説明

混合細胞遺伝子治療

【課題】治療蛋白質を生成するための混合細胞組成物の提供。
【解決手段】発現を図る遺伝子によりトランスフェクション又は形質導入された哺乳類細胞の第一の集団と、遺伝子によりトランスフェクション又は形質導入されていない哺乳類細胞の第二の集団にして、哺乳類細胞の第二の集団の内生的存在形態が標的部位において減少しており、標的部位における哺乳類細胞の第一の集団による治療蛋白質の生成が第二の集団の細胞を刺激して治療効果を誘導する、混合細胞組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、体細胞遺伝子治療のために細胞の混合物を使用することに関する。本発明は、更に、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入された結合組織細胞と、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入されていない結合組織細胞とを含む細胞の混合物に関する。本発明は、更に、哺乳類結合組織に細胞混合物を注入することで軟骨を再生する方法に関する。加えて、本発明は、哺乳類結合組織に細胞混合物を注入することで変形性関節症を治療する方法に関する。
【背景技術】
【0002】
整形外科の分野において、変形性関節炎又は変形性関節症は、最も高頻度で遭遇する軟骨の損傷に関連する疾患である。膝、腰、肩、更には手首といった、身体のほぼ全ての関節が影響を受ける。この疾病の病因は、ヒアリン関節軟骨の変性である(Mankinら、J Bone Joint Surg, 52A: 460-466, 1982(非特許文献1))。関節のヒアリン軟骨は、変形、繊維化し、最終的には掘削される。変性した軟骨を何らかの形で再生できれば、殆どの患者は、衰弱を伴う苦痛なしで生活を送ることができる。
【0003】
経口、静脈内、又は筋肉内投与といった、薬物を関節へ運ぶための従来の薬物送達経路は、非効率的である。関節内に注入された薬物の半減期は、一般に短い。薬物の関節内注入の別の欠点は、関節炎のような慢性症状を治療するために、関節空間において容認できる薬物レベルを達成するために注入を頻繁に繰り返す必要があることである。これまでの治療剤は、関節を選択的に標的にできなかったため、持続的な関節内治療量を達成するために、哺乳類宿主を全身的に高濃度の薬物に曝露する必要があった。こうした形での非標的器官の曝露は、哺乳類宿主における胃腸の不調と、血液系、心臓血管系、肝臓系、及び腎臓系における変化とのような深刻な副作用を抗関節炎薬が生み出す傾向を悪化させる。
【0004】
整形外科の分野において、一部のサイトカインは、整形外科疾患の治療のための候補と考えられてきた。骨形成蛋白質は、骨形成の効果的な刺激物質と考えられており(Ozkaynakら、EMBO J, 9:2085-2093, 1990(非特許文献2)、Sampath及びRueger、Complications in Ortho, 101-107, 1994(非特許文献3))、TGF−βは、骨形成及び軟骨形成の刺激物質として報告されている(Joyceら、J Cell Biology, 110:2195-2207, 1990(非特許文献4))。
【0005】
形質転換成長因子β(TGF−β)は、多機能サイトカインと考えられており(Sporn及びRoberts、Nature (London), 332:217-219, 1988(非特許文献5))、細胞の成長、分化、及び細胞外基質蛋白質合成において調節的な役割を果たす(Madriら、J Cell Biology, 106: 1375-1384, 1988(非特許文献6))。TGF−βは、上皮細胞と破骨細胞様の細胞の成長をin vitroで阻害するが(Chenuら、Proc Natl Acad Sci, 85: 5683-5687, 1988(非特許文献7))、内軟骨の骨化、最終的には骨形成をin vivoで刺激する(Critchlowら、Bone, 521-524, 1995(非特許文献8)、Lindら、A Orthop Scand, 64(5): 553-556, 1993(非特許文献9)、Matsumotoら、In vivo, 8:215-220, 1994(非特許文献10))。TGF−β誘発性骨形成は、骨膜下多能性細胞の刺激が介在し、これが、最終的には軟骨形成細胞に分化する(Joyceら、J Cell Biology, 110: 2195-2207, 1990(非特許文献11)、及びMiettinenら、J Cell Biology, 127-6: 2021-2036, 1994(非特許文献12))。
【0006】
整形外科におけるTGF-βの生体作用が報告されている(Andrew et al., Calcif Tissue In. 52: 74-78, 1993(非特許文献13); Borque et al., Int J Dev Biol., 37:573-579, 1993(非特許文献14); Carrington et al., J Cell Biology, 107:1969-1975, 1988(非特許文献15); Lind et al., A Orthop Scand. 64(5):553-556, 1993(非特許文献9); Matsumoto et al., In vivo, 8:215-220, 1994(非特許文献10))。マウスの胚では、染色によって、TGF-βが、結合組織、軟骨および骨などの間葉に由来する組織と密接に結合することが認められている。発生学的所見に加えて、TGF-βは、骨形成および軟骨形成部位に存在する。また、ウサギの脛骨の骨折治癒も促進できる。最近、TGF-βの治療真価が報告されている(Critchlow et al., Bone, 521-527, 1995(非特許文献8); Lind et al., A Orthop Scand, 64(5): 553-556, 1993(非特許文献9))が、これは効果が短期間でコストが高いので、広範囲な臨床応用が制限されている。
【0007】
関節炎の治療のためのTGF−βの関節内注入は望ましくない、なぜならTGF−βはin vitroで不活性形態へ分解するため、注入されたTGF−βは作用持続時間が短いからである。したがって、ヒアリン軟骨の再生には、TGF−βの長期的放出のための新しい方法が必要である。
【0008】
軟骨細胞の自家移植による関節軟骨の再生の報告が存在するが(Brittbergら、New Engl J Med 331:889-895, 1994(非特許文献16))、この手順は、軟組織の広範な切除による二度の手術を伴う。変形性関節炎の治療が関節内注入で十分であれば、患者にとって経済的及び肉体的に大きな利益となるであろう。
【0009】
特定の蛋白質を特定の部位へ転送する方法である遺伝子治療は、上記問題の解決方法となり得る(Wolff及びLederberg, Gene Therapeutics ed. Jon A. Wolff, 3-25, 1994(非特許文献17)、及びJenks, J Natl Cancer Inst, 89(16): 1182-1184, 1997(非特許文献18))。
【0010】
米国特許第5,858,353号(特許文献1)及び第5,766,585号(特許文献2)では、IRAP(インターロイキン−1受容体アンタゴニスト蛋白質)遺伝子のウイルス又はプラスミドコンストラクトを作成するステップと、コンストラクトにより滑膜細胞(5,858,353)及び骨髄細胞(5,766,585)をトランスフェクションするステップと、トランスフェクションした細胞をウサギの関節に注入するステップとを開示しているが、結合組織の再生のためにTGF−βスーパファミリに属する遺伝子を使用するステップは開示されていない。
【0011】
米国特許第5,846,931号(特許文献3)および第5,700,774号(特許文献4)では、TGF-β「スーパーファミリー」に属する骨形成因子(BMP)を含む組成物の、軟骨組織形成の維持および軟骨組織の誘発を促進する切断上皮小体ホルモン関連ペプチドと合わせた注入が開示されている。しかし、BMP遺伝子を使った遺伝子療法は開示されていない。
【0012】
米国特許第5,842,477号(特許文献5)では、足場骨膜/軟骨膜組織と、軟骨細胞を含む間質細胞との組み合わせを軟骨欠損領域に移植するステップを開示している。この特許開示では、こうした三要素の全てが移植系に存在することが必要であるため、この参考文献では、足場又は骨膜/軟骨膜組織の移植を必要としない本発明の簡便な遺伝子治療方法を開示又は提案していない。
【0013】
米国特許第6,315,992号(特許文献6)では、TGF−β1によりトランスフェクションされた線維芽細胞を欠損膝関節に注入する時に、欠損哺乳類関節においてヒアリン軟骨が生成されるステップを開示している。しかしながら、この特許は、本発明のように混合細胞組成物を使用することの利点を開示していない。
【0014】
Leeらの「ヒト遺伝子治療」12: 1085-1813, 2001(非特許文献19)では、TGF−β1によりトランスフェクションされた線維芽細胞を欠損膝関節に注入する時に、欠損哺乳類関節においてヒアリン軟骨が生成されるステップを開示している。しかしながら、Leeらは、本発明のように混合細胞組成物を使用するステップを開示していない。
【非特許文献1】Mankinら、J Bone Joint Surg, 52A: 460-466, 1982
【非特許文献2】Ozkaynakら、EMBO J, 9:2085-2093, 1990
【非特許文献3】Sampath及びRueger、Complications in Ortho, 101-107, 1994
【非特許文献4】Joyceら、J Cell Biology, 110:2195-2207, 1990
【非特許文献5】Sporn及びRoberts、Nature (London), 332:217-219, 1988
【非特許文献6】Madriら、J Cell Biology, 106: 1375-1384, 1988
【非特許文献7】Chenuら、Proc Natl Acad Sci, 85: 5683-5687, 1988
【非特許文献8】Critchlowら、Bone, 521-524, 1995
【非特許文献9】Lindら、A Orthop Scand, 64(5): 553-556, 1993
【非特許文献10】Matsumotoら、In vivo, 8:215-220, 1994
【非特許文献11】Joyceら、J Cell Biology, 110: 2195-2207, 1990
【非特許文献12】Miettinenら、J Cell Biology, 127-6: 2021-2036, 1994
【非特許文献13】Andrew et al., Calcif Tissue In. 52: 74-78, 1993
【非特許文献14】Borque et al., Int J Dev Biol., 37:573-579, 1993
【非特許文献15】Carrington et al., J Cell Biology, 107:1969-1975, 1988
【非特許文献16】Brittbergら、New Engl J Med 331:889-895, 1994
【非特許文献17】Wolff及びLederberg, Gene Therapeutics ed. Jon A. Wolff, 3-25, 1994
【非特許文献18】Jenks, J Natl Cancer Inst, 89(16): 1182-1184, 1997
【非特許文献19】Leeら「ヒト遺伝子治療」12: 1085-1813, 2001
【特許文献1】米国特許第5,858,353号
【特許文献2】米国特許第5,766,585号
【特許文献3】米国特許第5,846,931号
【特許文献4】米国特許第5,700,774号
【特許文献5】米国特許第5,842,477号
【特許文献6】米国特許第6,315,992号
【発明の開示】
【発明が解決しようとする課題】
【0015】
こうした従来技術の開示にもかかわらず、哺乳類宿主の結合組織の更に効果的で強力な治療方法だけでなく、更に優良かつ効果的な体細胞遺伝子治療方法についても、非常に現実的かつ実質的な必要性が依然として存在する。
【課題を解決するための手段】
【0016】
本発明は、上記の必要性を満たしている。
【0017】
本特許請求発明は、a)発現を図る遺伝子によりトランスフェクション又は形質導入された哺乳類細胞の第一の集団と、b)遺伝子によりトランスフェクション又は形質導入されていない哺乳類細胞の第二の集団にして、哺乳類細胞の第二の集団の内生的存在形態が標的部位において減少しており、標的部位における哺乳類細胞の第一の集団による治療蛋白質の生成が第二の集団の細胞を刺激して治療効果を誘導するものと、c)その薬学的に許容される担体とを含む、標的部位において治療蛋白質を生成するために使用される混合細胞組成物を対象とする。
【0018】
本特許請求発明において、混合細胞組成物は、注入可能な組成物にしてよい。
【0019】
本特許請求発明は、更に、ヒアリン軟骨生成有効量のa)形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、c)その薬学的に許容される担体とを含む混合細胞組成物を対象とする。
【0020】
更に具体的な実施形態において、本特許請求発明は、ヒアリン軟骨生成有効量のa)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞の第一の集団と、b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない軟骨細胞の第二の集団と、c)その薬学的に許容される担体とを含む混合細胞組成物を対象とする。
【0021】
上記組成物において、組成物は、ヒアリン軟骨生成有効量のa)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された軟骨細胞の第一の集団と、b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない軟骨細胞の第二の集団と、c)その薬学的に許容される担体とを含んでよい。
【0022】
上記組成物において、遺伝子は、TGF−β1、TGF−β2、TGF−β3、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、BMP−7、又はBMP−9にしてよい。特に、遺伝子は、TGF−β1又はBMP−2でよいが、限定されない。
【0023】
更に、組成物において、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団との比は、約1〜20対1である。特に、比は、約1〜10対1、更には約1〜3対1にしてよい。
【0024】
上記組成物において、遺伝子によりトランスフェクション又は形質導入された細胞の第一の集団は、照射処理してよい。特に、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団は、照射処理してよい。
【0025】
細胞の混合集団の細胞は、同じソース有機体に由来してよい。特に、特定の実施形態において、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団とは、同じソース有機体に由来してよい。
【0026】
細胞の混合集団の細胞は、異なるソース有機体に由来してよい。特に、特定の実施形態において、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団とは、異なるソース有機体に由来してよい。細胞の第一の集団と細胞の第二の集団とは、異なるソース哺乳類に由来してよい。特に、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団とは、異なるソース哺乳類に由来してよい。
【0027】
本特許請求発明は、更に、a)プロモータと適切に作用可能に連結した治療蛋白質をコード化するDNA配列を含む組み換えベクタを生成するステップと、b)当該組み換えベクタにより細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、c)有効量の(i)遺伝子によりトランスフェクション又は形質導入された細胞の第一の集団、(ii)遺伝子によりトランスフェクション又は形質導入されていない細胞の第二の集団、及び(iii)その薬学的に許容される担体、を生成する蛋白質を含む混合細胞組成物を標的部位に注入するステップと、を含み、哺乳類細胞の第二の集団の内生的存在形態が標的部位において減少しており、標的部位における哺乳類細胞の第一の集団による治療蛋白質の生成が第二の集団の細胞を刺激して治療効果を誘導する、哺乳類の標的部位において治療蛋白質を生成する方法を対象とする。
【0028】
特に、上記の方法によれば、a)プロモータと適切に作用可能に連結した形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化するDNA配列を含む組み換えベクタを生成するステップと、b)当該組み換えベクタにより線維芽細胞又は軟骨細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、c)ヒアリン軟骨生成有効量の(i)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団、(ii)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団、及び(iii)その薬学的に許容される担体、を含む注入可能な混合細胞組成物を、関節空間内でTGF−β又はBMPをコード化するDNA配列の発現が起こり、結果として、関節空間内でヒアリン軟骨の生成が生じるように、哺乳類の関節空間に注入するステップと、を含む、哺乳類においてヒアリン軟骨を生成する方法が提供される。
【0029】
上記の方法によれば、遺伝子は、TGF−β1、TGF−β2、TGF−β3、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、又はBMP−7でよいが、限定はされない。特に、遺伝子は、TGF−β1又はBMP−2にしてよい。
【0030】
更に、方法は、以下による比において、細胞を混合するステップを包含してよい:TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団との比は、約3〜20対1にしてよい。該比は、約3〜10対1にしてよい。更に、比は、約10対1にしてよい。
【0031】
本特許請求発明では、更に、上記の方法において、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団を照射処理するステップも提供される。
【0032】
上記の方法における細胞のソースに関して、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団とは、宿主レシピエントに関して、同系、同種異系、又は異種である。
【0033】
上記の方法では、ウイルスベクタのような組み換えベクタを使用してよい。組み換えベクタは、限定はされないが、プラスミドベクタにしてよい。加えて、トランスフェクション又は形質導入は、リポソームカプセル化、リン酸カルシウム共沈、エレクトロポレーション、DEAEデキストラン仲介、又はウイルス仲介によって達成してよい。
【0034】
本特許請求発明の実施において、細胞は、移植の前に保存してよい。細胞は、移植の前に低温保存で保存してよい。
【0035】
別の実施形態において、本発明は、a)プロモータと適切に作用可能に連結した形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化するDNA配列を含む組み換えベクタを生成するステップと、b)当該組み換えベクタにより線維芽細胞又は軟骨細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、c)ヒアリン軟骨生成及び変形性関節症治療有効量の(i)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団、(ii)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団、及び(iii)非生物三次元構造ではない薬学的に許容される担体、を含む注入可能な混合細胞組成物を、関節空間内でTGF−β又はBMPをコード化するDNA配列の発現が起こり、結果として、関節空間で骨及び軟骨の生成が生じるように、哺乳類の関節空間に注入するステップと、を含む、変形関節症を治療する方法を対象とする。
【0036】
本発明は、更に、ヒアリン軟骨生成有効量及び変形関節炎治療量のa)形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、c)その薬学的に許容される担体とを含む注入可能な混合細胞組成物を対象とする。
【0037】
本特許請求発明の別の実施形態において、本特許請求発明は、a)発現を図る遺伝子によりトランスフェクション又は形質導入された哺乳類細胞の第一の集団と、b)遺伝子によりトランスフェクション又は形質導入されていない哺乳類細胞の第二の集団にして、哺乳類細胞の第二の集団の内生的存在形態が標的部位において減少しており、標的部位における哺乳類細胞の第一の集団による治療蛋白質の生成が第二の集団の細胞を刺激して治療効果を誘導するものと、c)その薬学的に許容される担体とを含んだ、対象部位で蛋白質を生成するための混合細胞組成物を含め、約−70℃〜約−196℃の温度で細胞を保存する保存容器を提供する。
【0038】
特に、本願は、ヒアリン軟骨生成有効量のa)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の集団と、b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の集団と、c)その薬学的に許容される担体とを含んだ注入可能な混合細胞組成物を含め、約−70℃〜約−196℃の温度で細胞を保存する保存容器を提供する。
【0039】
本発明の上記及びその他の目的は、以下の本発明の説明と、これに添付した参考図面と、これに付記した特許請求の範囲とから、更に完全に理解されよう
【発明を実施するための最良の形態】
【0040】
本明細書での使用において、「患者」という用語は、人間を含む動物界のメンバーを含むが、それに限定されない。
【0041】
本明細書での使用において、「哺乳類宿主」という用語は、人間を含む動物界のメンバーを含むが、それに限定されない。
【0042】
本明細書での使用において、「結合組織」という用語は、他の組織又は器官を接続及び支持する任意の組織であり、哺乳類宿主の靱帯と、軟骨と、腱と、骨と、滑膜とを含むが、それに限定されない。
【0043】
本明細書では、「結合組織細胞」および「結合組織の細胞」は、線維芽細胞、軟骨細胞(cartilage cells, chondrocytes)、および、膠原細胞外基質を分泌する骨細胞(破骨細胞/骨芽細胞)、並びに、脂肪細胞(fat cells, adipocytes)および平滑筋細胞など、結合組織中に認められる細胞が含まれる。結合組織細胞は、線維芽細胞、軟骨細胞、骨細胞であるのが好ましい。本発明は、結合組織細胞、並びに、単一の種類の細胞の混合培養で実践できることが分かるであろう。組織細胞は、該細胞が宿主生物内で対象遺伝子を安定的に発現するように、組織細胞を関節腔に注入する前に化学物質や放射線照射で前処理できることも分かる。結合組織細胞は、宿主生物に注入する場合、負の免疫応答を惹起しないのが好ましい。この点で、細胞介在遺伝子療法または体細胞療法に同種異系細胞、並びに、自己細胞を使用するのがよいことが理解できるであろう。
【0044】
本明細書での使用において、「結合組織細胞株」は、共通の親細胞を起源とする複数の結合組織細胞を含む。
【0045】
本明細書での使用において、細胞の「減少」は、部位において通常見られる量と比較して細胞の集団が少なくなることを指す。これは、その位置における正常な細胞集団と比較して少なくとも10%、20%、30%、40%、50%、60%、70%、80%、又は90%といった、細胞の集団のパーセンテージの減少を意味してよく、或いは、その位置における細胞の損傷又は枯渇を意味してもよい。
【0046】
本明細書での使用において、「ヘルパ細胞」は、対象遺伝子によりトランスフェクション又は形質導入された細胞と混合される細胞を指す。ヘルパ細胞自体は、対象遺伝子によりトランスフェクション又は形質導入されない。特に、対象遺伝子によりトランスフェクション又は形質導入された細胞は、ヘルパ細胞を活性化する蛋白質を生成する。ヘルパ細胞が内生的に作成されるが、投与時には減少している対象部位に対する、この混合物の投与により、対象部位では、有利な効果のある体細胞遺伝子治療が生じる。
【0047】
一実施形態において、「ヘルパ細胞」は、細胞の混合物を形成するために、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入された結合組織細胞を指す。こうしたヘルパ細胞は、任意の結合組織細胞を含んでよい。一般に、こうした細胞は、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入されない。特に、こうした細胞は、何らかの遺伝子によってトランスフェクション又は形質導入されず、こうした細胞は、一般に、軟骨領域に存在する。通常、細胞は、線維芽細胞又は軟骨細胞である。
【0048】
本明細書での使用において、ドナー細胞及びレシピエント宿主の「組織適合性」は、移植が宿主哺乳類において受け入れられ機能を維持するように、十分な数の組織適合性作用物質を共有していることを指す。特に、ドナー及びレシピエントのペアは、HLA型A、B、及びC(クラスI)とHLA型DR(クラスII)とのようなヒト白血球抗原(HLA)が適合しているべきである。
【0049】
本明細書での使用において、「ヒアリン軟骨」は、関節表面を覆う結合組織を指す。単なる例として、ヒアリン軟骨は、関節軟骨と、肋軟骨と、鼻軟骨を含むが、これに限定されない。。
【0050】
特に、ヒアリン軟骨は、自己再生することが知られており、変化に反応し、摩擦の少ない安定した運動を提供する。同じ関節内又は複数の関節間で見られるヒアリン軟骨は、厚さ、細胞密度、基質組成、及び機械的特性が様々であるが、同じ一般的構造及び機能を保持する。ヒアリン軟骨の機能の一部は、圧縮に対する驚くべき剛性と、弾性と、重量負荷を分散する優れた能力と、軟骨下骨に対するピークストレスを最小化する能力と、高い耐久性とを含む。
【0051】
肉眼的、組織学的に、ヒアリン軟骨は、変形に抵抗する滑らかで堅固な表面として見える。軟骨の細胞外基質は、軟骨細胞を含むが、血管、リンパ管、又は神経は欠如している。軟骨細胞と基質との間での相互作用を維持する複雑で非常に規則正しい構造は、ヒアリン軟骨の構造及び機能を維持する役割を果たし、一方で低レベルの代謝活性を維持する。参考文献であるO'Driscoll、J. Bone Joint Surg., 80A: 1795-1812, 1998は、ヒアリン軟骨の構造及び機能を詳細に説明しており、これは参照により全体を本明細書に組み込むものとする。
【0052】
本明細書での使用において、「注入可能な」組成物とは、細胞が付着可能であり、細胞が一層以上で成長可能となる任意の材料又は形状で作成し得る様々な三次元の足場、枠組み、メッシュ、又はフェルト構造で、一般には注入ではなく移植される構造であるものを排除した組成物を指す。一実施形態において、本発明の注入方法は、通常、注射器によって実行される。しかしながら、対象組成物を注入する任意の形態を使用してよい。例えば、カテーテル、噴霧器、又は温度依存性高分子ゲルを使用してもよい。
【0053】
本明細書での使用において、「混合した細胞」「細胞の混合物」、又は「混合細胞」は、発現させることがヘルパ細胞の利益になる対象遺伝子によりトランスフェクション又は形質導入された細胞の第一の集団を含み、ヘルパ細胞が細胞の第二の集団となる、複数の細胞の組み合わせを指す。
【0054】
本発明の一実施形態において、混合細胞は、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子又はDNAによりトランスフェクション又は形質導入された細胞と、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入されていないヘルパ細胞とを含む、複数の結合組織細胞の組み合わせを指してよい。通常、形質転換成長因子βスーパファミリのメンバーをコード化する遺伝子によりトランスフェクション又は形質導入されていない細胞と、TGFスーパファミリ遺伝子によりトランスフェクション又は形質導入された細胞との比は、約3〜20対1の範囲にしてよい。範囲は、約3〜10対1を含んでもよい。特に、範囲は、細胞の数に関して約10対1にしてよい。しかしながら、こうした細胞の比は、こうした細胞の組み合わせが部分欠損及び全欠損関節においてヒアリン軟骨を生成するのに有効である限り、任意の特定の範囲に必ずしも固定するべきではないと理解される。
【0055】
本明細書での使用において、「薬学的に許容される担体」は、本発明の組成物の輸送効率を促進し、組成物の有効性を長引かせる、この技術で公知である任意の担体を指す。
【0056】
本明細書での使用において、「体細胞」又は「細胞」は、一般に、卵子又は精子以外の身体の細胞を指す。
【0057】
本明細書での使用において、「保存」細胞は、関節空間に投与される前に個別に又は一緒に保存されている混合細胞の組成物を指す。細胞は、冷却ユニットで保存してよい。代替として、細胞は、後の関節空間への投与のために細胞が維持されるように、液体窒素タンク或いは同等の保存ユニット内において約−70℃〜約−196℃で冷凍してよい。
細胞は、公知のプロトコールを利用して解凍してよい。冷凍及び解凍の継続期間については、細胞の生存能力及び効能が最適化される限り、任意の数の形で実施してよい。
【0058】
本明細書での使用において、「トランスフェクション」及び「形質導入」は、DNAを宿主細胞に転送する特定の方法、及びその後のレシピエント細胞の染色体DNAへの統合として言及される。本発明が実施される際には、外来遺伝子が宿主細胞に導入され、外来遺伝子が、宿主細胞内で安定して発現される限り、非ウイルス又はウイルス遺伝子転送方法を含め、外来DNAを宿主細胞へ転送する任意の方法を使用してよい。したがって、本明細書での使用において、「トランスフェクション又は形質導入された」という用語は、リン酸カルシウム共沈、DEAEデキストラン、エレクトロポレーション、リポソーム、ウイルス仲介、及びその他といった細胞への遺伝子輸送の任意の方法を含む。
【0059】
本明細書では、「トランスフォーミング成長因子‐β(TGF‐β)スーパーファミリ」は、胚の発達中の広範囲な分化過程に影響を与える、構造関連タンパク質群を含む。該ファミリには、正常な男性発達に必要なミュラー阻害物質(MIS)(Behringer, et al., Nature, 345:167, 1990)、背腹軸の形成と成虫原基の形態形成に必要なDrosophila decapentaplegic (DPP)遺伝子産物(Padgett, et al., Nature, 325:81-84, 1987)、卵の植物極に局在するアフリカツメガエル(Xenopus) Vg-1遺伝子産物(Weeks, et al., Cell, 51:861-867, 1987)、アフリカツメガエルの胚の中胚葉および前構造の形成を誘発できる(Thomsen, et al., Cell, 63:485, 1990)、アクチビン(Mason, et al., Biochem, Biophys. Res. Commun., 135:957-964, 1986)およびde novoで軟骨および骨形成を誘発できる骨形成因子(BMP-2、3、4、5、6および7、オステオゲニン、OP-1などのBMP)(Sampath, et al., J. Biol. Chem., 265:13198, 1990)がある。TGF-β遺伝子産物は、脂肪生成、筋発生、軟骨形成、造血、上皮細胞分化を含む様々な分化過程に影響を与えることができる。詳細については、Massague, Cell 49:437, 1987を参照されたい。参考資料として、そのまま本明細書に援用する。
【0060】
TGF-βファミリのタンパク質は、初めに、大型前駆タンパク質として合成され、これが、その後、C末端からアミノ酸約110〜140個目の塩基性残基群でタンパク分解性開裂が生じる。該タンパク質のC末端領域は、すべて、構造的に関連し、別のファミリのメンバーは、その相同性の程度に基づいて、異なるサブグループに分類できる。特定のサブグループ内の相同性は、70%〜90%のアミノ酸配列同一性の範囲であるが、サブグループ間の相同性は、有意に低く、一般に、わずか20%〜50%の範囲である。いずれの場合も、活性種は、明らかにC末端断片のジスルフィド結合二量体である。検討したファミリメンバーの大半については、ホモ二量体種は、生物学的活性を有することが認められているが、他のファミリメンバーについては、インヒビン(Ung, et al., Nature, 321:779, 1986)やTGF-β(Cheifetz, et al., Cell, 48:409, 1987)のように、ヘテロ二量体も検出されており、これらは、明らかに、それぞれのホモ二量体とは異なる生物学的性質を有する。
【0061】
TGF-βのスーパーファミリメンバーは、TGF-β3、TGF-β2、TGF-β4(ニワトリ)、TGF-β1、TGF-β5(アフリカツメガエル)、BMP-2、BMP-4、ショウジョウバエDPP、BMP-5、BMP-6、Vgr1、OP-1/BMP-7、ショウジョウバエ60A、GDF-1、アフリカツメガエルVgf、BMP-3、インヒビン-βA、インヒビン-βB、インヒビン-aおよびMISを含む。これらの遺伝子は、Massague, Ann. Rev. Biochem. 67:753-791, 1998で論じられており、参考資料として、そのまま本明細書に援用する。
【0062】
好ましくは、TGF-β遺伝子スーパーファミリのメンバーは、TGF-βとBMPである。さらに好ましい、メンバーは、TGF-β1、TGF-β2、TGF-β3、BMP-2、BMP-3、BMP-4、BMP-5、BMP-6またはBMP-7である。最も好ましい、メンバーは、ヒトまたはブタのTGF-β1またはBMP-2である。
【0063】
本明細書では、「選択マーカー」は、導入されたDNAを安定的に維持する細胞によって発現される遺伝子産物を含み、形態トランスフォーメーションなどの改変表現型または酵素活性を該細胞に発現させる。トランスフェクト又は形質導入遺伝子を発現する細胞は、抗生物質や他の薬物への耐性を付与する酵素活性を有するものなど、選択マーカーをコード化する第二遺伝子を同一細胞に任意に導入することによって単離される。選択マーカーの例には、チミジンキナーゼ、ジヒドロフォレートレダクターゼ、また、カナマイシン、ネオマイシンおよびゲンタマイシンなどのアミノグリコシド抗生物質への耐性を付与するアミノグリコシドフォスフォトランスフェラーゼ、ハイグロマイシンBフォスフォトランスフェラーゼ、キサンチン‐グアニンフォスリボシルトランスフェラーゼ、CAD(新規ウリジン生合成‐カルバミルフォスフェートシンセターゼ、アスパルテートトランスカルバミラーゼおよびジヒドロオロターゼの最初の3種の酵素活性を有する単一タンパク質)、アデノシンデアミナーゼおよびアスパラギンシンセターゼ(Sambrook et al. Molecular Cloning, Chapter 16. 1989)があるが、これに限定されない。参考資料として、そのまま本明細書に援用する。選択マーカーの使用は、請求の範囲に記載されている発明を実施するための要件ではないことが分かる。事実、ある実施態様では、選択マーカーは、請求の範囲に記載されている発明の遺伝子構成物には組み込まれていない。
【0064】
本明細書では、「プロモータ」は、活性のあるDNA配列であることができ、真核細胞での転写を制御する。プロモータは、真核、原核のいずれかの細胞またはその両方で活性を示すことができる。好ましくは、プロモータは、哺乳類細胞中で活性を示す。プロモータは、構成的に発現するか誘導可能であるのがよい。好ましくは、プロモータは、誘導可能である。好ましくは、プロモータは、細胞外刺激によって誘導可能である。さらに好ましくは、プロモータは、ホルモンまたは金属で誘導可能である。最も好ましくは、プロモータは、メタロチオネイン遺伝子プロモータ又は糖質コルチコイドによって誘導されるプロモータである。同様に、同じく転写を制御する「エンハンサーエレメント」は、DNAベクター構築物に挿入し、本発明の構築物と共に使用し、対象遺伝子の発現を増強できる。
【0065】
本明細書での使用において、用語「DC−chol」とは、カチオンコレステロール誘導体を含むカチオンリポソームを意味する。「DC−chol」分子は、第三アミノ基と、中程度の長さのスペーサ腕(二原子)と、カルバモイルリンカ結合とを含む(Gaoら、Biochem. Biophys. Res. Commun., 179:280-285, 1991)。
【0066】
本明細書での使用において、「SF−chol」は、カチオンリポソームのタイプとして定義される。
【0067】
本明細書での使用において、リポソームとの関連において使用される「生物活性」という用語は、機能DNA及び/又は蛋白質を標的細胞に導入する能力を意味する。
【0068】
本明細書での使用において、核酸、蛋白質、蛋白質フラグメント、又はその誘導体に関連する「生物活性」という用語は、野生型の核酸又は蛋白質によって誘発される公知の生物学的機能を模倣する核酸又はアミノ酸の能力として定義される。
【0069】
本明細書での使用において、「維持」という用語は、リポソームの輸送のコンテクストにおいて使用される時、導入されたDNAが細胞内で存在し続ける能力を意味する。別のコンテクストにおいて使用される時には、治療効果を与えられるように、標的DNAが標的細胞又は組織内で存在し続ける能力を意味する。
【0070】
本発明は、必要とする哺乳類の部位へ細胞の混合物を投与するステップを包含し、これにおいて、細胞の第一の集団は、哺乳類の対象部位において発現されるべき対象遺伝子によりトランスフェクション又は形質導入される。体細胞遺伝子治療を試みる際に、本発明は、対象遺伝子によりトランスフェクション又は形質導入されない細胞の第二の集団を含むステップを提供し、こうした細胞は、負傷又は罹患或いはその他の形で衰弱した対象部位において内生的に減少しており、したがって、内生的に作成された或いは体外から投与された第二の集団のタイプの細胞を活性化及び成長させるために、細胞の第二の集団と共に、対象部位における対象遺伝子の発現による活性化が必要となる。
【0071】
特に、本発明は、哺乳類宿主の結合組織細胞に対する対象DNA配列の輸送のためのex vivo及びin vivo手法を開示する。ex vivo手法は、標的結合組織細胞の培養と、対象DNA配列、DNAベクタ、又はその他の輸送媒介体の結合組織細胞へのin vivoトランスフェクション又は形質導入とを伴い、その後、対象遺伝子産物のin vivo発現を達成するために、哺乳類宿主の標的関節への修飾結合組織細胞の移植が続く。
【0072】
足場物質やフレームワークなどの物質、並びに、各種外来組織を、本発明の遺伝子療法プロトコルに従って、合わせて移植することが可能であるが、前記の足場物質や組織を本発明の注入系に含まないことも可能であることを理解する必要がある。好ましい実施態様では、細胞介在遺伝子療法または体細胞療法において、本発明は、トランスフェクトまたは形質導入結合組織細胞群を注入し、それによって外因性TGFスーパーファミリータンパクを関節腔で発現させる簡便法を対象にしたものである。
【0073】
本明細書全体を通じて開示している結合組織疾患を治療する、ある生体外の方法は、タンパク質、またはその生物学的に活性な断片をコード化するDNA配列を含む初期生成組換えウイルスまたはプラスミドベクターを含む。次に、この組換えベクターを使って、試験管内培養した結合組織細胞群を感染またはトランスフェクトし、ベクターを含む結合組織群が生成される。こうした結合組織細胞は、その後、哺乳類宿主の標的関節空間に移植され、関節内部で混合物を発生させるように、混合物として或いは別個に関節空間へ入り、これにより、関節空間内での蛋白質又は蛋白質フラグメントのその後の発現を達成する。この対象DNA配列の発現は、結合組織障害に関連する少なくとも一つの有害な関節の病変を実質的に低減するのに有用である。
【0074】
ヒトの患者を治療する細胞源は、自己線維芽細胞または軟骨細胞などの患者自身の結合組織細胞でよいが、同種異系細胞、並びに、細胞の組織適合性とは関係なく、異種細胞も使用できる点は、一般的な当業者なら理解できるであろう。
【0075】
さらに具体的には、この方法は、遺伝子として、トランスフォーミング成長因子βスーパーファミリーのメンバー、またはそれらの生物学的に活性な誘導体若しくは断片、並びに選択マーカー、またはそれらの生物学的に活性な誘導体若しくは断片をコード化できる遺伝子を含む。
【0076】
本発明のさらなる実施態様は、遺伝子として、トランスフォーミング成長因子βスーパーファミリーのメンバーをコード化できる遺伝子またはそれらの生物学的に活性な断片の利用、また、DNAプラスミドベクターとして、利用する送達法には関係なく、送達時に対象細胞または組織内で安定な維持を行なうことが可能な一般的な当業者にとって既知であるDNAプラスミドベクターの利用を含む。
【0077】
本発明の別の実施態様では、哺乳類宿主の治療で使用するための結合組織の少なくとも1個の細胞に産物をコード化する少なくとも1個の遺伝子を導入する方法が示されている。この方法には、産物を解読する遺伝子を結合組織細胞に導入する非ウイルス手段の利用がある。さらに具体的には、この方法には、リポソームカプセル化、リン酸カルシウム共沈、電気穿孔法またはDEAE-デキストラン仲介法があり、遺伝子として、トランスフォーミング成長因子βスーパーファミリーのメンバー、またはそれらの生物学的に活性な誘導体若しくは断片、並びに選択マーカー、またはそれらの生物学的に活性な誘導体若しくは断片をコード化できる遺伝子の利用がある。
【0078】
本発明の別の実施態様では、哺乳類宿主の治療で使用するための結合組織の少なくとも1個の細胞に産物をコード化する少なくとも1個の遺伝子を導入する別の方法が、示されている。この方法は、対象細胞または組織にDNAベクター分子を送達するためにウイルスを利用する生物学的手段の利用を含む。好ましくは、ウイルスは擬似ウイルスであり、擬似ウイルスは対象細胞内で送達と安定な維持だけが可能であるが、対象細胞または組織内で複製する能力を保持しないように改変したゲノムである。改変したウイルスゲノムは、ウイルスゲノムが対象細胞または組織内で発現されるための対象の異種遺伝子を含むDNAベクター分子として働くように、組換えDNA技術でさらに操作する。
【0079】
本発明の好ましい実施態様は、本明細書内で開示した生体外技術に従って、レトロウイルスベクターを使用して、哺乳類宿主の結合組織にTGF-βまたはBMP遺伝子を送達することによって実現する、対象となる関節腔にTGF-βまたはBMPを送達する方法である。言い換えれば、機能的TGF-βまたはBMPタンパクまたはタンパクフラグメントをコード化する対象DNA配列を、選択したレトロウイルスベクターにサブクローニングする。組み換えレトロウイルスは、パッケージング細胞において生成され、その後、適切な力価に成長させ、in vitro培養の結合組織細胞に感染させるために使用される。好ましくは自家移植細胞である形質導入済み結合組織細胞は、好ましくは関節内注入によって、軟骨細胞等の結合組織細胞の非トランスフェクション又は非形質導入サンプルと組み合わせて、対象関節に移植される。
【0080】
本発明の別の好適な方法は、レトロウイルスベクタ、アデノウイルスベクタ、アデノ随伴ウイルス(AAV)ベクタ、又は単純疱疹ウイルスの使用を介した、哺乳類宿主の結合組織に対するTGF−βスーパファミリ遺伝子の直接的なin vivo輸送を含む。言い換えると、機能TGF−β又はBMP蛋白質又は蛋白質フラグメントをコード化する対象DNA配列は、それぞれのウイルスベクタにサブクローニングされる。組み換えウイルスを含むTGF−β又はBMPは、その後、適切な力価に成長させ、好ましくは関節内注入によって、関節空間内へ導かれる。
【0081】
DNA分子を関節の標的結合組織へ提供する方法は、DNA分子のカチオンリポソーム内へのカプセル化、レトロウイルス又はプラスミドベクタにおける対象DNA配列のサブクローニング、或いはDNA分子自体の関節への直接注入を含むが、これに限定されない。DNA分子は、膝関節への提供の形態に関係なく、好ましくは、組み換えウイルスDNAベクタ分子又は組み換えDNAプラスミドベクタ分子のいずれかのDNAベクタ分子として提供される。対象異種遺伝子の発現は、真核細胞において活性を有するプロモータフラグメントを異種遺伝子のコーディング領域の上流に直接挿入することで確保される。当業者は、ベクタコンストラクトの公知の戦略及び手法を利用し、結合組織へのDNA分子の移入に続く適切なレベルの発現を確保し得る。
【0082】
好適な実施形態において、線維芽細胞及び軟骨細胞は、in vitroで培養され、その後、遺伝子治療のための輸送系として利用される。出願対象が、開示される特定の結合細胞の使用に限定されないことは明らかであろう。その他の組織ソースをin vitro培養手法のために利用することが可能である。本発明の遺伝子を使用する方法は、予防的に利用してよく、更に、変形性関節症の治療上の処置及び創傷治癒においても利用してよい。更に、本発明は、膝関節のみを治療する予防的又は治療的応用に限定されないと理解されるであろう。本発明を利用して、影響を受けやすい任意の関節における変形性関節症、或いは軟骨の裂傷又は変性に起因する負傷により発生した任意の損傷を、予防的又は治療的に処置することが可能である。
【0083】
本発明の別の実施態様では、患者に治療有効量で非経口投与する化合物が示されており、これは、TGF-βスーパーファミリータンパク質をコード化する遺伝子と適切な製剤用キャリアを含有する。
【0084】
本発明の別の実施態様は、予防に有効な量で患者に非経口投与する化合物が示されており、これは、TGF-βスーパーファミリータンパク質をコード化する遺伝子と適切な製剤用キャリアを含有する。
【0085】
本発明のさらなる実施態様では、関節腔への投与前に細胞を保存する。トランスフェクトまたは形質導入細胞を単独で保存してもよいし、任意に非トランスフェクトヘルパー細胞を単独で保存してもよいし、混合物を保存してもよいが、必ずしも同時に行なう必要はない。さらに、保存期間は、同一にする必要はない。従って、個別に保存した細胞は、注入前に任意に混合できる。別の方法として、細胞を別々に保存、注入し、関節腔内で混合物とすることができる。液体窒素又は同等の保存媒体内の約10パーセントのDMSOの組成等のような低温保存剤において、こうした細胞を冷凍保存してよいことは当業者に理解されるであろう。
【0086】
本発明の別の実施態様には、前述の通り、産物を解読する遺伝子を含有するウイルスベクターを哺乳類宿主に直接導入することによって細胞の生体内感染を引き起こすことを含めて、哺乳類宿主の治療に使用する上で哺乳類宿主の結合組織の少なくとも1個の細胞中に産物をコード化する少なくとも1個の遺伝子を導入する方法がある。好ましくは、この方法は、関節内注入による哺乳類宿主への直接導入の実施を含む。この方法には、関節炎発症に敏感な哺乳類宿主における関節炎発症を実質的に防止する方法への利用がある。この方法には、治療目的の使用のための、関節炎の哺乳類宿主に対する方法への利用もある。さらに、この方法には、前述の通り、結合組織を修復、再生する方法への利用もある。
【0087】
レトロウイルスが結合組織細胞の感染と合体を引き起こすことが必要なように、リポソームを利用したウイルスベクターは、細胞分裂によって制限されないことが、当業者なら認識できるであろう。前述の通りに非ウイルス手段を利用したこの方法には、遺伝子として、TGF-βスーパーファミリーに属するメンバーをコード化できる遺伝子と、任意に、抗生物質耐性遺伝子などの選択マーカー遺伝子の利用がある。また、選択マーカー遺伝子の使用は、本出願の請求範囲に記載されている発明を実施する必要要件ではない。
【0088】
本発明の別の実施形態は、軟骨のような結合組織を再生するコラーゲンのin vivo発現を達成するための、本明細書において開示された任意の方法による、哺乳類宿主の結合組織に対するTGF−βスーパファミリのメンバーをコード化するDNA配列の輸送である。
【0089】
結合組織は、治療的に標的にするのが困難な器官である。この技術で公知の薬物送達の静脈内及び経口経路は、こうした結合組織に対するアクセスに乏しく、哺乳類宿主の身体を全身的に治療剤に曝露するという欠点を有する。更に具体的には、蛋白質の公知の関節内注入は、関節への直接的なアクセスを提供する。しかしながら、カプセル化蛋白質の形態である注入薬物の大部分は、関節内での半減期が短い。本発明は、哺乳類宿主を治療するために使用し得る蛋白質をコード化した遺伝子を哺乳類宿主の結合組織に導入することで、こうした問題を解消する。更に具体的には、本発明は、抗関節炎特性を備えた蛋白質をコード化する遺伝子を哺乳類宿主の結合組織に導入する方法を提供する。
【0090】
本明細書で提供する実施例では、非形質導入軟骨細胞ヘルパ細胞と混合したNIH3T3−TGF−β1及びNIH3T3−BMP−2細胞が、関節内でのコラーゲン合成を刺激した。実施例において、関節には、濃度2×10細胞/mlのNIH3T3−TGF−β1又はNIH3T3−BMP−2細胞と非形質導入軟骨細胞ヘルパ細胞との混合物を、トランスフェクション細胞対ヘルパ細胞の比を1:10として注入した。試料は、注入の6週間〜12週間後に回収した。細胞は、関節内を自由に移動し、こうした細胞に対する特異的親和性を含む領域へ移動する。滑膜、半月板、及び軟骨欠損領域は、細胞接着の可能な部位となり得る。注入の6週間及び12週間後に、部分的又は完全に損傷した軟骨欠損領域の両方において、再生組織が観察された。この損傷領域に対する特異的親和性は、臨床応用で混合細胞を使用するもう一つの利点である。足場又は他の任意の三次元構造のような様々な物理的装置を含むことなく、関節への細胞の注入のみで、変形性関節炎を治すことができれば、大手術なしで、患者を都合よく治療できる。
【0091】
作用のメカニズムを問わず、作用のメカニズムに関する任意の特定の理論に束縛されることなく、本発明の混合細胞組成物を使用することによるヒアリン軟骨合成の成果は、継続時間の長い高TGF−β又はBMP濃度がヒアリン軟骨の再生を刺激できることを示している。新たに形成された組織の特性は、組織学的方法によって決定した。メイソン三重染色及びサフラニンOを介して、新たに形成された組織が周囲のヒアリン軟骨と同一であることが指摘された(図3〜7)。
【0092】
以下の実施例は、本発明の例示として提供されるものであって、限定されない。
【実施例1】
【0093】
材料及び方法
【0094】
プラスミドの構築
【0095】
プラスミドpMTMLVβ1は、TGF−β1コード化配列と3'末端の成長ホルモンpoly A部位とを含む1.2kbのBgl IIフラグメントを、pMTMLVのBam HI部位へサブクローニングすることで生成した。プラスミドpMTBMP2は、BMP2コード化配列を含む1.2kbのSal I−Not Iフラグメントを、pMTMLVのSal I−Not I部位へサブクローニングすることで生成した。pMTMLVベクタは、gag及びenv配列全体とΨパッケージング配列の一部を欠失することで、レトロウイルスベクタMFGから導出した。
【0096】
細胞培養及び形質導入
レトロウイルスベクタにおいてクローニングされたTGF−β及びBMP2 cDNAは、線維芽細胞(NIH3T3−TGF−β1及びNIH3T3−BMP−2)及び軟骨細胞(hChon−TGF−β1)に個別に形質導入した。濃度10%のウシ胎仔血清を有するダルベッコ改変イーグル培地(メリーランド州ロックビルのGIBCO−BRL)において、これらを培養した。
【0097】
形質導入された遺伝子配列を有する細胞を選択するために、ネオマイシン(300μg/ml)を培地に加えた。TGF−β1及びBMP−2発現を有する細胞は、場合によっては、液体窒素内で保存し、注入直前に培養した。
【0098】
TGF−β1遺伝子のトランスフェクションは、リン酸カルシム共沈法を使用して実行した(図1)。生存コロニの約80%が、トランス遺伝子mRNAを発現した。こうした選択されたTGF−β1産出細胞を、硫酸亜鉛溶液中で培養した。細胞は、硫酸亜鉛溶液100mM中で培養した時にmRNAを生成した。TGF−β分泌率は、約32ng/10細胞/24時間となった。
【0099】
BMP−2 cDNAを含むレトロウイルスベクタに感染させたNIH3T3線維芽細胞による、生物活性を有するBMP2蛋白質の生成を試験及び確認するために、対照NIH3T3−メタロチオネイン(図2A)及びNIH3T3−BMP2細胞(図2B)においてアルカリホスファターゼ(ALP)活性アッセイを実行した。図2Bの青色は、BMP2蛋白質の発現を図示している。
【0100】
1.5×10のNIH3T3細胞を、6ウェル組織培養プレートにおいて一晩培養した。0.5×10の指示細胞(MC3T3E1)を、組織培養インサートに配置し、一晩培養した。培養培地を培養インサートから吸引し、培養インサートを6ウェルプレートに移動させ、48〜72時間培養した。培養培地を培養インサートから吸引した。1Xリン酸緩衝生理食塩水(PBS)5mlを追加し、細胞を洗浄した。3.7%ホルムアルデヒド/1X PBS溶液4mlを、各インサートに追加し、4℃で20分間に渡って細胞を固定した。1X PBSで細胞を二度洗浄した。ALP染色溶液3mlを各培養インサートに追加し、培養インサートを暗所において室温で約20分〜一時間培養し、青色を発生させた。ALP染色溶液は、pH8.5の0.1M Tris−HCl中の0.1mg/mlのナフトールAS−MXリン酸塩(Sigma N5000)、0.5%のN−ジメチルホルムアミド(Sigma D8654)、2mMのMgCl、0.3mg/mlのFast Blue BBソルト(Sigma F3378)である。
【実施例2】
【0101】
実験の方法及び結果
【0102】
ウサギ関節軟骨欠損の再生
体重2.0〜2.5kgのニュージーランドホワイトウサギを動物実験のために選択した。これらのウサギは成熟しており、成長限界に達していた。膝関節を露出し、大腿顆のヒアリン軟骨層において、メスで部分関節欠損(3mm×6mm、深さ1〜2mm)又は全層欠損(3mm×6mm、深さ2〜3mm)を形成した。対照のヒト軟骨細胞(hChon)、或いはhChon及びNIH3T3−TGF−β1細胞又はNIH3T3−BMP−2細胞の混合物のいずれかを、欠損のあるウサギ膝関節に注入した。これらの細胞(2×10細胞/mlの15〜20μl)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。全層欠損を有するウサギにhChon及びNIH3T3−BMP−2細胞の混合物を注入した実験において、こうした混合細胞組成物は、欠損形成の3週間後に、欠損に注入した。大腿顆は、細胞注入の6週間又は12週間後に回収及び検査した。
【0103】
部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−TGF−β1細胞)注入による軟骨の再生
対照のhChon、或いはhChon及びNIH3T3−TGF−β1細胞を含む混合物のいずれかを、大腿顆に部分軟骨欠損(3mm×5mm、深さ1〜2mm)を含むウサギ膝関節に注入した。細胞の混合物(2×10細胞/mlの15〜20μl、hChonとNIH3T3−TGF−β1との比10:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の6週間後に回収し、顕微鏡により観察した。図3A及び3Cは、hChon及びNIH3T3−TGF−β1細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図3B及び3Dは、hChon及びNIH3T3−TGF−β1細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。[オリジナル倍率:(B及びD)12.5倍]
【0104】
全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−TGF−β1細胞)注入による軟骨の再生
対照のhChon、或いはhChon及びNIH3T3−TGF−β1細胞の混合物のいずれかを、大腿顆に全層軟骨欠損(3mm×5mm、深さ2〜3mm)を含むウサギ膝関節に注入した。細胞混合物(2×10細胞/mlの20〜25μl、hChonとNIH3T3−TGF−β1との比10:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の12週間後に回収し、顕微鏡により観察した。図4A及び4Dは、hChon及びNIH3T3−TGF−β1細胞の混合物(A)又はhChonのみ(D)のいずれかによる注入の12週間後の大腿顆の写真を示す。図4B、4C、及び4Eは、hChon及びNIH3T3−TGF−β1細胞の混合物(B及びC)又はhChonのみ(E)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色(B及びE)及びサフラニンO染色(C)を示す。[オリジナル倍率:(B、C、及びE)12.5倍]
【0105】
部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−BMP−2細胞)注入による軟骨の再生
対照のhChon、或いはhChon及びNIH3T3−BMP−2細胞の混合物のいずれかを、大腿顆に部分軟骨欠損(3mm×5mm、深さ1〜2mm)を含むウサギ膝関節に注入した。細胞混合物(2×10細胞/mlの15〜20μl、hChonとNIH3T3−BMP−2との比10:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の6週間後に回収し、顕微鏡により観察した。図5A及び5Cは、hChon及びNIH3T3−BMP−2細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図5B及び5Dは、hChon及びNIH3T3−BMP−2細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。[オリジナル倍率:(B及びD)12.5倍]
【0106】
全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−BMP−2細胞)注入による軟骨の再生
対照のhChon、或いはhChon及びNIH3T3−BMP−2細胞の混合物のいずれかを、大腿顆に全層軟骨欠損(3mm×5mm、深さ2〜3mm)を含むウサギ膝関節に注入した。このケースにおいて、細胞は、欠損形成の3週間後に注入した。細胞混合物(2×10細胞/mlの20〜25μl、hChonとNIH3T3−BMP−2との比10:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の6週間後に回収し、顕微鏡により観察した。図6A及び6Dは、hChon及びNIH3T3−BMP−2細胞の混合物(A)又はhChonのみ(D)のいずれかによる注入の12週間後の大腿顆の写真を示す。図6B、6C、及び6Eは、hChon及びNIH3T3−BMP−2細胞の混合物(B及びC)又はhChonのみ(E)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色(B及びE)及びサフラニンO染色(C)を示す。[オリジナル倍率:(B、C、及びE)12.5倍]
【0107】
全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びヒト軟骨細胞−TGF−β1細胞)注入による軟骨の再生
対照のヒト軟骨細胞(hChon)、或いはhChon及びhChon−TGF−β1細胞の混合物のいずれかを、大腿顆に全層軟骨欠損(3mm×5mm、深さ2〜3mm)を含むウサギ膝関節に注入した。細胞混合物(2×10細胞/mlの20〜25μl、hChonとhChon−TGF−β1との比1:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の6週間後に回収し、顕微鏡により観察した。図7A及び7Cは、hChon及びhChon−TGF−β1細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図7B及び7Dは、hChon及びhChon−TGF−β1細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。[オリジナル倍率:(B及びD)12.5倍]
【0108】
部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びヒト軟骨細胞−TGF−β1細胞)注入による軟骨の再生
hChon及びhChon−TGF−β1細胞の混合物を、大腿顆に部分軟骨欠損(3mm×5mm、深さ1〜2mm)を含むウサギ膝関節に注入した。細胞混合物(2×10細胞/mlの15〜20μl、hChonとhChon−TGF−β1との比3:1又は5:1)は、欠損の最上部に供給し、縫合前に細胞が創部に浸透できるように、15〜20分間、欠損内で放置した。試料は、注入の6週間後に回収し、顕微鏡により観察した。図8A及び8Cは、hChon及びhChon−TGF−β1細胞(3:1の比)の混合物(A)又はhChon及びhChon−TGF−β1細胞(5:1の比)の混合物(C)による注入の6週間後の大腿顆の写真を示す。図8B及び8Dは、3:1の比(B)又は5:1の比(D)のhChon及びhChon−TGF−β1細胞の混合物による注入後の大腿顆の断面におけるメイソン三重染色を示す。[オリジナル倍率:(B及びD)12.5倍]
【0109】
本明細書で引用した全ての参考文献は、出典を明記することによりその開示内容全体を本願明細書の一部とする。
【0110】
以上、本発明の特定の実施形態を例示の目的から説明してきたが、付記した特許請求の範囲において画定される本発明から逸脱することなく、本発明の詳細に多数の変更を加え得ることは当業者には明らかであろう。
【図面の簡単な説明】
【0111】
以下に示す詳細な説明と添付図は、本発明をさらに詳しく説明したものである。従って、各図は例として示したにすぎす、本発明はこれらに限定されない。
【図1】TGF−β1 mRNAの発現を示す図である。トータルRNAは、亜鉛の存在下又は非存在下で成長させたNIH 3T3細胞、TGF−β1発現ベクタ、pmTβ1により安定してトランスフェクションされたNIH 3T3細胞から分離した。トータルRNA(15mg)は、TGF−β1 cDNA又は対照としてのβアクチンcDNAでプローブした。
【図2】NIH3T3−BMP2細胞におけるBMP2の発現を示す図である。図2A及び2Bは、対照NIH3T3−メタロチオネイン(A)及びNIH3T3−BMP2細胞(B)を示す。パネル(B)内の青色は、BMP2蛋白質の発現を示す。
【図3】部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−TGF−β1細胞)注入による軟骨の再生を示す図である。図3A及び3Cは、hChon(ヒト軟骨細胞)及びNIH3T3−TGF−β1細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図3B及び3Dは、hChon及びNIH3T3−TGF−β1細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。オリジナル倍率:(B及びD)12.5倍。
【図4】全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−TGF−β1細胞)注入による軟骨の再生を示す図である。図4A及び4Dは、hChon及びNIH3T3−TGF−β1細胞の混合物(A)又はhChonのみ(D)のいずれかによる注入の12週間後の大腿顆の写真を示す。図4B及び4Eは、hChon及びNIH3T3−TGF−β1細胞の混合物(B及びC)又はhChonのみ(E)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示し、図4CはサフラニンO染色を示す。オリジナル倍率:(B、C、及びE)12.5倍。
【図5】部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−BMP−2細胞)注入による軟骨の再生を示す図である。図5A及び5Cは、hChon及びNIH3T3−BMP−2細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図5B及び5Dは、hChon及びNIH3T3−BMP−2細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。オリジナル倍率:(B及びD)12.5倍。
【図6】全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びNIH3T3−BMP−2細胞)注入による軟骨の再生を示す図である。図6A及び6Dは、hChon及びNIH3T3−BMP−2細胞の混合物(A)又はhChonのみ(D)のいずれかによる注入の12週間後の大腿顆の写真を示す。図6B及び6Eは、hChon及びNIH3T3−BMP−2細胞の混合物(B及びC)又はhChonのみ(E)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示し、図6CはサフラニンO染色を示す。オリジナル倍率:(B、C、及びE)12.5倍。
【図7】全層欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びヒト軟骨細胞−TGF−β1細胞)注入による軟骨の再生を示す図である。図7A及び7Cは、hChon及びhChon−TGF−β1細胞の混合物(A)又はhChonのみ(C)のいずれかによる注入の6週間後の大腿顆の写真を示す。図7B及び7Dは、hChon及びhChon−TGF−β1細胞の混合物(B)又はhChonのみ(D)のいずれかによる注入後の大腿顆の断面におけるメイソン三重染色を示す。オリジナル倍率:(B及びD)12.5倍。
【図8】部分欠損を有するウサギにおける混合細胞(ヒト軟骨細胞及びヒト軟骨細胞−TGF−β1細胞)注入による軟骨の再生を示す図である。図8A及び8Cは、hChon及びhChon−TGF−β1細胞(3:1の比)の混合物(A)又はhChon及びhChon−TGF−β1細胞(5:1の比)の混合物(C)による注入の6週間後の大腿顆の写真を示す。図8B及び8Dは、3:1の比(B)又は5:1の比(D)のhChon及びhChon−TGF−β1細胞の混合物による注入後の大腿顆の断面におけるメイソン三重染色を示す。オリジナル倍率:(B及びD)12.5倍。

【特許請求の範囲】
【請求項1】
標的部位において治療蛋白質を生成する混合細胞組成物であって、
a)発現を図る遺伝子によりトランスフェクション又は形質導入された哺乳類細胞の第一の集団と、
b)前記遺伝子によりトランスフェクション又は形質導入されていない哺乳類細胞の第二の集団にして、哺乳類細胞の前記第二の集団の内生的存在形態が前記標的部位において減少しており、前記標的部位における哺乳類細胞の前記第一の集団による前記治療蛋白質の生成が前記第二の集団の細胞を刺激して治療効果を誘導するものと、
c)その薬学的に許容される担体と、を含む混合細胞組成物。
【請求項2】
当該混合細胞組成物は、注入可能な組成物である、請求項1記載の混合細胞組成物。
【請求項3】
ヒアリン軟骨生成有効量の
a)形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、
b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、
c)その薬学的に許容される担体と、を含む、請求項1記載の混合細胞組成物。
【請求項4】
ヒアリン軟骨生成有効量の
a)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞の第一の集団と、
b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない軟骨細胞の第二の集団と、
c)その薬学的に許容される担体と、を含む、請求項3記載の組成物。
【請求項5】
ヒアリン軟骨生成有効量の
a)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された軟骨細胞の第一の集団と、
b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない軟骨細胞の第二の集団と、
c)その薬学的に許容される担体と、を含む、請求項3記載の組成物。
【請求項6】
当該遺伝子は、TGF−β1、TGF−β2、TGF−β3、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、BMP−7、又はBMP−9である、請求項3記載の組成物。
【請求項7】
当該遺伝子は、TGF−β1又はBMP−2である、請求項6記載の組成物。
【請求項8】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団の当該比は、1〜20対1である、請求項3記載の組成物。
【請求項9】
当該比は、1〜10対1である、請求項8記載の組成物。
【請求項10】
当該比は、1〜3対1である、請求項9記載の組成物。
【請求項11】
遺伝子によりトランスフェクション又は形質導入された細胞の前記第一の集団は、照射処理される、請求項1記載の組成物。
【請求項12】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団は、照射処理される、請求項3記載の組成物。
【請求項13】
細胞の前記第一の集団と細胞の前記第二の集団とは、同じソース有機体に由来する、請求項1記載の組成物。
【請求項14】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、同じソース有機体に由来する、請求項3記載の組成物。
【請求項15】
細胞の前記第一の集団と細胞の前記第二の集団とは、異なるソース有機体に由来する、請求項1記載の組成物。
【請求項16】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、異なるソース有機体に由来する、請求項3記載の組成物。
【請求項17】
細胞の前記第一の集団と細胞の前記第二の集団とは、異なるソース哺乳類に由来する、請求項15記載の組成物。
【請求項18】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、異なるソース哺乳類に由来する、請求項16記載の組成物。
【請求項19】
哺乳類の標的部位において治療蛋白質を生成する方法であって、
a)プロモータと適切に作用可能に連結した治療蛋白質をコード化するDNA配列を含む組み換えベクタを生成するステップと、
b)当該組み換えベクタにより細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、
c)有効量の(i)遺伝子によりトランスフェクション又は形質導入された細胞の第一の集団、(ii)遺伝子によりトランスフェクション又は形質導入されていない細胞の第二の集団、及び(iii)その薬学的に許容される担体、を生成する蛋白質を含む混合細胞組成物を標的部位に注入し、哺乳類細胞の第二の集団の内生的存在形態が前記標的部位において減少しており、前記標的部位における哺乳類細胞の前記第一の集団による前記治療蛋白質の生成が前記第二の集団の細胞を刺激して治療効果を誘導するステップと、を含む方法。
【請求項20】
a)プロモータと適切に作用可能に連結した形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化するDNA配列を含む組み換えベクタを生成するステップと、
b)当該組み換えベクタにより線維芽細胞又は軟骨細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、
c)ヒアリン軟骨生成有効量の(i)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団、(ii)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団、及び(iii)その薬学的に許容される担体、を含む注入可能な混合細胞組成物を、哺乳類の関節空間内に対して、前記関節空間内でTGF−β又はBMPをコード化するDNA配列の発現が起こり、結果として、前記関節空間内でヒアリン軟骨の生成が生じるように注入するステップと、を含んだ哺乳類においてヒアリン軟骨を生成する方法を含む、請求項19記載の方法。
【請求項21】
当該遺伝子が、TGF−β1、TGF−β2、TGF−β3、BMP−2、BMP−3、BMP−4、BMP−5、BMP−6、又はBMP−7である、請求項20記載の方法。
【請求項22】
当該遺伝子が、TGF−β1又はBMP−2である、請求項21記載の方法。
【請求項23】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団の当該比は、3〜20対1である、請求項20記載の方法。
【請求項24】
当該比は、3〜10対1である、請求項23記載の方法。
【請求項25】
当該比は、10対1である、請求項24記載の方法。
【請求項26】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団は、照射処理される、請求項20記載の方法。
【請求項27】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、宿主レシピエントに対して同系である、請求項20記載の方法。
【請求項28】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、宿主レシピエントに対して同種異系である、請求項20記載の方法。
【請求項29】
TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の前記第一の集団と、TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の前記第二の集団とは、宿主レシピエントに対して異種である、請求項20記載の方法。
【請求項30】
当該組み換えベクタは、ウイルスベクタである、請求項20記載の方法。
【請求項31】
当該組み換えベクタは、プラスミドベクタである、請求項20記載の方法。
【請求項32】
当該細胞は、移植の前に保存される、請求項20記載の方法。
【請求項33】
当該細胞は、移植の前に低温保存で保存される、請求項32記載の方法。
【請求項34】
当該トランスフェクション又は形質導入は、リポソームカプセル化、リン酸カルシウム共沈、エレクトロポレーション、DEAEデキストラン仲介、又はウイルス仲介によって達成される、請求項20記載の方法。
【請求項35】
変形関節症を治療する方法であって、
a)プロモータと適切に作用可能に連結した形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化するDNA配列を含む組み換えベクタを生成するステップと、
b)当該組み換えベクタにより線維芽細胞又は軟骨細胞の集団をin vitroでトランスフェクション又は形質導入するステップと、
c)ヒアリン軟骨生成及び変形性関節症治療有効量の
(i)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団、
(ii)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団、及び
(iii)非生物三次元構造ではない薬学的に許容される担体、を含む注入可能な混合細胞組成物を、哺乳類の関節空間内に対して、前記関節空間内でTGF−β又はBMPをコード化するDNA配列の発現が起こり、結果として、前記関節空間内で骨及び軟骨の生成が生じるように、注入するステップと、を含む方法。
【請求項36】
ヒアリン軟骨生成有効量及び変形関節炎治療量の
a)形質転換成長因子β(TGF−β)又は骨形成蛋白質(BMP)をコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の第一の集団と、
b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の第二の集団と、
c)その薬学的に許容される担体と、を含む注入可能な混合細胞組成物。
【請求項37】
対象部位において蛋白質を生成する混合細胞組成物であって、
a)発現を図る遺伝子によりトランスフェクション又は形質導入された哺乳類細胞の第一の集団と、
b)遺伝子によりトランスフェクション又は形質導入されていない哺乳類細胞の第二の集団にして、哺乳類細胞の前記第二の集団の内生的存在形態が前記標的部位において減少しており、前記標的部位における哺乳類細胞の前記第一の集団による前記治療蛋白質の生成が前記第二の集団の細胞を刺激して治療効果を誘導するものと、
c)その薬学的に許容される担体と、を含む混合細胞組成物を含む、−70℃〜約−196℃の温度で細胞を保存する保存容器。
【請求項38】
ヒアリン軟骨生成有効量の
a)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入された線維芽細胞又は軟骨細胞の集団と、
b)TGF−β又はBMPをコード化する遺伝子によりトランスフェクション又は形質導入されていない線維芽細胞又は軟骨細胞の集団と、
c)その薬学的に許容される担体と、を含む注入可能な混合細胞組成物を含む、−70℃〜−196℃の温度で細胞を保存する保存容器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−236830(P2012−236830A)
【公開日】平成24年12月6日(2012.12.6)
【国際特許分類】
【出願番号】特願2012−155170(P2012−155170)
【出願日】平成24年7月11日(2012.7.11)
【分割の表示】特願2008−334092(P2008−334092)の分割
【原出願日】平成15年3月28日(2003.3.28)
【出願人】(504346352)ティシュージーン,インク (6)
【Fターム(参考)】