実験より得られていることから、図7から明らかなように、ノズルプレート11’の体積抵抗率は1015Ω・m以上であればよいことが分かった。
【0087】
なお、図7に示したようなメニスカス先端部の電界強度のノズルプレート11’の体積抵抗率に対する特徴的な依存関係は、ノズル径を種々に変化させてシミュレーションを行った場合でも同様に得られており、どの場合も体積抵抗率が1015Ω・m以上の場合にメニスカス先端部の電界強度が1.5×107V/m以上になることが分かっている。
【0088】
従って、図1に示す液体吐出ヘッド2において、ノズルプレート11を体積抵抗率が1015Ω・m以上の樹脂又はガラスとするのが好ましい。このような樹脂又はガラスを用いることで、吐出孔13に形成される液滴のメニスカス先端部の電界強度が1.5×107V/m以上になるため、液体の吐出が安定して行われることが出来ることになる。尚、ノズルプレート11の樹脂が導電性の液体を吸収する場合、ノズルプレート11の電気伝導度が大きくなり、その結果体積抵抗率が低下する場合がある。このような場合には、ノズルプレート11の吐出される液体と接触する面に液体吸収防止層を設ければ良い。体積抵抗率が1015Ω・m以上のガラスとしは、具体的には、石英、合成石英及び高純度ガラス等が挙げられる。
【0089】
更に、図5に示すノズルプレート11’のノズル10’を図2に示す吐出孔13と同径の筒状とするテーパを持たない貫通した穴形状とした場合、ノズルプレート11’の厚みを10μm、20μm、50μm、100μmとするパラメータとして、ノズル径を変化させた場合のメニスカス先端部の電界強度のシミュレーション結果を図8に示す。
【0090】
図8より、ノズル径が小さくなる程、またノズルプレートの厚みが厚くなる程メニスカス先端部の電界強度が大きくなることが分かる。ノズル10’から液滴D’が安定に吐出されるためにはメニスカス先端部の電界強度が1.5×107V/m以上であることが必要であることから、例えばノズルプレートの厚みを10μmとする場合は、ノズル径を4μm未満とすることで液滴を安定して吐出させることができる。さらに、例えばノズルプレートの厚みを20μmとする場合はノズル径を6μm未満に、ノズルプレートの厚みを50μmとする場合はノズル径を11μm未満に、ノズルプレートの厚みを100μmとする場合はノズル径を24μm未満にすることで液滴を安定に吐出させることができる。
【0091】
このように、体積抵抗率が1015Ω・m以上の樹脂又はガラスより成るノズルプレートの厚みを、図8を参照又はこの図8を求めたシミュレーションを用いて所望のノズル径より適宜決める値とすることにより、安定に液滴を吐出することができる液体吐出ヘッドを得ることができる。
【0092】
なお、本実施形態では、ピエゾ素子22の変形により形成されたメニスカスを静電吸引力で分離して液滴化し、静電電圧による電界で加速して基材Kに着弾させる構成としているが、この他にも、例えば、ピエゾ素子22の変形による圧力のみで液体Lが液滴化する程度の強い駆動電圧を印加するように構成することも可能である。
【実施例】
【0093】
以下、実施例を説明する。
【0094】
石英(厚み100μm)からなるノズルプレートの吐出面にノズル径を10μmとする32個のノズルを公知のフォトリソグラフィ技術(レジスト塗布、露光、現像)と反応ガスをCF4とするドライエッチング法を用いて形成した。また、帯電用電極314としてノズル310内周面及び圧力室底部にNiP膜をRFマグネトロンスパッタ法を用いて約0.5μmの厚みに成膜した。
【0095】
また、ボディプレートにおける圧力室溝、共通流路溝、および共通流路溝と圧力室溝とを結ぶ流路溝等の形成は、Si基板を用いて公知のフォトリソグラフィ技術(レジスト塗布、露光、現像)とICPを用いた異方性ドライエッチング技術を用いて形成した。
【0096】
液体吐出の実験には、エタノールに染料(CIアシッドレッド1)を3質量%含有した導電性の液体を用いた。
【0097】
上記のノズルプレート、ボディプレート及び吐出用液体は、全く同じものを以下の実施例1及び2、参考例1に用いた。
【0098】
尚、異方性ドライエッチング技術は、高アスペクト比(加工された凹部の深さと幅の比であり、アスペクト比が高いとは、溝の深さが深く幅が狭い状態を表す。)の構造を得るための技術であって、エッチングの最中にエッチングにより加工された凹部の側壁を保護するためにエッチング反応を生じさせる化学種(ラジカル、イオン等)を発生させるサイクルと、側壁を保護するための保護膜を堆積させるサイクルとを交互に行うエッチング処理のことである。この異方性ドライエッチング技術を用いることでシリコン基板に形成される凹部の側壁は基板表面に対して垂直に加工できる。本実施例の溝や穴等の形成のエッチングガスとしてはSF6を、側壁保護膜の堆積用ガスとしてはC48を用いた。
【0099】
(実施例1)
ボディプレート上へのピエゾ素子の形成の一例を図3に示す工程に沿って行った。Siで作製された圧力室溝300、流路溝、共通流路溝からなるボディプレート301の圧力室溝300の裏面301aにTEOS処理にて形成した厚み約0.3μmのSiO2膜302を介して(100)に優先配向したPt膜303をステンレス製の防着マスクを用いて、圧電体を形成する領域に厚み0.3μm程成膜した(図3(c))。Pt膜303の(100)優先配向膜の製造方法は、本発明者らの出願した特開平6−108242を用いた。このPt膜303上にRFマグネトロンスパッタ法でPZT(チタン酸ジルコン酸鉛)膜304を5μm成膜した(図3(d))。成膜条件を以下に示す。
・到達真空度:6.67×10-5Pa
・放電真空度:6.67×10-1Pa
・ガス:酸素20体積%のアルゴン雰囲気
・基板温度:550℃
・ターゲット:PbZr0.48Ti0.523(90%)+PbO(10%)混合
・成膜速度:0.01μm/分
圧電体膜304の形成は、Pt膜303の形成と同様に防着マスクを用いて不必要な領域に圧電体膜が形成されないようにカバーすることで対処した。得られた圧電体膜304は、X線回折で評価したところ、ペロブスカイト構造のC軸に優先配向したエピタキシャル膜であった。
【0100】
この圧電体膜304の上に上記と同様に防着マスクを用いて圧電体膜304上にCrを0.03μmと、Auを0.3μmとを、RFマグネトロンスパッタ法で積層成膜し、各圧電体の独立した電極305とした(図3(e))。
【0101】
次に、ボディプレート301の圧力室溝300の底部(厚み:15μm)をICPを用いた異方性エッチング処理によりSiを除去し(図3(f))、反応ガスCF4を用いたドライエッチング処理によりSiO2膜を除去し(図3(g))、Arプラズマ処理(RF電力:500W、処理圧力:6.67Pa)でPtを除去し(図3(h))、圧力室溝300cの底部に圧電体膜304が露出するようにした。尚、特にSiを除去する際に、ボディプレート301の圧力室溝300cの底部以外の部分もエッチング処理されるため、これを考慮した流路溝等の形成を行った。
【0102】
このボディプレート301aにノズルプレート310を接着剤にて貼り合わせ(図3(i))、ノズルプレート表面に撥水処理(メルクジャパン社製Evaporation substance WR1の蒸着)を行って撥液膜316を設けることで液体吐出ヘッド320を完成した(図3(j))。
【0103】
次に、液体吐出ヘッド320の圧電素子の電極305及び帯電電極314を図1に示す動作制御手段4を含む静電電圧電源18及び駆動電圧電源23に接続して、この液体吐出ヘッド320の吐出面と対向電極との距離が1mmとなるように設定した。吐出用液体は、導電性としていることから、圧力室内の液体が圧電素子の共通電極として機能することができる。この液体吐出ヘッド320の帯電用電極314と対向電極3との間に静電電圧電源18により1.5kV印加した状態で、帯電用電極314と圧電素子の電極305との間に駆動電圧電源23により20kHzの矩形波を40V印加して駆動させたところ、各ノズルから液体が良好に吐出されることを確認した。
【0104】
(実施例2)
ボディプレート上へのピエゾ素子の形成の一例を図4に示す工程に沿って行った。Siで作製された圧力室溝400、流路溝、インク室からなるボディプレート401の圧力室溝400の裏面401aにTi膜403をステンレス製の防着マスクを用いて、圧電体を形成する領域に0.3μm成膜した(図4(b))。Ti膜403の形成は、Ar雰囲気で基板温度250℃の条件で通常のDCマグネトロンスパッタを行った。
【0105】
この上に、圧電体の形成用のためのリフトオフに用いる厚み2μmのAl膜402を、DCマグネトロンスパッタ法で作製し(図4(c))、フォトリソグラフィ処理及びエッチング処理にてTi膜403上のAl膜を除去した(図4(d))。
【0106】
ボディプレート401の上記のTi膜403及びAl膜402’上に圧電体となるゾルのPZTアルコラート(Inostek社:厚膜対応PZTアルコラート)404aを1μmの厚みになるようにスピンコート法で塗布し、120℃で5分(大気中)、500℃で30分(大気中)にて乾燥仮焼成(ゲル化)を行った(図4(e))。次にAlのエッチング液(半井化学(株)、アルミエッチャント液)に浸漬し、Al膜ごと不要なPZTの除去を行った(図4(f))。これを10回繰り返してPZT膜bを積層形成することで合計10μmとし、その後675℃で5時間(酸素雰囲気:1.01×105Pa)の熱処理を行った。得られた圧電体膜404cは、X線回折で評価したところ、PbZr0.48Ti0.523の多結晶膜であった。
【0107】
この圧電体膜404cの上に防着マスクを介して、Crを0.03μmとAuを0.3μmを、RFマグネトロンスパッタ法で成膜し、各圧電体の独立した電極405とした(図4(g))。
【0108】
次に、約250℃で加熱しながらTi膜403と電極405との間に直流電圧源450を用いて70Vの直流電圧を両膜間に1時間印加して分極処理を行った(図4(h))。
【0109】
次に、ボディプレート401の圧力室溝400の底部(厚さ:15μm)をICPを用いた異方性エッチング処理によりSiを除去し(図4(i))、Arプラズマ処理(RF電力:500W、処理圧力:6.67Pa)でPtを除去し(図4(j))、圧力室溝400cの底部に圧電体404が露出するようにした。尚、特にSiを除去する際に、ボディプレートの圧力室の底部以外の部分もエッチング処理されるため、これを考慮した流路溝等の形成を行った。
【0110】
このボディプレート401にノズルプレート410を接着剤にて貼り合わせ(図4(k))、ノズルプレート表面に撥水処理(メルクジャパン社製、Evaporation substance WR1)により、撥液膜416を設けることで液体吐出ヘッド420を完成した(図4(l))。
【0111】
次に、吐出ヘッド420の圧電素子の電極405及び帯電電極414を図1に示す動作制御手段4を含む静電電圧電源18及び駆動電圧電源23に接続して、この液体吐出ヘッド420の吐出面と対向電極との距離が1mmとなるように設定した。吐出用液体は、導電性としていることから、圧力室内の液体が圧電素子の共通電極として機能することができる。この液体吐出ヘッド420の帯電用電極414と対向電極3との間に静電電圧電源18により1.5kV印加した状態で、帯電用電極414と電極405との間に駆動電圧電源23により20kHzの矩形波を40V印加して駆動させたところ、各ノズルから液体が良好に吐出されることを確認した。
【0112】
(参考例1)
特許文献1における厚み20μmから100μmのパイレックス(登録商標)ガラスを振動板としていることを参考にして、実施例1におけるボディプレートの圧力室溝の底部(厚さ:15μm)をICPを用いた異方性エッチング処理によりSiの除去するに際し、厚み10μmのSiを振動板として使用するため、5μmだけ除去した以外は全く同じとした液体吐出ヘッドを作製した。
【0113】
この液体吐出ヘッドを実施例1と同じ条件で吐出実験を行ったところ、液体が同じ状態で吐出されるには、印加電圧が60Vを必要とした。また、実施例1の液体吐出ヘッドと本参考例1の液体吐出ヘッドの駆動印加電圧を同じ40Vとして、印加する矩形波の周波数を変化させて吐出したところ、15kHzを超える辺りから、参考例1の液体吐出ヘッドから吐出される液滴量が実施例1の液体吐出ヘッドから吐出される液滴量に比較して量のムラや減少が確認された。
【図面の簡単な説明】
【0114】
【図1】本実施形態の一例である液体吐出ヘッドを有する液体吐出装置例の全体構成を示す図である。
【図2】図1におけるピエゾ素子周辺部分を拡大して模式的に示す図である。
【図3】ボディプレートにピエゾ素子を形成する一例を模式的に示す図である。
【図4】ボディプレートにピエゾ素子を形成する一例を模式的に示す図である。
【図5】液体の吐出条件を検討するために使用した実験用液体吐出ヘッドを示す図である。
【図6】シミュレーションによるノズルの吐出孔付近の電位分布を示す模式図である。
【図7】ノズルプレートの体積抵抗率とメニスカス先端部の電界強度との関係を示す図である。
【図8】ノズル径とメニスカス先端部の電界強度との関係をノズルプレートの厚みをパラメータにして示す図である。
【符号の説明】
【0115】
1 液体吐出装置
2 液体吐出ヘッド
3 対向電極
4 動作制御手段
10 ノズル
11 ノズルプレート
12 吐出面
13 吐出孔
16 帯電用電極
18 静電電圧電源
19 ボディプレート
20 圧力室
22 ピエゾ素子
23 駆動電圧電源
28 撥液層
101 SiO2膜
103 Pt膜
105 圧電体
107 電極
L 液体
D 液滴

【特許請求の範囲】
【請求項1】
圧電素子の変位を圧力室内の液体に伝達することで該圧力室に連通するノズルの吐出孔から該液体の液滴を吐出する液体吐出ヘッドにおいて、
前記ノズルが体積抵抗率を1015Ω・m以上とする樹脂又はガラスより形成されているノズルプレートと、
前記ノズルプレートに形成されている前記ノズルが連通する前記圧力室となる圧力室溝がSi又は石英より形成されているボディプレートとを含み、
前記圧電素子の第1の面は、前記圧力室内の液体に接する該圧力室の壁の一部をなしていることを特徴とする液体吐出ヘッド。
【請求項2】
前記圧電素子は、該圧電素子の第2の面のみに1つの電極を有し、Ti、Zrの少なくとも一つと、Pbと、酸素と、を含んでいることを特徴とする請求項1に記載の液体吐出ヘッド。
【請求項3】
前記液体は、導電性であることを特徴とする請求項1又は2に記載の液体吐出ヘッド。
【請求項4】
前記ノズルの前記吐出孔が存在する最表面は、撥液処理されていることを特徴とする請求項1乃至3の何れか一項に記載の液体吐出ヘッド。
【請求項5】
前記ノズル内の前記液体と前記吐出孔が存在する面に対向して設けられた基材との間に電界を形成し静電吸引力を発生するための静電電圧印加手段を備えていることを特徴とする請求項1乃至4の何れか一項に記載の液体吐出ヘッド。
【請求項6】
吐出孔から液体を液滴として吐出するノズルと、圧力変化によって液滴を連通する前記ノズルの前記吐出孔から吐出させる圧力室と、前記圧力室内に圧力変化を生じさせる圧力発生手段とを備え、
前記ノズルが形成されたノズルプレートと、
前記ノズルプレートが被さって前記圧力室となる圧力室溝が形成されたボディプレートとが接合されてなる液体吐出ヘッドの製造方法において、
前記ボディプレートの前記圧力室溝が形成される面の反対面上にSiO2膜を形成する工程と、
前記SiO2膜上に(100)に優先配向するPt、Pdの少なくとも一つからなる第1の電極膜を形成する工程と、
前記第1の電極膜の上に前記圧力発生手段となる圧電体膜をスパッタリング法を用いて形成する工程と、
前記圧電体膜の上に第2の電極膜を形成する工程と、
前記圧力室溝の底部のボディプレートをなす部材を前記SiO2膜に達するまで除去する工程と、
前記圧力室溝の底部の前記SiO2膜を前記第1の電極膜に達するまで除去する工程と、
前記圧力室溝の底部の前記第1の電極膜を前記圧電体膜に達するまで除去する工程と、
を含むことを特徴とする液体吐出ヘッドの製造方法。
【請求項7】
吐出孔から液体を液滴として吐出するノズルと、圧力変化によって液滴を連通するノズルの吐出孔から吐出させる圧力室と、前記圧力室内に圧力変化を生じさせる圧力発生手段とを備え、
前記ノズルが形成されたノズルプレートと、
前記ノズルプレートが被さって前記圧力室となる圧力室溝が形成されたボディプレートとが接合されてなる液体吐出ヘッドの製造方法において、
前記ボディプレートの前記圧力室溝が形成される面の反対面上にPt、Ti,Pd、Zrの少なくとも一つからなる第3の電極膜を形成する工程と、
前記第3の電極膜の上に前記圧力発生手段となる圧電体膜を形成する工程と、
前記圧電体膜の上に第4の電極膜を形成する工程と、
前記圧電体膜を加熱しながら、前記第3の電極膜と前記第4の電極膜との間に直流電圧を印加して前記圧電体膜の分極処理を行う工程と、
前記圧力室溝の底部のボディプレートをなす部材を前記第3の電極膜に達するまで除去する工程と、
前記圧力室溝の底部の前記第3の電極膜を前記圧電体膜に達するまで除去する工程と、
を含むことを特徴とする液体吐出ヘッドの製造方法。
【請求項8】
前記ボディプレートは、Si又は石英から形成することを特徴とする請求項6又は7に記載の液体吐出ヘッドの製造方法。
【請求項9】
前記ノズルプレートは、体積抵抗率が1015Ω・m以上の樹脂又はガラスから形成することを特徴とする請求項6乃至8の何れか一つに記載の液体吐出ヘッドの製造方法。
【請求項10】
前記圧電体膜は、Ti、Zrの少なくとも一つと、Pbと、酸素とを含む材料より形成されることを特徴とする請求項6乃至9の何れか一つに記載の液体吐出ヘッドの製造方法。
【請求項11】
前記ノズルの前記吐出孔が存在する最表面に撥液処理を行う工程を有することを特徴とする請求項6乃至10の何れか一項に記載の液体吐出ヘッドの製造方法。
【請求項12】
請求項6乃至11の何れか一項に記載の液体吐出ヘッドの製造方法で製造されたことを特徴とする液体吐出ヘッド。
【請求項13】
前記ノズル内の前記液体と前記吐出孔が存在する面に対向して設けられた基材との間に電界を形成し静電吸引力を発生するための静電電圧印加手段を備えていることを特徴とする請求項12に記載の液体吐出ヘッド。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−181971(P2007−181971A)
【公開日】平成19年7月19日(2007.7.19)
【国際特許分類】
【出願番号】特願2006−1263(P2006−1263)
【出願日】平成18年1月6日(2006.1.6)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】