説明

液晶セル貼合せ偏光板用反射偏光フィルム、それからなる液晶表示装置用液晶パネルおよび液晶表示装置

【課題】従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消された、液晶セルと貼り合せる偏光板として好適な多層積層の反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置を提供する。
【解決手段】1軸延伸多層積層フィルムからなる反射偏光フィルムであって、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が95%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が12%以下である液晶セル貼合せ用反射偏光フィルムによって得られる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶セルとの貼合わせ用に適した高偏光度の反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置に関し、さらに詳しくは、1軸延伸多層積層フィルムを用いた高偏光度の液晶セル貼合せ用反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置に関する。
【背景技術】
【0002】
テレビ、パソコン、携帯電話等に用いられる液晶表示装置(LCD)は、液晶セルの両面に偏光板を配置した液晶パネルによって光源から射出される光の透過量を調整することによってその表示を可能としている。液晶セルに貼り合わされる偏光板として一般的に光吸収タイプの2色性直線偏光板と呼ばれる吸収型偏光板が用いられており、ヨウ素を含むPVAをトリアセチルセルロース(TAC)で保護した偏光板が広く用いられている。
【0003】
このような吸収型の偏光板は、透過軸方向の偏光光を透過し、透過軸と直交方向の偏光光の殆どを吸収するため、光源装置から出射された無偏光光の約50%がこの吸収型偏光板で吸収され、光の利用効率が低下することが指摘されている。そこで、透過軸と直交方向の偏光光を有効利用するために、輝度向上フィルムと呼ばれる反射型の偏光子を光源と液晶パネルの間に用いる構成が検討されており、かかる反射型の偏光子の一例として光学干渉を用いたポリマータイプのフィルムが検討されている(特許文献1など)。
【0004】
一方、液晶セルに貼りあわされる偏光板についても、外光を利用した反射表示やバックライトを利用した透過表示など、表示装置に利用する光の種類や目的などに応じて、吸収型偏光板と反射型偏光板とを組み合わせた種々の積層構成が検討されるようになっている。
例えば特許文献2には、液晶層に電解を印加して液晶のリタデーション値を変化させて液晶層に入射する偏光光の位相差を一定量シフトさせる液晶表示装置において、液晶層の両側に用いる偏光板の一例として光源側に複屈折性を有するフィルムを3層以上積層した平面状多層構造の反射型偏光板、また液晶層を介した反対側に吸収型偏光板を開示している。
また特許文献3には、可撓性を有する基板間に液晶を挟持した液晶セルに偏光板として吸収型偏光板と反射型偏光板を用いる際、各偏光板の温度変化に伴う伸縮量が相違するために生じる反りを解消するため、これら偏光板を組み合わせ、特定の積層構成にすることで反りを解消することが提案されている。そして反射型偏光板の一例として複屈折性の誘電体多層膜を用いることが記載されており、具体的には輝度上昇フィルムが開示されている。
【0005】
しかしながら、従来検討されているような複屈折性の多層構成を用いた反射偏光性ポリマーフィルム(例えば特許文献4〜6)は、p偏光を反射してs偏光を透過する機能を有するものの、その偏光度は2色性直線偏光板と同等のレベルには至っていない。
例えば、特許文献5などに記載されているポリエチレン−2,6−ナフタレンジカルボキシレート(以下、2,6−PENと称することがある)を高屈折率層に用い、熱可塑性エラストマーやイソフタル酸を30mol%共重合したPENを低屈折率層に用いた多層積層フィルムの場合、延伸により延伸方向(X方向)の層間の屈折率差を大きくしてp偏光の反射率を高め、一方フィルム面内方向におけるX方向と直交する方向(Y方向)の層間の屈折率差が小さいことでs偏光の透過率を高めることで一定レベルの偏光性能が発現している。この偏光性能を2色性直線偏光板レベルに高めようとすると、2,6−PENポリマーの性質上、X方向の延伸に伴い、Y方向の屈折率とフィルム厚み方向(Z方向)の屈折率に差が生じ、Y方向の層間屈折率差を一致させるとZ方向の層間の屈折率差が大きくなってしまい、斜め方向に入射した光に対する部分的な反射により透過光の色相ずれが大きくなる。
【0006】
そのため、かかる多層構成のポリマーフィルムを単独で液晶セルの一方の偏光板として用いた液晶表示装置はいまだ実用化されていないのが現状である。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特表平09−507308号公報
【特許文献2】特開2005−316511号公報
【特許文献3】特開2009−103817号公報
【特許文献4】特開平04−268505号公報
【特許文献5】特表平9−506837号公報
【特許文献6】国際公開第01/47711号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消された、液晶セルと貼り合せる偏光板として好適な多層積層の反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置を提供することにある。
【課題を解決するための手段】
【0009】
本発明者等は、前記課題を解決するために鋭意検討した結果、従来の多層積層型の反射偏光フィルムの高屈折率層を構成する樹脂として使われていたポリエチレン−2,6−ナフタレンジカルボキシレートに代えて、一軸延伸によりX方向の屈折率が増大する一方、Y方向とZ方向の両方向の屈折率がともに低下する特性を有する熱可塑性樹脂を用いることにより、一軸延伸後の第1層のX方向とY方向の屈折率差を従来よりも大きくすることが可能となる結果、従来のポリエチレン−2,6−ナフタレンジカルボキシレートを用いた多層積層型の反射偏光フィルムに較べて高いp偏光の反射性能が得られ、p偏光を透過させないことでs偏光を選択的に透過させる高い偏光性能が得られ、しかもY方向とZ方向の両方向について層間の屈折率差を小さくでき、斜め方向に入射した光に対する透過光の色相ずれが解消されるため、多層積層のフィルム単独で液晶セルの一方の偏光板として用いることが可能となることを見出し、本発明を完成するに至った。
【0010】
すなわち本発明の目的は、1軸延伸多層積層フィルムからなる反射偏光フィルムであって、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が95%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が12%以下である液晶セル貼合せ用反射偏光フィルム(項1)によって達成される。
【0011】
また本発明の1軸延伸多層積層フィルムは、好ましい態様として以下の少なくともいずれか1つを具備するものも包含するものである。
2. 該1軸延伸多層積層フィルムが第1層と第2層とが交互に積層された多層構造を有しており、
1)第1層を構成する熱可塑性樹脂が平均屈折率1.60以上1.70以下であって、1軸延伸方向(X方向)の屈折率nXが延伸により増大し、フィルム面内で1軸延伸方向に直交する方向(Y方向)の屈折率nYおよびフィルム厚み方向(Z方向)の屈折率nZが延伸により低下する熱可塑性樹脂であり、
2)第2層を構成する熱可塑性樹脂が平均屈折率1.50以上1.60以下であって、X方向、Y方向およびZ方向のそれぞれの屈折率差が延伸前後で0.05以下である熱可塑性樹脂である、上記1に記載の液晶セル貼合せ用反射偏光フィルム。
3. 該1軸延伸多層積層フィルムが第1層と第2層とが交互に積層された多層構造を有しており、第1層を形成する熱可塑性樹脂が(i)ジカルボン酸成分が5モル%以上50モル%以下の下記式(A)で表される酸成分および50モル%以上95モル%以下の下記式(B)で表される酸成分を含有し、
【0012】
【化1】

(式(A)中、Rは炭素数2〜10のアルキレン基を表わす)
【0013】
【化2】

(式(B)中、Rはフェニレン基またはナフタレンジイル基を表わす)
(ii)ジオール成分が90モル%以上100モル%以下の下記式(C)で表されるジオール成分
【0014】
【化3】

(式(C)中、Rは炭素数2〜10のアルキレン基を表わす)
を含有する芳香族ジカルボン酸成分およびジオール成分とのポリエステルである上記1または2に記載の液晶セル貼合せ用反射偏光フィルム。
4. 第2層を形成する熱可塑性樹脂が、イソフタル酸もしくは2,6−ナフタレンジカルボン酸を共重合したエチレンテレフタレート成分を主たる成分とするポリエステルである上記2または3に記載の液晶セル貼合せ用反射偏光フィルム。
5. 該1軸延伸多層積層フィルムの積層数が251層以上である上記1〜4のいずれかに記載の液晶セル貼合せ用反射偏光フィルム。
6. 上記1〜5のいずれかに記載の液晶セル貼合せ用反射偏光フィルムからなる第1の偏光板、液晶セル、および第2の偏光板がこの順で積層されてなる液晶表示装置用光学部材。
7. 上記6に記載の液晶表示装置用光学部材であって、ただし第1の偏光板が吸収型偏光板と積層された構成を除く液晶表示装置用光学部材。
8. 第2の偏光板が吸収型偏光板である上記6または7に記載の液晶表示装置用光学部材。
9. 第2の偏光板が請求項1〜5のいずれかに記載の液晶セル貼合せ用反射偏光フィルムである上記6に記載の液晶表示装置用光学部材。
10. 光源と上記6〜9のいずれかに記載の液晶表示装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶表示装置。
11. 光源と第1の偏光板との間にさらに反射型偏光板を有していない上記10に記載の液晶表示装置。
【発明の効果】
【0015】
本発明によれば、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消された、液晶セルと貼り合せる偏光板として好適な多層積層の反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置を提供することができる。
【図面の簡単な説明】
【0016】
【図1】2,6−PENの1軸延伸後の延伸方向(X方向)、延伸方向と直交する方向(Y方向)、厚み方向(Z方向)の屈折率(それぞれn、n、nと示す)を図1に示す。
【図2】本発明における第1層用芳香族ポリエステル(I)の1軸延伸後の延伸方向(X方向)、延伸方向と直交する方向(Y方向)、厚み方向(Z方向)の屈折率(それぞれn、n、nと示す)を図2に示す。
【図3】本発明の1軸延伸多層積層フィルムのフィルム面を反射面とし、延伸方向(X方向)を含む入射面に対して平行な偏光成分(p光成分)、および延伸方向(X方向)を含む入射面に対して垂直な偏光成分(s光成分)の波長に対する反射率のグラフの一例である。
【図4】本発明の好ましい実施形態による液晶表示装置の概略断面図である。
【発明を実施するための形態】
【0017】
[1軸延伸多層積層フィルム]
(平均反射率)
本発明の液晶セル貼合せ用反射偏光フィルムは、1軸延伸多層積層フィルムからなる反射偏光フィルムであり、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が95%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が12%以下であることを特徴する。
【0018】
ここで、入射面とは反射面と垂直の関係にあり、かつ入射光線と反射光線を含む面を指す。また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分は、一般的にp偏光と称される。また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分は、一般的にs偏光とも称される。さらに入射角とは、フィルム面の垂直方向に対する入射角を表す。
【0019】
フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分について、入射角0度での該入射偏光に対する波長400〜800nmの平均反射率は、さらに好ましくは98%以上100%以下である。p偏光成分に対する平均反射率がこのように高いことにより、p偏光の透過量を従来よりも抑え、s偏光を選択的に透過させる高い偏光性能が発現され、従来の吸収型偏光板に匹敵する高い偏光性能が得られ、単独で液晶セルと貼り合せる偏光板として用いることができる。同時に、透過軸と直交方向のp偏光がフィルムに吸収されずに高度に反射されることにより、かかる光を再利用させる輝度向上フィルムとしての機能も兼ね備えることができる。
また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して平行な偏光成分について、入射角50度での該入射偏光に対する波長400〜800nmの平均反射率は、さらに好ましくは96%以上99%以下である。入射角50度でのp偏光についても平均反射率がこのように高いことにより、高い偏光性能が得られるとともに、斜め方向に入射した光の透過が高度の抑制されるため、かかる光による色相ずれが抑制される。
フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分について入射角0度での該入射偏光に対する波長400〜800nmの平均反射率は、さらに好ましくは5%以上12%以下であり、特に好ましくは8%以上12%以下である。
また、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分について入射角50度での該入射偏光に対する波長400〜800nmの平均反射率は、さらに好ましくは5%以上10%以下であり、特に好ましくは8%以上10%以下である。
【0020】
垂直方向および斜め方向に入射するs偏光成分に対する波長400〜800nmの平均反射率がかかる範囲内に制限されることにより、光源と反対側に透過されるs偏光量が増大する。一方、s偏光成分に関する平均反射率が上限値を越える場合、反射偏光フィルムとしての偏光透過率が低下するため、液晶セルに貼り合せる偏光板として十分な性能を発現しない。一方、かかる範囲内でより該偏光反射率が低い方がよりs偏光成分の透過率が高くなるものの、下限値より低くすることは組成や延伸との関係で難しいことがある。
【0021】
かかるp偏光成分についての平均反射率特性を得るためには、第1層および第2層の交互積層で構成される1軸延伸多層積層フィルムにおいて、各層を構成するポリマーとして後述する屈折率特性を有するポリマーを用い、延伸方向(X方向)に一定の延伸倍率で延伸して第1層のフィルム面内方向を複屈折率化させることにより、延伸方向(X方向)における第1層と第2層の屈折率差を大きくすることによって達成される。また、波長400〜800nmの波長域においてかかる平均反射率を得るために、第1層、第2層の各層厚みを調整する方法が挙げられる。
【0022】
また、s偏光成分についての平均反射率特性を得るためには、第1層および第2層の交互積層で構成される1軸延伸多層積層フィルムにおいて、各層を構成するポリマー成分として後述する屈折率特性を有するポリマーを用い、かつ該延伸方向と直交する方向(Y方向)に延伸しないか、低延伸倍率での延伸にとどめることにより、該直交方向(Y方向)における第1層と第2層の屈折率差を極めて小さくすることによって達成される。また、波長400〜800nmの波長域においてかかる平均反射率を得るために、第1層、第2層の各層厚みを調整する方法が挙げられる。
【0023】
[第1層]
本発明の1軸延伸多層積層フィルムは、第1層と第2層とが交互に積層された多層構造を有している。本発明において、第1層は第2層より屈折率の高い層、第2層は第1層より屈折率の低い層をそれぞれ表す。また、延伸方向(X方向)の屈折率はnX、延伸方向と直交する方向(Y方向)の屈折率はnY、フィルム厚み方向(Z方向)の屈折率はnZと記載することがある。
【0024】
本発明において第1層を構成する熱可塑性樹脂は、平均屈折率1.60以上1.70以下であって、1軸延伸方向(X方向)の屈折率nXが延伸により増大し、フィルム面内で1軸延伸方向に直交する方向(Y方向)の屈折率nYおよびフィルム厚み方向(Z方向)の屈折率nZが延伸により低下する熱可塑性樹脂である。
【0025】
反射偏光機能を有する多層積層フィルムの第1層として、これまでポリエチレン−2,6−ナフタレンジカルボキシレートが最も好適な材料として知られていたが、ポリエチレン−2,6−ナフタレンジカルボキシレートは、延伸前後でY方向の屈折率nYがほとんど変化しない材料であるのに対し、本発明の第1層を構成する熱可塑性樹脂は延伸によりY方向の屈折率nYがZ方向の屈折率nZと同様、延伸に伴い減少する点で最も特徴を有する。
従来は反射偏光機能を有する多層積層フィルムの第1層に用いられることが知られていなかった本発明の屈折率特性を有する熱可塑性樹脂を第1層に用い、さらに後述する第2層の熱可塑性樹脂と組み合わせて多層積層フィルムにすることにより、これまでの多層積層フィルムでは困難であった、従来の吸収型偏光板に匹敵する高い偏光性能が発現し、しかも斜め方向に入射した光に対する透過偏光の色相ずれが解消されるため、液晶セルと貼り合せて用いられる偏光板に好適に用いることができる。
【0026】
ここで、本発明における平均屈折率とは、第1層を構成する熱可塑性樹脂を単独で溶融させ、ダイより押出して未延伸フィルムを作成し、得られたフィルムのX方向、Y方向、Z方向それぞれの方向における屈折率について、メトリコン製プリズムカプラを用いて波長633nmで測定し、それらの平均値を平均屈折率として規定したものである。
【0027】
また、延伸による各方向の屈折率変化については、次の方法により求めることができる。すなわち、第1層を構成する熱可塑性樹脂を単独で溶融させてダイより押出し、未延伸フィルムを作成する。得られたフィルムのX方向、Y方向、Z方向それぞれの方向について、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定し、3方向の屈折率の平均値より平均屈折率を求め、延伸前の屈折率とする。
次に、延伸後の屈折率については、第1層を構成する熱可塑性樹脂を単独で溶融させてダイより押出し、1軸方向に135℃で5倍を施して1軸延伸フィルムを作成し、得られたフィルムのX方向、Y方向、Z方向それぞれの方向について、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定し、延伸後の各方向の屈折率とする。
かかる方法で得られた延伸前の屈折率と延伸後の各方向の屈折率とを比較し、延伸による屈折率変化の増減を確認することができる。
【0028】
第1層の熱可塑性樹脂の平均屈折率の下限値は、より好ましくは1.61、さらに好ましくは1.62である。また第1層の熱可塑性樹脂の平均屈折率の上限値は、より好ましくは1.69、さらに好ましくは1.68である。第1層の熱可塑性樹脂の平均屈折率がかかる範囲内にあることにより、延伸後の第2層との層間の各方向の屈折率差を所望の範囲にすることができる。一方、第1層の熱可塑性樹脂の平均屈折率が下限値に満たない場合、第2層との屈折率差が近くなり、延伸後のX方向の屈折率差を十分に大きくすることができない。また第1層の熱可塑性樹脂の平均屈折率が上限値を超える場合は延伸後の第2層との屈折率差が大きくなり、延伸後のY方向、Z方向における層間の屈折率差を小さくし難い。
【0029】
第1層の熱可塑性樹脂のX方向における屈折率nXは、延伸により0.20以上増大することが好ましく、より好ましくは0.25以上、さらに好ましくは0.27以上である。該屈折率の変化がより大きい方がより偏光性能を高めることができるが、延伸倍率が高すぎるとフィルム破断が生じる関係で、上限値は0.35に制限され、さらには0.30である。
【0030】
第1層の熱可塑性樹脂のY方向における屈折率nYは、延伸により0.05以上0.20以下の範囲で低下することが好ましく、より好ましくは0.06以上0.15以下、さらに好ましくは0.07以上0.10以下である。該屈折率の低下量が下限値に満たない場合は、Y方向の層間屈折率が一致するように両層の樹脂を選択すると、X方向の層間の屈折率差を大きくするに伴いZ方向の層間の屈折率のずれが大きくなり、偏光性能の向上と斜め方向の入射光に対する透過偏光の色相ずれの両立化が困難であることがある。一方、該屈折率の低下量が上限値を超える場合は、配向性が高すぎて、機械的な強度が十分でないことがある。
【0031】
第1層の熱可塑性樹脂のZ方向における屈折率nZは、延伸により0.05以上0.20以下の範囲で低下することが好ましく、より好ましくは0.06以上0.15以下、さらに好ましくは0.07以上0.10以下である。該屈折率の低下量を下限値に満たない範囲にするためにはX方向を低配向にせざるを得ず、X方向の層間の屈折率差を十分に大きくすることができないことがある。一方、該屈折率の低下量が上限値を超える場合は、配向性が高すぎて、機械的な強度が十分でないことがある。
【0032】
第1層の延伸後のY方向屈折率nYと延伸後のZ方向屈折率nZの屈折率差は、0.05以下であることが好ましく、さらに好ましくは0.03以下、特に好ましくは0.01以下である。これら2方向の屈折率差が非常に小さいことにより、偏光光が斜め方向の入射角で入射しても色相ずれが生じない効果を奏する。かかる偏光光は特に、フィルム面を反射面とし、1軸延伸フィルムの延伸方向(X方向)を含む入射面に対して垂直な偏光成分(s偏光)についての色相ずれの解消に効果的である。
【0033】
かかる屈折率特性を有する熱可塑性樹脂として、具体的には以下に述べるような特定構造の共重合成分をジカルボン酸成分に有する芳香族ポリエステル(以下、芳香族ポリエステル(I)と称することがある)、ポリエチレン−2,7−ナフタレンジカルボキシレートなどが挙げられる。
【0034】
<芳香族ポリエステル(I)>
第1層を形成する熱可塑性樹脂の1つとして、特定構造の共重合成分をジカルボン酸成分に有する芳香族ポリエステル(I)が例示される。かかるポリエステルは、以下に詳述するジカルボン酸成分とジオール成分との重縮合によって得られる。
(ジカルボン酸成分)
本発明の芳香族ポリエステル(I)を構成するジカルボン酸成分(i)として、5モル%以上50モル%以下の下記式(A)で表される酸成分、および50モル%以上95モル%以下の下記式(B)で表される酸成分で表わされる少なくとも2種の芳香族ジカルボン酸成分またはそれらの誘導体が用いられる。ここで、各芳香族ジカルボン酸成分の含有量は、ジカルボン酸成分の全モル数を基準とする含有量である。
【0035】
【化4】

(式(A)中、Rは炭素数2〜10のアルキレン基を表わす)
【0036】
【化5】

(式(B)中、Rはフェニレン基またはナフタレンジイル基を表わす)
【0037】
式(A)で表される酸成分について、式中、Rは炭素数2〜10のアルキレン基である。かかるアルキレン基として、エチレン基、プロピレン基、イソプロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基等が挙げられる。
【0038】
式(A)で表される酸成分の含有量の下限値は、好ましくは7モル%、より好ましくは10モル%、さらに好ましくは15モル%である。また、式(A)で表される酸成分の含有量の上限値は、好ましくは45モル%、より好ましくは40モル%、さらに好ましくは35モル%、特に好ましくは30モル%である。
従って、式(A)で表される酸成分の含有量は、好ましくは5モル%以上45モル%以下、より好ましくは7モル%以上40モル%以下、さらに好ましくは10モル%以上35モル%以下、特に好ましくは15モル%以上30モル%以下である。
【0039】
式(A)で表される酸成分は、好ましくは6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸、6,6’−(トリメチレンジオキシ)ジ−2−ナフトエ酸および6,6’−(ブチレンジオキシ)ジ−2−ナフトエ酸が好ましい。これらの中でも式(A)におけるRの炭素数が偶数のものが好ましく、特に下記式(A−1)で表わされる6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸が好ましい。
【0040】
【化6】

【0041】
かかる芳香族ポリエステル(I)は、ジカルボン酸成分が5モル%以上50モル%以下の式(A)で表される酸成分を含有することを特徴とする。式(A)で示される酸成分の割合が下限値に満たない場合は、1軸延伸によるY方向の屈折率の低下が生じにくいため、
延伸フィルムにおけるY方向の屈折率nYとZ方向の屈折率nZの差異が大きくなり、斜め方向の入射角で入射した偏光による色相ずれが改善し難い。また、式(A)で示される酸成分の割合が上限値を超える場合は、非晶性の特性が大きくなり、延伸フィルムにおけるX方向の屈折率nXとY方向の屈折率nYとの差異が小さくなるため、X方向における第1層と第2層との層間の屈折率差を大きくできず、p偏光成分について十分な反射性能が得られない。
【0042】
このように、式(A)で表される酸成分を含有するポリエステルを用いることで、反射偏光フィルムとしての偏光性能を従来より高めつつ、斜め方向の入射角による色相ずれも生じない1軸延伸多層積層フィルムを製造することができる。
【0043】
また、式(B)で表される酸成分について、式中、Rはフェニレン基またはナフタレンジイル基である。
式(B)で表される酸成分として、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、またはこれらの組み合わせが挙げられ、特に2,6−ナフタレンジカルボン酸が好ましく例示される。
【0044】
式(B)で表される酸成分の含有量の下限値は、好ましくは55モル%、より好ましくは60モル%、さらに好ましくは65モル%、特に好ましくは70モル%である。また、式(B)で表される酸成分の含有量の上限値は、好ましくは93モル%、より好ましくは90モル%、さらに好ましくは85モル%である。
従って、式(B)で表される酸成分の含有量は、好ましくは55モル%以上95モル%以下、より好ましくは60モル%以上93モル%以下、さらに好ましくは65モル%以上90モル%以下、特に好ましくは70モル%以上85モル%以下である。
【0045】
式(B)で示される酸成分の割合が下限値に満たない場合は、非晶性の特性が大きくなり、延伸フィルムにおけるX方向の屈折率nXとY方向の屈折率nYとの差異が小さくなるため、X方向における第1層と第2層との層間の屈折率差を大きくできず、p偏光成分について十分な反射性能が得られない。また、式(B)で示される酸成分の割合が上限値を超える場合は、式(A)で示される酸成分の割合が相対的に少なくなるため、延伸フィルムにおけるY方向の屈折率nYとZ方向の屈折率nZの差異が大きくなり、斜め方向の入射角で入射した偏光による色相ずれが改善し難い。
このように、式(B)で表される酸成分を含有するポリエステルを用いることで、X方向に高屈折率を示すと同時に1軸配向性の高い複屈折率特性を実現できる。
【0046】
(ジオール成分)
本発明の芳香族ポリエステル(I)を構成するジオール成分(ii)として、90モル%以上100モル%以下の下記式(C)で表されるジオール成分が用いられる。ここで、ジオール成分の含有量は、ジオール成分の全モル数を基準とする含有量である。
【0047】
【化7】

(式(C)中、Rは炭素数2〜10のアルキレン基を表わす)
式(C)で表されるジオール成分の含有量は、好ましくは95モル%以上100モル%以下、より好ましくは98モル%以上100モル%以下である。
【0048】
式(C)中、Rは炭素数2〜10のアルキレン基であり、かかるアルキレン基として、エチレン基、プロピレン基、イソプロピレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基等が挙げられる。これらの中でも式(C)で表されるジオール成分として、エチレングリコール、トリメチレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール等が好ましく挙げられ、特に好ましくはエチレングリコールである。式(C)で示されるジオール成分の割合が下限値に満たない場合は、前述の1軸配向性が損なわれる。
【0049】
(芳香族ポリエステル(I))
芳香族ポリエステル(I)において、式(A)で表される酸成分と式(C)で表されるジオール成分で構成されるエステル単位(−(A)−(C)−)の含有量は、全繰り返し単位の5モル%以上50モル%以下であり、好ましくは5モル%以上45モル%以下、さらに好ましくは10モル%以上40モル%以下である。
【0050】
芳香族ポリエステル(I)を構成する他のエステル単位として、エチレンテレフタレート、トリメチレンテレフタレート、ブチレンテレフタレートなどのアルキレンテレフタレート単位、エチレン−2,6−ナフタレンジカルボキシレート、トリメチレン−2,6−ナフタレンジカルボキシレート、ブチレン−2,6−ナフタレンジカルボキシレートなどのアルキレン−2,6−ナフタレンジカルボキシレート単位が挙げられる。これらの中でも高屈折率性などの点からエチレンテレフタレート単位やエチレン−2,6−ナフタレンジカルボキシレート単位が好ましく、特にエチレン−2,6−ナフタレンジカルボキシレート単位が好ましい。
【0051】
芳香族ポリエステル(I)として、特に、式(A)で表されるジカルボン酸成分が式(A−1)で表わされるジカルボン酸成分であり、
【化8】

式(B)で表されるジカルボン酸成分が2,6−ナフタレンジカルボン酸由来の芳香族ジカルボン酸成分であり、ジオール成分がエチレングリコールであるポリエステルが好ましい。
【0052】
芳香族ポリエステル(I)は、P−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度が0.4〜3dl/gであることが好ましく、さらに好ましくは0.4〜1.5dl/g、特に好ましくは0.5〜1.2dl/gである。
【0053】
芳香族ポリエステル(I)の融点は、好ましくは200〜260℃の範囲、より好ましくは205〜255℃の範囲、さらに好ましくは210〜250℃の範囲である。融点はDSCで測定して求めることができる。
該ポリエステルの融点が上限値を越えると、溶融押出して成形する際に流動性が劣り、吐出などが不均一化しやすくなることがある。一方、融点が下限値に満たないと、製膜性は優れるものの、ポリエステルの持つ機械的特性などが損なわれやすくなり、また本発明の屈折率特性が発現し難い。
一般的に共重合体は単独重合体に比べて融点が低く、機械的強度が低下する傾向にある。しかし、本発明のポリエステルは、式(A)の酸成分および式(B)の酸成分を含有する共重合体であり、式(A)の酸成分のみを有する単独重合体に比べて融点が低いものの機械的強度は同程度であるという優れた特性を有する。
【0054】
芳香族ポリエステル(I)のガラス転移温度(以下、Tgと称することがある。)は、好ましくは80〜120℃、より好ましくは82〜118℃、さらに好ましくは85〜118℃の範囲にある。Tgがこの範囲にあると、耐熱性および寸法安定性に優れたフィルムが得られる。かかる融点やガラス転移温度は、共重合成分の種類と共重合量、そして副生物であるジアルキレングリコールの制御などによって調整できる。
かかる芳香族ポリエステル(I)の製造方法は、例えば国際公開第2008/153188号パンフレットの第9頁に記載されている方法に準じて製造することができる。
【0055】
(芳香族ポリエステル(I)の屈折率特性)
芳香族ポリエステル(I)を1軸延伸した場合の各方向の屈折率の変化例を図2に示す。図2に示すように、X方向の屈折率nXは延伸により増加する方向にあり、Y方向の屈折率nYとZ方向の屈折率nZはともに延伸に伴い低下する方向にあり、しかも延伸倍率によらずnYとnZの屈折率差が非常に小さいことを特徴としている。
【0056】
また第1層は、かかる特定の共重合成分を含む芳香族ポリエステル(I)を用いて1軸延伸を施すことにより、X方向の屈折率nXが1.80〜1.90の高屈折率特性を有する。第1層におけるX方向の屈折率がかかる範囲にあることにより、第2層との屈折率差が大きくなり、十分な反射偏光性能を発揮することができる。
【0057】
一方、第1層を構成するポリエステルが、ポリエチレン−2,6−ナフタレンジカルボキシレートの場合、図1に示すように、1軸方向の延伸倍率によらず、Y方向の屈折率nYは一定で低下がみられないのに対し、Z方向の屈折率nZは1軸延伸倍率の増加に伴い屈折率が低下する。そのためY方向の屈折率nYとZ方向の屈折率nZの差が大きくなり、偏光光が斜め方向の入射角で入射した際に色相ずれが生じやすくなる。
【0058】
<ポリエチレン−2,7−ナフタレンジカルボキシレート>
第1層を形成する別の熱可塑性樹脂の1つとして、ポリエチレン−2,7−ナフタレンジカルボキシレート(以下、2,7−PENと称することある)が例示される。かかるポリエステルは、ジカルボン酸成分として2,7−ナフタレンジカルボン酸を用い、ジオール成分としてエチレングリコールを用い、それらの重縮合によって得られる。また、全繰り返し単位量を基準として10モル%以下、さらに好ましくは5モル%以下の範囲内で、共重合成分を有していてもよい。かかる共重合成分として、芳香族ポリエステル(I)で述べたジカルボン酸成分、ジオール成分の中から1種または2種以上用いることができる。
【0059】
2,7−PENは、ポリエチレン−2,6−ナフタレンジカルボキシレートと同種の構成成分を有するが、カルボン酸の配位が異なることにより、延伸による結晶構造などが異なり、2,6−PENではみられなかった延伸によるY方向の屈折率nYの低下が生じるため、芳香族ポリエステル(I)と同様、偏光性能の向上と斜め方向の入射光に対する透過偏光の色相ずれを両立することができる。
【0060】
[第2層]
<熱可塑性樹脂>
本発明において、第2層は平均屈折率1.50以上1.60以下であって、X方向、Y方向およびZ方向のそれぞれの屈折率差が延伸前後で0.05以下である熱可塑性樹脂からなる。ここで平均屈折率とは、第1層を構成する熱可塑性樹脂の平均屈折率と同様、第2層を構成する熱可塑性樹脂を単独で溶融させ、ダイより押出して未延伸フィルムを作成し、得られたフィルムのX方向、Y方向、Z方向それぞれの方向における屈折率について、メトリコン製プリズムカプラを用いて波長633nmで測定し、それらの平均値を平均屈折率として規定したものである。
【0061】
また、延伸前後の屈折率差についても第1層での説明と同様、まず、第2層を構成する熱可塑性樹脂を単独で溶融させてダイより押出し、未延伸フィルムを作成する。得られたフィルムのX方向、Y方向、Z方向それぞれの方向について、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定し、3方向の屈折率の平均値より平均屈折率を求め、延伸前の屈折率とする。次に、延伸後の屈折率については、第2層を構成する熱可塑性樹脂を単独で溶融させてダイより押出し、1軸方向に135℃で5倍を施して1軸延伸フィルムを作成し、得られたフィルムのX方向、Y方向、Z方向それぞれの方向について、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定して延伸後の各方向の屈折率を求め、延伸前後の各方向の屈折率差を比較して得られる。
【0062】
第2層を構成する熱可塑性樹脂の平均屈折率は、好ましくは1.53以上1.60以下、さらに好ましくは1.55以上1.60以下、さらに好ましくは1.58以上1.60以下である。第2層がかかる平均屈折率を有し、しかも延伸前後の屈折率差の小さい等方性材料であることにより、第1層と第2層の層間における延伸後のX方向の屈折率差が大きく、かつY方向の屈折率差およびZ方向の屈折率差が共に極めて小さい屈折率特性を得ることができ、その結果、高い偏光性能と斜め方向の入射角よる色相ずれの両立が可能となる。
【0063】
かかる屈折率特性を有する熱可塑性樹脂の中でも、1軸延伸における製膜性の観点から、結晶性ポリエステルであることが好ましい。かかる屈折率特性を有する結晶性ポリエステルとして、共重合ポリエチレンテレフタレート、共重合ポリエチレンナフタレンジカルボキシレート、またはこれら共重合ポリエステルと非晶性ポリエステルとのブレンドが好ましく、中でも共重合ポリエチレンテレフタレートが好ましい。かかる共重合ポリエチレンテレフタレートの中でも、イソフタル酸もしくは2,6−ナフタレンジカルボン酸を共重合したエチレンテレフタレート成分を主たる成分とするポリエステルが好ましく、特にイソフタル酸もしくは2,6−ナフタレンジカルボン酸を共重合したエチレンテレフタレート成分を主たる成分とする融点が220℃以下のポリエステルであることが好ましい。
【0064】
また、共重合ポリエチレンテレフタレートの場合、上記成分以外の共重合成分としては、第2層のポリエステルを構成する全繰り返し単位を基準として10モル%以下の範囲内で、イソフタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸などのうちのメインの共重合成分以外の芳香族カルボン酸;アジピン酸、アゼライン酸、セバシン酸、デカンジカルボン酸等の脂肪族ジカルボン酸;シクロヘキサンジカルボン酸といった脂環族ジカルボン酸等の酸成分、ブタンジオール、ヘキサンジオール等の脂肪族ジオール;シクロヘキサンジメタノールといった脂環族ジオール等のグリコール成分を好ましく挙げることができる。
【0065】
これらの中でも、比較的、延伸性を維持しながら融点を低下させやすいことから、イソフタル酸、2,6−ナフタレンジカルボン酸の2種の共重合成分が好ましい。なお、第2層を構成する熱可塑性樹脂の融点は、フィルムにする前の段階から低い必要はなく、延伸処理後に低くなっていれば良い。例えば、2種以上のポリエステルをブレンドし、これらを溶融混練時にエステル交換させたものであってもよい。
【0066】
[樹脂以外の成分]
本発明の1軸延伸多層積層フィルムは、フィルムの巻取り性を向上させるために、少なくとも一方の最外層に平均粒径が0.01μm〜2μmの不活性粒子を、層の重量を基準として0.001重量%〜0.5重量%含有することが好ましい。不活性粒子の平均粒径が下限値よりも小さいか、含有量が下限値よりも少ないと、多層延伸フィルムの巻取り性を向上させる効果が不十分になりやすく、他方、不活性粒子の含有量が上限値を超えるか、平均粒径が上限値を超えると、粒子による多層延伸フィルムの光学特性の低下が生じることがある。好ましい不活性粒子の平均粒径は、0.02μm〜1μm、特に好ましくは0.1μm〜0.3μmの範囲である。また、好ましい不活性粒子の含有量は、0.02重量%〜0.2重量%の範囲である。
【0067】
1軸延伸多層積層フィルムに含有させる不活性粒子としては、例えばシリカ、アルミナ、炭酸カルシウム、燐酸カルシウム、カオリン、タルクのような無機不活性粒子、シリコーン、架橋ポリスチレン、スチレン−ジビニルベンゼン共重合体のような有機不活性粒子を挙げることができる。粒子形状は、凝集状、球状など一般的に用いられる形状であれば特に限定されない。
【0068】
不活性粒子は、最外層のみならず、最外層と同じ樹脂で構成される層中に含まれていてもよく、例えば第1層または第2層の少なくとも一方の層中に含まれていてもよい。または、第1層、第2層と異なる別の層を最外層として設けてもよく、またヒートシール層を設ける場合は該ヒートシール層中に不活性粒子が含まれていてもよい。
【0069】
[1軸延伸多層積層フィルムの積層構成]
(積層数)
本発明の1軸延伸多層積層フィルムは、上述の第1層および第2層が交互に合計251層以上積層されていることが好ましい。積層数が251層未満であると、延伸方向(X方向)を含む入射面に対して平行な偏光成分の平均反射率特性について、波長400〜800nmにわたり一定の平均反射率を満足するすることができないことがある。
積層数の上限値は、生産性およびフィルムのハンドリング性など観点から2001層に制限される。積層数の上限値は、本発明の平均反射率特性が得られれば生産性やハンドリング性の観点からさらに積層数を減らしてもよく、例えば1001層、501層、301層であってもよい。
【0070】
(各層厚み)
第1層および第2層の各層の厚みは0.01μm以上0.5μm以下である。また第1層の各層の厚みは、好ましくは0.01μm以上0.1μm以下、第2層の各層の厚みは、好ましくは0.01μm以上0.3μm以下である。各層の厚みは透過型電子顕微鏡を用いて撮影した写真をもとに求めることができる。
【0071】
本発明の1軸延伸多層積層フィルムが示す反射波長帯は、可視光域から近赤外線領域であることから、第1層および第2層の各層の厚みをかかる範囲とすることにより、かかる波長域の光を層間の光干渉によって選択的に反射することが可能となる。一方、層厚みが0.5μmを超えると反射帯域が赤外線領域になる。他方、層厚みが0.01μm未満であると、ポリエステル成分が光を吸収し反射性能が得られなくなる。
【0072】
(最大層厚みと最小層厚みの比率)
本発明の1軸延伸多層積層フィルムは、第1層および第2層におけるそれぞれの最大層厚みと最小層厚みの比率がいずれも2.0以上5.0以下であり、より好ましくは2.0以上4.0以下、さらに好ましくは2.0以上3.5以下、特に好ましくは2.0以上3.0以下である。かかる層厚みの比率は、具体的には最小層厚みに対する最大層厚みの比率で表わされる。第1層、第2層におけるそれぞれの最大層厚みと最小層厚みは、透過型電子顕微鏡を用いて撮影した写真をもとに求めることができる。
【0073】
多層積層フィルムは、層間の屈折率差、層数、層の厚みによって反射する波長が決まるが、積層された第1層および第2層のそれぞれが一定の厚みでは、特定の波長のみしか反射することができず、延伸方向(X方向)を含む入射面に対して平行な偏光成分の平均反射率特性について、波長400〜800nmの幅広い波長帯にわたって均一に平均反射率を高めることができないため、厚みの異なる層を用いる。
一方、最大層厚みと最小層厚みの比率が上限値を超える場合は、反射帯域が400〜800nmよりも広がり、延伸方向(X方向)を含む入射面に対して平行な偏光成分の反射率の低下を伴うことがある。
【0074】
第1層および第2層の層厚みは、段階的に変化してもよく、連続的に変化してもよい。このように積層された第1層および第2層のそれぞれが変化することで、より広い波長域の光を反射することができる。
本発明の1軸延伸多層積層フィルムにおける多層構造を積層する方法は特に限定されないが、例えば、第1層用ポリエステルを137層、第2層用熱可塑性樹脂を138層に分岐させた第1層と第2層が交互に積層され、その流路が連続的に2.0〜5.0倍までに変化する多層フィードブロック装置を使用する方法が挙げられる。
【0075】
(第1層と第2層の平均層厚み比)
本発明の1軸延伸多層積層フィルムは、第1層の平均層厚みに対する第2層の平均層厚みの比が1.5倍以上5.0倍以下の範囲であることが好ましい。第1層の平均層厚みに対する第2層の平均層厚みの比の下限値は、より好ましくは2.0である。また、第1層の平均層厚みに対する第2層の平均層厚みの比の上限値は、より好ましくは4.0であり、さらに好ましくは、3.5である。
【0076】
第1層の平均層厚みに対する第2層の平均層厚みの比がかかる範囲にあることにより、反射波長の半波長で生じる2次反射を有効に利用できるため、第1層および第2層それぞれの最大層厚みと最小層厚みの比率を最小限に抑えることができ、光学特性の観点から好ましい。また、このように第1層と第2層の厚み比を変化させることにより、層間の密着性を維持したまま、また使用する樹脂を変更することなく、得られたフィルムの機械特性も調整することができ、フィルムが裂けにくくなる効果も有する。
一方、第1層の平均層厚みに対する第2層の平均層厚みの比がかかる範囲からはずれる場合、反射波長の半波長で生じる2次反射が小さくなってしまい、反射率が低下することがある。
【0077】
(厚み調整層)
本発明の1軸延伸多層積層フィルムは、かかる第1層、第2層以外に、層厚みが2μm以上の厚み調整層を第1層と第2層の交互積層構成の一部に有していてもよい。かかる厚みの厚み調整層を第1層と第2層の交互積層構成の一部に有することにより、偏光機能に影響をおよぼすことなく、第1層および第2層を構成する各層厚みを均一に調整しやすくなる。かかる厚みの厚み調整層は、第1層、第2層のいずれかと同じ組成、またはこれらの組成を部分的に含む組成であってもよく、層厚みが厚いため、反射特性には寄与しない。一方、透過する偏光光には影響することがあるため、層中に粒子を含める場合は既述の粒子濃度の範囲内であることが好ましい。
【0078】
[1軸延伸フィルム]
本発明の1軸延伸多層積層フィルムは、目的とする反射偏光フィルムとしての光学特性を満足するために、少なくとも1軸方向に延伸されている。本発明における1軸延伸には、1軸方向にのみ延伸したフィルムの他、2軸方向に延伸されたフィルムであって、一方向により延伸されたフィルムも含まれる。1軸延伸方向(X方向)は、フィルム長手方向、幅方向のいずれの方向であってもよい。また、2軸方向に延伸されたフィルムであって、一方向により延伸されたフィルムの場合は、より延伸される方向(X方向)はフィルム長手方向、幅方向のいずれの方向であってもよく、延伸倍率の低い方向は、1.05〜1.20倍程度の延伸倍率にとどめることが偏光性能を高める点で好ましい。2軸方向に延伸され、一方向により延伸されたフィルムの場合、偏光光や屈折率との関係での「延伸方向」とは、より延伸された方向を指す。
【0079】
延伸方法としては、棒状ヒータによる加熱延伸、ロール加熱延伸、テンター延伸など公知の延伸方法を用いることができるが、ロールとの接触によるキズの低減や延伸速度などの観点から、テンター延伸が好ましい。
【0080】
[第1層と第2層の層間の屈折率特性]
第1層と第2層のX方向の屈折率差は0.10〜0.45であることが好ましく、さらに好ましくは0.20〜0.40、特に好ましくは0.25〜0.30である。X方向の屈折率差がかかる範囲にあることにより、反射特性を効率よく高めることができ、より少ない積層数で高い反射率を得ることができる。
【0081】
また、第1層と第2層のY方向の屈折率差および第1層と第2層のZ方向の屈折率差は、それぞれ0.05以下であることが好ましい。Y方向およびZ方向それぞれの層間の屈折率差がともに上述の範囲にあることにより、偏光光が斜め方向の入射角で入射した際に色相ずれを抑制することができる。
【0082】
[フィルム厚み]
本発明の1軸延伸多層積層フィルムは、フィルム厚みが15μm以上40μm以下であることが好ましい。従来の反射偏光機能を有する多層積層フィルムは、p偏光の平均反射率を高めるために層数を多くする必要があり、100μm程度の厚みが必要であったところ、本発明は第1層を構成する熱可塑性樹脂として延伸によりY方向の屈折率が低下する樹脂を用い、さらに既述の第2層の熱可塑性樹脂と組み合わせて一定層厚みの多層積層フィルムにすることにより、従来の多層積層フィルムよりもフィルム厚みを薄くでき、液晶光学装置用の光学部材を薄肉化できる。
【0083】
[1軸延伸多層積層フィルムの製造方法]
つぎに、本発明の1軸延伸多層積層フィルムの製造方法について詳述する。
本発明の1軸延伸多層積層フィルムは、第1層を構成する熱可塑性樹脂と第2層を構成する熱可塑性樹脂とを溶融状態で交互に重ね合わせた状態で押出し、多層未延伸フィルム(シート状物とする工程)とする。このとき、積層物は各層の厚みが段階的または連続的に2.0倍以上、好ましくは5.0倍以下の範囲で変化するように積層される。
【0084】
このようにして得られた多層未延伸フィルムは、製膜方向、またはそれに直交する幅方向の少なくとも1軸方向(フィルム面に沿った方向)に延伸される。延伸温度は、第1層の熱可塑性樹脂のガラス転移点の温度(Tg)〜Tg+50℃の範囲が好ましい。このときの延伸倍率は2〜10倍であることが好ましく、さらに好ましくは2.5〜7倍、さらいに好ましくは3〜6倍、特に好ましくは4.5〜5.5倍である。延伸倍率が大きい程、第1層および第2層における個々の層の面方向のバラツキが、延伸による薄層化により小さくなり、多層延伸フィルムの光干渉が面方向に均一化され、また第1層と第2層の延伸方向の屈折率差が大きくなるので好ましい。このときの延伸方法は、棒状ヒータによる加熱延伸、ロール加熱延伸、テンター延伸など公知の延伸方法を用いることができるが、ロールとの接触によるキズの低減や延伸速度などの観点から、テンター延伸が好ましい。また、かかる延伸方向と直交する方向(Y方向)にも延伸処理を施し、2軸延伸を行う場合は、1.05〜1.20倍程度の延伸倍率にとどめることが好ましい。Y方向の延伸倍率をこれ以上高くすると、偏光性能が低下することがある。また、延伸後にさらに熱固定処理を施すことが好ましい。
【0085】
[液晶セル貼合せ用反射偏光フィルム]
本発明の1軸延伸多層積層フィルムは、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消されるため、かかる1軸延伸多層積層フィルムを単独で液晶セルと貼り合せる偏光板として用いることができる。
【0086】
[液晶表示装置用光学部材]
本発明には、本発明の液晶セル貼合せ用反射偏光フィルムからなる第1の偏光板、液晶セル、および第2の偏光板がこの順で積層された液晶表示装置用光学部材も発明の一態様として含まれる。かかる光学部材は、液晶パネルとも称される。かかる光学部材は図4における5に相当し、第1の偏光板は3、液晶セルは2、第2の偏光板は1に相当する。
【0087】
従来は液晶セルの両側の偏光板として、吸収型偏光板を少なくとも有することにより、高い偏光性能が得られていたところ、本発明の多層積層フィルムを用いた偏光板であれば、従来の多層積層フィルムでは到達できなかった高偏光性能が得られるため、従来の吸収型偏光板に代えて液晶セルと貼り合せて用いることができるものである。
【0088】
すなわち、本発明の特徴は、第1の偏光板として本発明の多層積層フィルムからなる偏光板を液晶セルの一方において単独で用いることにあり、好ましくは第1の偏光板が吸収型偏光板と積層された構成は除かれる。
【0089】
液晶セルの種類は特に限定されず、VAモード、IPSモード、TNモード、STNモードやベンド配向(π型)など、任意のタイプのものを用いることができる。
また、第2の偏光板の種類は特に限定されず、吸収型偏光板、反射型偏光板のいずれも用いることができる。第2の偏光板として反射型偏光板を用いる場合、本発明の液晶セル貼合せ用反射偏光フィルムを用いることが好ましい。
【0090】
本発明の液晶表示装置用光学部材は、第1の偏光板、液晶セル、および第2の偏光板がこの順で積層されることが好ましく、これらの各部材同士は直接積層されてもよく、また粘着層や接着層と称される層間の接着性を高める層(以下、粘着層と称することがある)、保護層などを介して積層されてもよい。
【0091】
[液晶表示装置用光学部材の形成]
液晶セルに偏光板を配置する方法としては、両者を粘着層によって積層することが好ましい。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系等のポリマーをベースポリマーとするものを適宜選択して用いることができる。特に、アクリル系粘着剤のように透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を有し、耐候性や耐熱性等に優れるものが好ましい。また、粘着層は異なる組成又は種類の層を複数設けてもよい。
【0092】
液晶セルと偏光板とを積層する際の作業性の観点において、粘着層は、予め偏光板、あるいは液晶セルの一方または両方に付設しておくことが好ましい。粘着層の厚みは、使用目的や接着力等に応じて適宜決定でき、一般には1〜500μmであり、5〜200μmが好ましく、特に10〜100μmが好ましい。
【0093】
(離型フィルム)
また、粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的として離型フィルム(セパレータ)が仮着されてカバーされることが好ましい。これにより、通例の取扱状態で粘着層に接触することを防止できる。離型フィルムとしては、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体などを、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデンなどの剥離剤でコート処理したものを用いうる。
【0094】
[液晶表示装置]
本発明には、光源と本発明の液晶表示装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶表示装置も発明の一態様として含まれる。
【0095】
図4に本発明の実施形態の1つである液晶表示装置の概略断面図を示す。液晶表示装置は光源4および液晶パネル5を有し、さらに必要に応じて駆動回路等を組込んだものである。液晶パネル5は、液晶セル2の光源4側に第1の偏光板3を備える。また、液晶セル2の光源側と反対側、すなわち、視認側に第2の偏光板1を備えている。液晶セル2としては、例えばVAモード、IPSモード、TNモード、STNモードやベンド配向(π型)などの任意なタイプのものを用いうる。
【0096】
本発明の液晶表示装置は、液晶セル2の光源側に、高偏光性能を有する本発明の液晶セル貼合せ用反射偏光フィルムからなる第1の偏光板3を配置することによって、従来の吸収型偏光板に代えて液晶セルと貼り合せて用いることができる。
本発明の液晶セル貼合せ用反射偏光フィルムからなる第1の偏光板は、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備えるため、光源4と第1の偏光板3との間にさらに輝度向上フィルムとよばれる反射型偏光板を用いる必要がなく、輝度向上フィルムと液晶セルに貼り合せる偏光板の機能を一体化させることができるため、部材数を減らすことができる。
【0097】
さらに本発明の液晶表示装置は、第1の偏光板として本発明の液晶セル貼合せ用反射偏光フィルムを用いることにより、斜め方向に入射した光についても、斜め方向に入射したp偏光成分をほとんど透過させず、同時に斜め方向に入射したs偏光成分については反射を抑えて透過させるため、斜め方向に入射した光に対する透過光の色相ずれが抑制される特徴を有する。そのため、液晶表示装置として投射した映像のカラーのままで視認できる。
【0098】
また、通常は図4に示すように、液晶セル2の視認側に第2の偏光板1が配置される。第2の偏光板1は特に制限されず、吸収型偏光板など公知のものを用いることができる。外光の影響が非常に少ない場合には、第2の偏光板として第1の偏光板と同じ種類の反射型偏光板を用いてもかまわない。また、液晶セル2の視認側には、第2の偏光板以外にも、例えば光学補償フィルム等の各種の光学層を設けることができる。
【0099】
[液晶表示装置の形成]
液晶表示装置用光学部材(液晶パネル)と光源とを組合せ、さらに必要に応じて駆動回路等を組込むことによって本発明の液晶表示装置が得られる。また、これら以外にも液晶表示装置の形成に必要な各種部材を組合せることができるが、本発明の液晶表示装置は光源から射出される光を第1の偏光板に入射させるものであることが好ましい。
【0100】
一般に液晶表示装置の光源は、直下方式とサイドライト方式に大別されるが、本発明の液晶表示装置においては、方式の限定なく使用可能である。
このようにして得られた液晶表示装置は、例えば、パソコンモニター,ノートパソコン,コピー機等のOA機器、携帯電話,時計,デジタルカメラ,携帯情報端末(PDA),携帯ゲーム機等の携帯機器、ビデオカメラ,テレビ,電子レンジ等の家庭用電気機器、バックモニター,カーナビゲーションシステム用モニター,カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター,医療用モニター等の介護・医療機器等、種々の用途に用いることができる。
【実施例】
【0101】
以下に、本発明を実施例を挙げて説明するが、本発明は以下に示した実施例に制限されるものではない。
なお、実施例中の物性や特性は、下記の方法にて測定または評価した。
【0102】
(1)反射率、反射波長
分光光度計(島津製作所製、MPC−3100)を用い、光源側に偏光フィルタを装着し、各波長でのアルミ蒸着したミラーとの相対鏡面反射率を波長400nmから800nmの範囲で測定する。このとき、偏光フィルタの透過軸をフィルムの延伸方向(X方向)と合わせるように配置した場合の測定値をp偏光とし、偏光フィルタの透過軸をフィルムの延伸方向と直交するように配置した場合の測定値をs偏光とした。それぞれの偏光成分について、400−800nmの範囲での反射率の平均値を平均反射率とした。
【0103】
(2)各方向の延伸前、延伸後の屈折率および平均屈折率
各層を構成する個々の樹脂について、それぞれ溶融させてダイより押出し、キャスティングドラム上にキャストしたフィルムをそれぞれ用意した。また、得られたフィルムを135℃にて一軸方向に5倍延伸した延伸フィルムを用意した。得られたキャストフィルムと延伸フィルムについて、それぞれ延伸方向(X方向)とその直交方向(Y方向)、厚み方向(Z方向)のそれぞれの屈折率(それぞれnX、nY、nZとする)を、メトリコン製プリズムカプラを用いて波長633nmにおける屈折率を測定して求め、延伸前、延伸後の屈折率とした。平均屈折率については、延伸前のそれぞれの屈折率の平均値を平均屈折率とした。
【0104】
(3)熱可塑性樹脂およびフィルムの融点(Tm)およびガラス転移点(Tg)
ポリマー試料またはフィルムサンプルを10mgサンプリングし、DSC(TAインスツルメンツ社製、商品名:DSC2920)を用い、20℃/min.の昇温速度で、融点およびガラス転移点を測定する。
【0105】
(4)熱可塑性樹脂の特定ならびに共重合成分および各成分量の特定
フィルムサンプルの各層について、1H−NMR測定より熱可塑性樹脂の成分ならびに共重合成分および各成分量を特定した。
【0106】
(5)各層の厚み
フィルムサンプルをフィルム長手方向2mm、幅方向2cmに切り出し、包埋カプセルに固定後、エポキシ樹脂(リファインテック(株)製エポマウント)にて包埋した。包埋されたサンプルをミクロトーム(LEICA製ULTRACUT UCT)で幅方向に垂直に切断し、5nm厚の薄膜切片にした。透過型電子顕微鏡(日立S−4300)を用いて加速電圧100kVにて観察撮影し、写真から各層の厚みを測定した。
また、得られた各層の厚みをもとに、第1層における最小層厚みに対する最大層厚みの比率、第2層における最小層厚みに対する最大層厚みの比率をそれぞれ求めた。
また、得られた各層の厚みをもとに、第1層の平均層厚み、第2層の平均層厚みをそれぞれ求め、第1層の平均層厚みに対する第2層の平均層厚みを算出した。
なお、最外層のヒートシール層は第1層と第2層から除外した。また交互積層中に2μm以上の厚み調整層が存在する場合は、かかる層も第1層と第2層から除外した。
【0107】
(6)フィルム全体厚み
フィルムサンプルをスピンドル検出器(安立電気(株)製K107C)にはさみ、デジタル差動電子マイクロメーター(安立電気(株)製K351)にて、異なる位置で厚みを10点測定し、平均値を求めフィルム厚みとした。
【0108】
(7)3次元表面粗さ(Ra、Rz、Rmax)
JIS−B0601、B0651に従い、3次元表面粗さ計((株)小坂研究所製、商品名:SURF CORDER SE−3CK)を使用して、触針先端R2μm、走査ピッチ2μm、走査長1mm、走査本数100本、カットオフ0.25mmの条件にて、中心線平均粗さRa、10点平均粗さRz、最大高さRmaxを測定した。
【0109】
(8)輝度向上効果、色相
パソコンの表示ディスプレイとして得られた液晶表示装置を用い、パソコンにより白色表示したときの液晶表示装置の画面の正面輝度をオプトデザイン社製FPD視野角測定評価装置(ErgoScope88)で測定し、比較例1に対する輝度の上昇率、およびカラーを算出し、輝度向上効果を下記の基準で評価した。
◎: 輝度向上効果が160%以上
○: 輝度向上効果が150%以上、160%未満
△: 輝度向上効果が140%以上、150%未満
×: 輝度向上効果が140%未満
あわせて画面の正面を0度とし、0度〜80度の全方位視野角での色相xまたはyの最大変化を下記の基準で評価した。
◎: x、yともに最大変化が0.03未満
○: x、yのいずれかの最大変化が0.03未満
△: x、yのいずれかの最大変化が0.03以上
×: x、yともに最大変化が0.03以上
【0110】
(9)コントラスト評価
パソコンの表示ディスプレイとして得られた液晶表示装置を用い、パソコンにより白色および黒画面を表示したときの液晶表示装置の画面の正面輝度をオプトデザイン社製FPD視野角測定評価装置(ErgoScope88)で測定し、白画面より明輝度を、また黒画面より暗輝度をそれぞれ求め、明輝度/暗輝度より求められるコントラストを以下の基準で評価した。
◎: コントラスト(明輝度/暗輝度) 1000以上
○: コントラスト(明輝度/暗輝度) 200以上1000未満
×: コントラスト(明輝度/暗輝度) 200未満
【0111】
[比較例1]
(偏光子の作成)
ポリビニルアルコールを主成分とする高分子フィルム[クラレ製 商品名「9P75R(厚み:75μm、平均重合度:2,400、ケン化度99.9モル%)」]を周速の異なるロール間で染色しながら延伸搬送した。まず、30℃の水浴中に1分間浸漬させてポリビニルアルコールフィルムを膨潤させつつ搬送方向に1.2倍に延伸した後、30℃のヨウ化カリウム濃度0.03重量%、ヨウ素濃度0.3重量%の水溶液中で1分間浸漬することで、染色しながら搬送方向に、全く延伸していないフィルム(原長)を基準として3倍に延伸した。次に60℃のホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%の水溶液中に30秒間浸漬しながら、搬送方向に原長基準で6倍に延伸した。次に、得られた延伸フィルムを70℃で2分間乾燥することで偏光子を得た。なお、偏光子の厚みは30μm、水分率は14.3重量%であった。
【0112】
(接着剤の作成))
アセトアセチル基を有するポリビニルアルコール系樹脂(平均重合度1200、ケン化度98.5%モル%、アセトアセチル化度5モル%)100重量部に対して、メチロールメラミン50重量部を30℃の温度条件下で純水に溶解し、固形分濃度3.7重量%の水溶液を調製した。この水溶液100重量部に対して、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度10重量%で含有する水溶液18重量部を加えて接着剤水溶液を調製した。接着剤溶液の粘度は9.6mPa・sであり、pHは4〜4.5の範囲であり、アルミナコロイドの配合量は、ポリビニルアルコール系樹脂100重量部に対して74重量部であった。
【0113】
(吸収型偏光板の作成)
厚み80μm、正面レターデーション0.1nm、厚み方向レターデーション1.0nmの光学等方性素子(富士フィルム製商品名「フジタック ZRF80S」の片面に、上記のアルミナコロイド含有接着剤を、乾燥後の厚みが80nmとなるように塗布し、これを上記の偏光子の片面に両者の搬送方向が平行となるようにロール・トゥー・ロールで積層した。続いて、偏光子の反対側の面にも同様にして光学等方性素子(富士フィルム製商品名「フジタック ZRF80S」)の片面に上記のアルミナコロイド含有接着剤を乾燥後の厚みが80nmとなるように塗布したものを、これらの搬送方向が平行となるようにロール・トゥー・ロールで積層した。その後55℃で6分間乾燥させて偏光板を得た。この偏光板を「偏光板X」とする。
【0114】
(液晶パネルの作成)
IPSモードの液晶セルを備え、直下型のバックライトを採用した液晶テレビ(松下電器製ビエラTH−32LZ80 2007年製)から液晶パネルを取り出し、液晶セルの上下に配置されていた偏光板および光学補償フィルムを取り除いて、該液晶セルのガラス面(表裏)を洗浄した。続いて、上記液晶セルの光源側の表面に、上記の偏光板Xを元の液晶パネルに配置されていた光源側偏光板の吸収軸方向と同様の方向となるように、アクリル系粘着剤を介して偏光板Xを液晶セルに配置した。
【0115】
次いで、液晶セルの視認側の表面に、上記の偏光板Xを、元の液晶パネルに配置されていた視認側偏光板の吸収軸方向と同様の方向となるように、アクリル系粘着剤を介して偏光板Xを液晶セルに配置した。このようにして、液晶セルの一方主面に偏光板X、他方主面に偏光板Xが配置された液晶パネルを得た。
【0116】
(液晶表示装置の作成)
上記の液晶パネルを、元の液晶表示装置に組込み、液晶表示装置の光源を点灯させ、パソコンにて白画面および黒画面を表示して、液晶表示装置の輝度を評価した。
【0117】
[実施例1]
2,6−ナフタレンジカルボン酸ジメチル、6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸、そしてエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行って、固有粘度0.62dl/gで、酸成分の65モル%が2,6−ナフタレンジカルボン酸成分(表中、PENと記載)、酸成分の35モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分(表中、ENAと記載)、グリコール成分がエチレングリコールである芳香族ポリエステルを得た。これに真球状シリカ粒子(平均粒径:0.3μm、長径と短径の比:1.02、粒径の平均偏差:0.1)を第1層の重量を基準として0.10wt%添加したものを第1層用熱可塑性樹脂とし、第2層用熱可塑性樹脂として固有粘度(オルトクロロフェノール、35℃)0.62dl/gのイソフタル酸20mol%共重合ポリエチレンテレフタレート(IA20PET)を準備した。
準備した第1層用ポリエステルおよび第2層用ポリエステルを、それぞれ170℃で5時間乾燥後、第1、第2の押出機に供給し、300℃まで加熱して溶融状態とし、第1層用ポリエステルを137層、第2層用ポリエステルを138層に分岐させた後、第1層と第2層が交互に積層され、かつ第1層と第2層におけるそれぞれの最大層厚みと最小層厚みが最大/最小で2.2倍まで連続的に変化するような多層フィードブロック装置を使用して、第1層と第2層が交互に積層された総数275層の積層状態の溶融体とし、その積層状態を保持したまま、その両側に第3の押出機から第2層用ポリエステルと同じポリエステルを3層ダイへと導き、総数275層の積層状態の溶融体の両側にヒートシール層をさらに積層した。両端層(ヒートシール層)は、全体の18%なるよう第3の押出機の供給量を調整した。その積層状態を保持したままダイへと導き、キャスティングドラム上にキャストして、第1層と第2層の平均層厚み比が1.0:2.6になるように調整し、総数277層の未延伸多層積層フィルムを作成した。
この多層未延伸フィルムを135℃の温度で幅方向に5.2倍に延伸し、140℃で3秒間熱固定処理を行った。得られた反射偏光フィルムの厚みは33μmであった。
(液晶パネルの形成)
前記比較例1において、光源側の第1の偏光板として偏光板Xに代えて、得られた反射偏光フィルムを用いた以外は比較例1と同様にして、液晶セルの光源側主面に得られた反射偏光フィルム(第1の偏光板)、視認側主面に偏光板X(第2の偏光板)が配置された液晶パネルを得た。
(液晶表示装置の作成)
上記の液晶パネルを元の液晶表示装置に組込み、液晶表示装置の光源を点灯させ、パソコンにて白画面および黒画面の輝度を評価した。
このようにして得られた1軸延伸多層積層フィルムの各層の樹脂構成、各層の特徴を表1に、また1軸延伸多層積層フィルムの物性および液晶表示装置の物性を表2に示す。
【0118】
[実施例2〜6]
表1に示すとおり、各層の樹脂組成または層厚みを変更した以外は実施例1と同様にして、1軸延伸多層積層フィルムからなる反射偏光フィルムを得た。
なお、実施例2で第2層用ポリエステルとして用いたNDC20PETとは、実施例1の第2層用ポリエステルとして用いたイソフタル酸20mol%共重合ポリエチレンテレフタレート(IA20PET)の共重合成分を2,6−ナフタレンジカルボン酸に変更した共重合ポリエステルである。
また、実施例4で第2層用ポリエステルとして用いたENA21PEN/PCTブレンドとは、実施例4の第1層用ポリエステルであるENA21PEN(酸成分の79モル%が2,6−ナフタレンジカルボン酸成分、酸成分の21モル%が6,6’−(エチレンジオキシ)ジ−2−ナフトエ酸成分、グリコール成分がエチレングリコールである芳香族ポリエステル)と、イーストマンケミカル製PCTA AN004(ポリシクロヘキサンジメチレンテレフタレート-イソフタレート共重合体)を、重量比率で2:1になるように混合したものである。
また前記比較例1において、光源側の第1の偏光板として偏光板Xに代えて、得られた反射偏光フィルムを用いた以外は比較例1と同様にして、液晶セルの光源側主面に得られた反射偏光フィルム(第1の偏光板)、視認側主面に偏光板X(第2の偏光板)が配置された液晶パネルを得た。
上記の液晶パネルを元の液晶表示装置に組込み、液晶表示装置の光源を点灯させ、パソコンにて白画面および黒画面の輝度を評価した。
このようにして得られた1軸延伸多層積層フィルムの各層の樹脂構成、各層の特徴を表1に、また1軸延伸多層積層フィルムの物性および液晶表示装置の物性を表2に示す。
【0119】
[実施例7]
実施例1で得られた反射偏光フィルムを平行に3枚貼り合せ、第1の偏光板として用いた以外は実施例1と同様の操作を繰り返した。
【0120】
[比較例2]
第1層用熱可塑性樹脂を固有粘度(オルトクロロフェノール、35℃)0.62dl/gのポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)、第2層用熱可塑性樹脂を固有粘度(オルトクロロフェノール、35℃)0.62dl/gのテレフタル酸64mol%共重合ポリエチレン−2,6−ナフタレンジカルボキシレート(TA64PEN)に変更し、表1に示す製造条件に変更する以外は実施例1と同様にして1軸延伸多層積層フィルムを得、かかるフィルムを第1の偏光板として液晶パネルを形成し、液晶表示装置を作成した。
得られた1軸延伸多層積層フィルムは、p偏光の平均反射率が入射角0°、50°ともに95%未満であり、またs偏光の平均反射率が入射角0°、50°ともに12%を超えており、偏光性能が実施例に比べて低下しており、十分な輝度向上率が得られなかった。またx、yともに色相の最大変化が0.03以上と実施例に比べて大きかった。
【0121】
[比較例3〜7]
表1に示すとおり、樹脂組成、層厚み、製造条件のいずれかを変更した以外は実施例1と同様にして、1軸延伸多層積層フィルムを得、かかるフィルムを第1の偏光板として液晶パネルを形成し、液晶表示装置を作成した。
得られたフィルムはいずれも実施例に比べて偏光性能が低下しており、十分な輝度向上率が得られなかった。また、少なくともx、yいずれかの色相変化量が実施例に比べて大きかった。
【0122】
【表1】

【0123】
【表2】

【産業上の利用可能性】
【0124】
本発明によれば、従来の吸収型偏光板に匹敵する高い偏光性能と、透過されない偏光光を反射させて再利用する輝度向上フィルムとしての機能とを備え、しかも斜め方向に入射した光に対する透過光の色相ずれが解消された、液晶セルと貼り合せる偏光板として好適な多層積層の反射偏光フィルム、それからなる液晶表示装置用光学部材および液晶表示装置を提供することができる。
【符号の説明】
【0125】
1 第2の偏光板
2 液晶セル
3 第1の偏光板
4 光源
5 液晶パネル

【特許請求の範囲】
【請求項1】
1軸延伸多層積層フィルムからなる反射偏光フィルムであって、フィルム面を反射面とし、1軸延伸方向(X方向)を含む入射面に対して平行な偏光成分について入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が95%以上であり、フィルム面を反射面とし、X方向を含む入射面に対して垂直な偏光成分について、入射角0度および50度での該入射偏光に対する波長400〜800nmの平均反射率が12%以下であることを特徴とする、液晶セル貼合せ用反射偏光フィルム。
【請求項2】
該1軸延伸多層積層フィルムが第1層と第2層とが交互に積層された多層構造を有しており、
1)第1層を構成する熱可塑性樹脂が平均屈折率1.60以上1.70以下であって、1軸延伸方向(X方向)の屈折率nXが延伸により増大し、フィルム面内で1軸延伸方向に直交する方向(Y方向)の屈折率nYおよびフィルム厚み方向(Z方向)の屈折率nZが延伸により低下する熱可塑性樹脂であり、
2)第2層を構成する熱可塑性樹脂が平均屈折率1.50以上1.60以下であって、X方向、Y方向およびZ方向のそれぞれの屈折率差が延伸前後で0.05以下である熱可塑性樹脂である、請求項1に記載の液晶セル貼合せ用反射偏光フィルム。
【請求項3】
該1軸延伸多層積層フィルムが第1層と第2層とが交互に積層された多層構造を有しており、第1層を形成する熱可塑性樹脂が(i)ジカルボン酸成分が5モル%以上50モル%以下の下記式(A)で表される酸成分および50モル%以上95モル%以下の下記式(B)で表される酸成分を含有し、
【化1】

(式(A)中、Rは炭素数2〜10のアルキレン基を表わす)
【化2】

(式(B)中、Rはフェニレン基またはナフタレンジイル基を表わす)
(ii)ジオール成分が90モル%以上100モル%以下の下記式(C)で表されるジオール成分
【化3】

(式(C)中、Rは炭素数2〜10のアルキレン基を表わす)
を含有する芳香族ジカルボン酸成分およびジオール成分とのポリエステルである請求項1または2に記載の液晶セル貼合せ用反射偏光フィルム。
【請求項4】
第2層を形成する熱可塑性樹脂が、イソフタル酸もしくは2,6−ナフタレンジカルボン酸を共重合したエチレンテレフタレート成分を主たる成分とするポリエステルである請求項2または3に記載の液晶セル貼合せ用反射偏光フィルム。
【請求項5】
該1軸延伸多層積層フィルムの積層数が251層以上である請求項1〜4のいずれかに記載の液晶セル貼合せ用反射偏光フィルム。
【請求項6】
請求項1〜5のいずれかに記載の液晶セル貼合せ用反射偏光フィルムからなる第1の偏光板、液晶セル、および第2の偏光板がこの順で積層されてなる液晶表示装置用光学部材。
【請求項7】
請求項6に記載の液晶表示装置用光学部材であって、ただし第1の偏光板が吸収型偏光板と積層された構成を除く液晶表示装置用光学部材。
【請求項8】
第2の偏光板が吸収型偏光板である請求項6または7に記載の液晶表示装置用光学部材。
【請求項9】
第2の偏光板が請求項1〜5のいずれかに記載の液晶セル貼合せ用反射偏光フィルムである請求項6に記載の液晶表示装置用光学部材。
【請求項10】
光源と請求項6〜9のいずれかに記載の液晶表示装置用光学部材とを備え、第1の偏光板が光源側に配置されてなる液晶表示装置。
【請求項11】
光源と第1の偏光板との間にさらに反射型偏光板を有していない請求項10に記載の液晶表示装置。

【図3】
image rotate

【図4】
image rotate

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−13919(P2012−13919A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2010−149886(P2010−149886)
【出願日】平成22年6月30日(2010.6.30)
【出願人】(000003001)帝人株式会社 (1,209)
【Fターム(参考)】