説明

測定装置

【課題】本発明の目的は高精度な測定を行うことのできる測定装置を提供することにある。
【解決手段】測定時において、ワーク20に対して位置及び姿勢が変化しないように保持された基準部材12と、該ワーク20表面を走査しながら、該ワーク20表面の凹凸に応じて上下方向に変位するスタイラス14と、該スタイラス14の特定部位36の変位を該基準部材12との比較において測定する変位計16と、該スタイラス14を該ワーク20表面に沿って走査させる走査手段18と、を備え、該基準部材12は該走査によっても該ワーク20に対する位置及び姿勢が変化せず、該スタイラス14の特定部位36の上下方向への変位を該基準部材12を基準にして測定し、該測定されたスタイラス14の特定部位36の変位に基づき該ワーク20の微細な形状を把握することを特徴とする測定装置10。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は測定装置、特にその微細形状検出機構の改良に関する。
【背景技術】
【0002】
従来より、ワークの微細な形状を測定するため、走査プローブ顕微鏡等の微細形状測定
装置が用いられている。走査プローブ顕微鏡としては、例えば原子間力顕微鏡等があり、これは、ワーク表面とスタイラス間に働く原子間力を検出し、これが一定になるようにワーク表面を走査することにより、ワーク表面の凹凸を把握するものである。(例えば特許文献1参照)。
【0003】
微細形状測定装置のスタイラスの変位量を測定する方法としては、数多くの方法があり
、例えばレーザ及び位置検出可能な光センサを用いた光てこ方式(例えば特許文献1,2
参照)、フォーカス誤差検出方式による測定(例えば特許文献3参照)、光ファイバー干渉
計による測定(例えば特許文献4,5参照)等がある。
【0004】
光てこ方式は、例えば特許文献1の図1に示されている。これは、レーザをカンチレバー背面に照射し、その反射光を遠方に位置する位置検出可能な光センサで検出するものである。カンチレバーのスタイラスがワーク表面の凹凸にそって上下方向に変位すると、その変位量が反射光の角度変化に反映される。光てこ方式では、その角度変化が遠方で拡大され前記光センサで検出される。このため、反射光の角度変化を、前記光センサで受光される光強度信号から検出し、カンチレバーのスタイラスが指し示しているワーク表面上の高さを計測することができる。
また、光センサの光強度信号が常に所定値となるようにワーク表面を相対的に上下移動させつつワーク表面を走査することにより、ワーク表面上の高さを計測することができる。 微細形状測定装置によれば、このようにしてワーク表面上の高さを把握することにより、ワークの1ラインないし2次元エリアの微細形状を測定することができる。
【0005】
ところで、微細形状測定装置には、一般的な形状測定に比較し、非常に微細な形状を測定する必要があるため、より高精度な測定が要求される。
このような要望に応えるため、種々の測定装置が提案されており、例えば、特許文献4では、案内機構の捻じれ等の測定精度への悪影響を低減するため、測定子に直角三面反射体を設け、該直角三面反射体の変位量を、複数の変位計で測定することにより、測定子の変位量を把握する技術が提案されている。
【0006】
【特許文献1】特開2002−181687号公報
【特許文献2】特開平9−72924号公報
【特許文献3】特開平9−61441号公報
【特許文献4】特開平7−301510号公報
【特許文献5】特許第3081979号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、前記従来方式にあっても、十分な測定精度が得られるものではなく、より一層の改善の余地が残されていた。
そして、この点について検討の結果、本発明者らによれば、以下の点がわかった。すなわち、ワーク上を走査して測定を行った際、高さを感知するセンサによって得られるデータは、カンチレバーがワークの形状に応じて上下した量と、走査手段で発生する運動誤差によってカンチレバーが上下した量との合算値であることがわかった。
【0008】
このような測定誤差を低減するため、従来は、運動誤差の少ない高精度な走査手段を用いることも考えられる。
しかしながら、運動誤差がない理想的な走査手段を用意すること自体、極めて困難である。また仮に、このような走査手段を用意できたとしても、極めて高価なものとなるので、低価格な装置製作が困難となる。
したがって、より高精度な走査手段の使用は、本発明の課題解決手段として採用するに至らなかった。
あるいは、走査手段で発生する運動誤差の影響を排除することが可能と提案されている方法でも、特許文献に示されているように直角三面反射体を用いた複雑な装置構成にしなければならなかった。
このように、微細形状測定の分野では、より高精度な走査手段を用いることなく、測定の高精度化を実現することのできる技術の開発が強く求められていたものの、従来は、これを解決することのできる適切な技術が存在しなかった。
【0009】
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は、高精度な測定を行うことのできる測定装置を提供することにある。
【課題を解決するための手段】
【0010】
前記課題について本発明者らが鋭意検討した結果、スタイラスの特定部位の変位を、スタイラスの特定部位の真上から、ワークに対して位置及び姿勢が変化しないように保持された基準部材との比較において測定することにより、走査手段の運動誤差の悪影響を低減し、高精度な測定を行うことができることを見出し、本発明を完成するに至った。
【0011】
<基準部材>
すなわち、前記目的を達成するために本発明にかかる測定装置は、基準部材と、スタイラスと、変位計と、走査手段と、を備えることを特徴とする。
ここで、前記基準部材は、測定時において、ワークに対して位置と姿勢とが変化しないように保持されたものとする。
また、前記スタイラスは、前記ワーク表面を走査する。
前記変位計は、前記スタイラスの特定部位の変位を、前記基準部材との比較において測定する。
前記走査手段は、前記スタイラスをワーク表面に沿って走査させる。
そして、前記基準部材は、前記走査によっても、該ワークに対する位置及び姿勢が変化せず、
前記スタイラスの特定部位の上下方向の変位は、前記基準部材を基準にして測定され、
該測定されたスタイラスの特定部位の変位に基づき、前記ワークの微細な形状が把握される。
【0012】
<変位軸線と測定軸線>
なお、本発明においては、前記走査手段が、測定時において、前記スタイラスの上下方向への変位方向である変位軸線と、前記変位計が該スタイラスの特定部位の変位を測定する測定軸線とが常に一致するように、該スタイラス及び該変位計に対する該ワーク及び該基準部材の走査を行うこと、又は該ワーク及び該基準部材に対する該スタイラス及び該変位計の走査を行うことが好ましい。すなわち、これにより、アッベの誤差の発生を確実に防ぐことができるので、高精度な測定が行えるからである。
【0013】
<光波干渉式変位計>
また、本発明において、前記変位計は、光波干渉式変位計であり、
前記基準部材は、前記光波干渉式変位計の参照鏡であり、
少なくとも前記参照鏡及び前記スタイラスの特定部位を、前記変位軸線上及び前記測定軸線上に配置し、
前記光波干渉式変位計は、前記変位軸線及び前記測定軸線と一致する中心軸を有する可干渉光の一部を前記参照鏡に入射して得られた該参照鏡での反射光と、該参照鏡を透過し該スタイラス特定部位に入射して得られた該スタイラス特定部位での反射光とを該参照鏡で干渉させ、その干渉に基づき該スタイラスの特定部位の変位を測定することが好適である。
【0014】
本発明においては、さらに、前記スタイラスと共に横方向に走査される集光レンズを備えることが好適である。
ここで、前記集光レンズは、前記参照鏡からの可干渉光を前記スタイラスの特定部位に収束させ、その反射光を集光して前記測定軸線上において真上に射出する。
【0015】
本発明においては、前記集光レンズが平行光束である前記可干渉光中を横方向に走査され、さらに、遮光板を備えることが好適である。
ここで、前記遮光板は、前記集光レンズ透過光以外の光を遮断する。
【0016】
<静電容量式変位計>
また、本発明において、前記変位計は、二の平面電極を備えた静電容量式変位計であり、
前記基準部材は、該二の平面電極の内の一方の平面電極であり、該二の平面電極の内の他方の平面電極は、該スタイラスの特定部位に設けられており、
該静電容量式変位計が、該二の平面電極間の静電容量を測定し、該測定された静電容量に基づき、該スタイラスの特定部位の変位を測定することが好適である。
【0017】
また、本発明においては、静電遮蔽板を備えることが好適である。
ここで、前記静電遮蔽板は、前記スタイラスの特定部位以外の静電容量を遮蔽する。
すなわち、これにより、前記基準部材に対する前記スタイラスの特定部位の変位のみを測定することができるからである。
【0018】
<基準部材のサイズ>
本発明においては、前記基準部材が、前記ワークの測定領域以上のサイズを有することが好適である。本発明においては、基準部材のサイズが、ワークの測定領域と同程度のサイズであることが特に好ましい。すなわち、基準部材のサイズが、ワークの測定領域よりも小さいと、基準部材を基準に、スタイラスの変位を測定することのできない測定領域が生じるおそれがあるからである。基準部材のサイズが、少なくともワークの測定領域と同程度のサイズであることにより、基準部材を基準に、スタイラスの変位測定を確実に行うことができるからである。
【0019】
<スタイラス>
本発明においては、前記スタイラスが、可撓性を有するカンチレバーの自由端に設けられており、前記ワークに接触した状態で上下方向に変位することが好適である。すなわち、
運動誤差が生じても、スタイラスがワークに接触した状態であれば、運動誤差がカンチレバーの撓みで吸収され、スタイラスの特定部位の高さに影響を与えることがないので、ワーク表面の凹凸のみに応じたスタイラスの変位を高精度に測定することができるからである。
【発明の効果】
【0020】
本発明にかかる測定装置によれば、ワークに対して姿勢及び位置が固定の基準部材を基準に、スタイラスの特定部位の変位を測定する変位計を備えることとしたので、より高精度な走査手段を用いることなく、より高精度な測定を行うことができる。
また、本発明においては、走査手段が、スタイラスの測定軸線と変位計の測定軸線とを常に一致させた状態で、走査を行うので、より高精度な測定を行うことができる。
【0021】
本発明においては、前記変位計が光波干渉式変位計であり、また、前記基準部材が該光波干渉式変位計の参照鏡であることにより、前記測定を、より高精度に行うことができる。
本発明においては、さらに、集光レンズをスタイラスと共に走査することにより、前記測定を、より高精度に行うことができる。
本発明においては、前記集光レンズを可干渉性を有する平行光束中を走査し、また、集光レンズ透過光以外の光を遮断する遮光板を備えることにより、前記測定を、より高精度に行うことができる。
【0022】
本発明においては、前記変位計が静電容量式変位計であり、前記基準部材が該静電容量式変位計の一方の平面電極であることにより、前記測定を、より高精度に行うことができる。
本発明においては、さらに、前記静電遮蔽板を備えることにより、前記測定を、より高精度に行うことができる。
【0023】
本発明においては、前記基準部材が、前記ワークの測定領域以上のサイズを有することにより、前記測定を、より高精度に行うことができる。
本発明においては、前記スタイラスが前記カンチレバーに設けられていることにより、前記測定を、より高精度に行うことができる。
【発明を実施するための最良の形態】
【0024】
以下、図面に基づき本発明の好適な一実施形態について説明する。
第一実施形態
図1には本発明の一実施形態にかかる測定装置の概略構成が示されている。同図(A)は該測定装置の斜視図、同図(B)は該測定装置を側方より見た図である。
同図に示す微細形状測定装置(測定装置)10は、参照鏡(基準部材)12と、スタイラス14と、光波干渉式変位計(変位計)16と、走査手段18と、を備える。
【0025】
ここで、参照鏡12は、光波干渉式変位計16の参照鏡であり、ワーク20の測定領域と同程度のサイズを有する。参照鏡12は、走査時(測定時)において、ワーク20に対して位置と姿勢とが変化しないように保持されている。本実施形態においては、ワーク20がベース22上に設けられ、ベース22に固定な保持部材24を介して、参照鏡12の位置及び姿勢を、ワーク20に対して固定状態としている。
また、スタイラス14は、可撓性を有するカンチレバー21の自由端に設けられている。カンチレバー21の他端が走査手段18に設けられている。スタイラス14は、ワーク20上をX方向に走査されながら、ワーク20表面のZ方向の凹凸をなぞる。
光波干渉式変位計16は、干渉光学系28と、検出手段30と、を備える。干渉光学系28は、光射出手段32と、ビームスプリッタ34と、を備える。本実施形態においては、ビームスプリッタ34、参照鏡12、スタイラス14の特定部位36、及びスタイラス14の先端を一直線上に配置している。光波干渉式変位計16は、スタイラス14の特定部位36の変位を、その真上から、基準部材12との比較において測定する。本実施形態においては、水平状態にあるカンチレバー21の背面においてスタイラス14の中心軸上に位置するところを特定部位36としている。
【0026】
走査手段18は、スタイラス14をワーク20の表面に沿ってXY方向に走査している。
本実施形態においては、走査手段18が、走査時に、スタイラス14の特定部位36のZ方向への変位軸線38と、光波干渉式変位計16がスタイラス14の特定部位36のZ変位を測定する測定軸線40とを常に一致させた状態で、走査を行っている。
このために本実施形態は、前記走査手段18と、Z軸駆動手段42と、コンピュータ44と、を備える。コンピュータ44は、XY軸駆動回路46と、Z軸駆動回路48と、解析手段50と、を備える。
【0027】
本実施形態にかかる微細形状測定装置10は概略以上のように構成され、以下にその作用について説明する。なお以下においてはXZ面の平面図を用い、スタイラスをX軸方向に走査してZ方向の変位を測定する場合を示し説明を簡略化する。
同図においては、走査時において、スタイラス14の変位軸線38と、変位計16の測定軸線40とを常に一致させた状態で、カンチレバー21のスタイラス14でワーク20の表面をなぞりながら、スタイラス14の特定部位36のZ変位量を測定している。
すなわち、同図においては、光射出手段32からの平行光束であるレーザ(可干渉光)52は、ビームスプリッタ34を透過し、参照鏡12に入射する。
参照鏡12に入射したレーザ52の一部は、該参照鏡12で真上に反射される。本実施形態では、参照鏡12での反射光を参照光54という。また、該レーザ52の残りの少なくとも一部が、参照鏡12を透過し、スタイラス14の特定部位36に入射される。スタイラス14の特定部位36に入射したレーザ52は、真上に反射され、参照鏡12に至る。本実施形態では、スタイラス14の特定部位36での反射光を測定光56という。
参照鏡12では、参照光54と測定光56とが干渉する。この干渉信号58は、ビームスプリッタ34で反射され、検出手段30で観測される。この干渉信号58は、スタイラス14の特定部位36のZ変位に応じて、干渉強度変化(明暗)を示す。このような干渉強度情報(明暗情報)をもつ干渉信号58が検出手段30で光電変換される。このため検出手段30の出力は、スタイラス14の特定部位36のZ変位に応じて、つまり前記干渉強度の変化に応じて、変化する。この結果、解析手段50は、検出手段30の出力変化に含まれる干渉強度変化を解析することにより、スタイラス14の特定部位36のZ変位を測定することができる。
【0028】
ここで、本実施形態においては、カンチレバー21の走査時に、スタイラス14の特定部位36のZ変位が、スタイラス14の特定部位36の真上から観測されるように、変位観測位置を、ワーク20に対して固定ではなく、スタイラス14のX方向(横方向)への走査に応じて移動している。本実施形態においては、ワーク20及び参照鏡12を静止した状態で、スタイラス14及び変位計16(特にビームスプリッタ34)を走査しており、このような走査によっても、常に変位軸線38と測定軸線40とが常に一致している。
この結果、本実施形態においては、走査時は常に、スタイラス14の特定部位36の変位を、その真上から測定することができる。このため、本実施形態においては、コサイン誤差の発生を大幅に低減することができるので、スタイラス14の高精度な変位測定を行うことができる。
【0029】
また、本実施形態においては、ワーク20の測定領域と同程度のサイズを有する参照鏡12をワーク20に対して固定で設置している。このようなワーク20に対して位置及び姿勢が固定な参照鏡12を基準に、スタイラス14の特定部位36のZ変位を測定している。
この結果、本実施形態においては、カンチレバー21の走査時に運動誤差が生じた場合であっても、スタイラス14がワーク20の表面に接触している状態であれば、カンチレバー21に撓みが生じるだけで、該運動誤差がワーク20の測定結果に重畳されるのを防ぐことができる。このため、本実施形態においては、スタイラス14の高精度な変位測定を行うことができる。
【0030】
このようにして求められたスタイラス14のZ方向への相対変位量、及び走査手段18からのX方向への送り量に基づき、ワーク20の表面形状を参照鏡12に対する相対形状として得ているので、ワーク20表面の微細な形状を高精度に測定することができる。
【0031】
これに対して、変位観測位置を単にスタイラスの走査と共に移動させたのでは、該変位観測位置の移動に伴って運動誤差の影響が生じる。つまり、従来方式では、ワークの凹凸に伴う変位に加えて、走査手段の運動誤差に伴う変位分が加算されてしまうので、スタイラスの正確な変位測定が困難である。
【0032】
ここで、運動誤差の悪影響を低減するため、複数の変位計を用いることが考えられるが、装置が大型化し、またコストがアップしてしまう。また、スタイラスの変位軸線と変位計の測定軸線とが異なるので、コサイン誤差が発生し、高精度な変位測定が困難である。
【0033】
そこで、本実施形態においては、図2のようにしてスタイラスの変位検出を行っている。
同図は、ワーク20に対して固定で設置した参照鏡12での反射光である参照光54と、スタイラス14の特定部位36での反射光である測定光56とを干渉させ、その干渉に基づき、カンチレバー21走査時の特定部位36のZ変位を観測する様子を示している。なお、同図において、点線は走査前の様子、実線は走査後の様子を示している。
同図に示されるように、本実施形態では、点線から実線位置にかけてカンチレバー21を走査する場合、変位観測位置も点線位置から、実線で示したように移動させている。
本実施形態では、スタイラス14がワーク20に対して接している状況においては、ワーク20の形状凹凸量と、カンチレバー21の背面上下量(特定部位36の上下量)は一致するため、参照鏡12に対する正確な変位測定を行うことができる。
【0034】
このように本実施形態では、走査手段の運動精度を向上すれば、走査手段の運動誤差の変位測定結果への悪影響を低減できるという技術常識を覆し、スタイラスの変位軸線と変位計の測定軸線とを常に一致させた状態で走査を行うこと、及びワークに姿勢及び位置が固定の参照鏡を基準にスタイラスの変位測定を行うことの組み合せで、走査手段の運動誤差の高さ方向検出結果への悪影響の防止、及び低価格化の双方を実現している。
【0035】
ここで、前記作用について、より具体的に説明する。
本実施形態においては、実際のところ、カンチレバー21のスタイラス14をワーク20の表面に軽く押し当てた状態で、ワーク20上を走査することを想定している。
この場合、走査手段18の運動誤差は、カンチレバー21の根元部分の上下動での影響が及ぼされる。
しかしながら、このような運動誤差が、カンチレバー21の撓みの範囲内であれば、スタイラス14がワーク20の表面から離れることはない。
したがって、本実施形態では、走査手段18の運動誤差があっても、スタイラス14がワーク20から離れなければ、ワーク20の形状を正確に測定することができる。このために本実施形態においては、スタイラス14を、可撓性を有するカンチレバー21の自由端に設けることが特に好ましい。
【0036】
すなわち、本実施形態は、カンチレバーの走査時に運動誤差があった場合でも、カンチレバー21のスタイラス14がワーク20上に接触している限りにおいては、参照鏡12上でワーク20の形状を正確に測定していることになる。また、参照鏡12上では、スタイラス14の変位軸線38と同一直線上にある測定軸線40上において、変位を観測するため、アッベの測定原理を満たしたコサイン誤差の発生しない理想的な測定方法となる。
これに対し、一般的な測定装置においては、ワーク上の凹凸に伴う変位に加えて、走査手段の運動誤差に伴う変位分が、Z変位の測定結果に加算されてしまう。走査手段の運動誤差は、センサないしワークの走査手段の案内面の精度や、該案内面に対して該センサないしワークがどのように動いたかに依存する。このため、従来方式による測定の不確かさは、本発明に比較し非常に大きなものとなる。また、別の従来方式、つまり案内の運動誤差の影響を低減するため、複数の変位計を設けたのでは、スタイラスの変位軸線とは異なる測定軸線上で変位測定が行われるため、コサイン誤差が発生する。
このような点から、本実施形態は、従来方式に比較し、より高精度な測定を行うことができる。
【0037】
ここで、本実施形態においては、前記スタイラス14の撓みによるカンチレバー21背面(特定部位36)の傾きの変化の影響が懸念される場合、例えば図3に示されるような光学系構成部材を設けることも好ましい。
同図に示す光学系構成部材は、参照鏡12とスタイラス14の特定部位36との間に設けられ、スタイラス14と共にX方向に走査される集光レンズ60を含む。この集光レンズ60は、平行光束であるレーザ52をスタイラス14の特定部位36に収束させ、その焦点位置でスタイラス14の特定部位36の変位を観測するためのものである。すなわち、集光レンズ60は、参照鏡12からのレーザ52をスタイラス14の特定部位36に収束させ、かつ該スタイラス14の特定部位36からの反射光を測定光56として集光し、その真上に、つまり測定軸線40上に射出している。
特に本実施形態においては、より高精度な光波干渉測定を行うため、集光レンズ60が、レーザ52、つまりZ方向の平行光束の中において、X方向へ走査されることも好ましい。
この結果、本実施形態においては、スタイラス14の撓みによるカンチレバー21背面(特定部位36)の傾き変化の影響が懸念されるような場合であっても、図4に示されるようにスタイラス14の特定部位36での反射光である測定光56は集光レンズ60により確実に集光され、これをスタイラス14の真上から確実に観測することができるので、正確に変位測定を行うことができる。
【0038】
さらに、本実施形態においては、遮光板62を備えることも好適である。
ここで、遮光板62は、集光レンズ60透過光以外の光を遮断する。
本実施形態においては、集光レンズ60透過光以外の光を遮断することにより、スタイラス14の特定部位36のみを、より確実に測定することができる。
本実施形態においては、このような光学系構成部材を設けることにより、走査手段18の運動誤差があっても、その運動誤差がスタイラス14がワーク20から離れない範囲内であれば、カンチレバー21背面(特定部位36)の傾斜による測定誤差を幾何学的にキャンセルし、スタイラス14の変位を正確に測定することができる。
【0039】
これに対し、従来は、走査時、スタイラスにピッチングやローリング等の傾斜誤差の影響を回避するため、少なくとも3個の変位計を設けることが考えられる。しかしながら、このように多数の変位計を設けたのでは、傾斜誤差の影響を低減するための構成が複雑化し、また、製造コストがアップしてしまう。
【0040】
そこで、本実施形態では、前述のような集光レンズ60や遮光板62等の光学系構成部材を設けるだけで、本実施形態において特徴的な変位測定、つまりスタイラス14の変位軸線38と変位計16の測定軸線40とを一致させた状態で走査を行うこと、及びワーク20に姿勢及び位置が固定の参照鏡12を基準にスタイラス14の変位測定を行うことを確実に実施することができるので、傾斜誤差等の運動誤差のZ変位検出結果への悪影響の防止、及び低価格化を全て確実にしている。
【0041】
<変形例>
なお、本発明は前記各構成に限定されるものでなく、発明の要旨の範囲内であれば、種々の変更、例えば追加、置換等が可能である。
【0042】
すなわち、前記図1,3においては、スタイラス14のX方向への走査と共に、干渉光学系28のビームスプリッタ34、光射出手段32、検出手段30をX方向に移動させたが、図5に示すように、ビームスプリッタ34を固定して、集光レンズ60及びスタイラス14のみを走査することも好ましい。
すなわち、同図においては、レーザ52をワーク20の測定領域相当の大きさの平行光として参照鏡12に入射させる。参照鏡12を透過したレーザ52の一部は、集光レンズ60で収束されてスタイラス14の特定部位36に入射する。スタイラス14の特定部位36での反射光である測定光56は集光レンズ60で集光され、参照鏡12に至り、参照鏡12での反射光である参照光54と干渉される。これにより、前記図1,3に示した構成に比較し、可動部分のサイズや重量を減らすことができるので、走査手段の製作の自由度が高まる。
【0043】
また、前記干渉光学系28及びスタイラス14を固定して参照鏡12及びワーク20とを走査した場合であっても、前記干渉光学系28を固定してレンズ60及びスタイラス14を走査した場合と同様に、運動誤差の影響を受けない高精度な変位測定を行うことができる。
【0044】
次に、前記図5に示した構成の、より具体的な例を図6に示す。
同図において、光射出手段32は、レーザ光源70と、コリメータレンズ72と、を備えている。
そして、同図においては、レーザ光源70からのレーザ52をコリメータレンズ72により、ビームスプリッタ34の大きさに応じた所定の径を有する平行光束にする。これをレーザ52として、無偏光ビームスプリッタ34を透過させ、参照鏡12に入射させる。参照鏡12を透過したレーザ52は、レンズ60で絞られ、スタイラス14の特定部位36に照射される。スタイラス14の特定部位36での反射光である測定光56は、レンズ60で集光され、参照鏡12に至る。参照鏡12では、この測定光56を参照鏡12での反射光である参照光54と重ね合わせ、干渉させる。この干渉信号58は、ビームスプリッタ34で反射され、検出手段30で検出される。検出手段30は、受光された干渉信号58の強度変化に応じて信号レベルが変化する電気信号を出力する。
【0045】
ここで、干渉信号は、参照鏡12とワーク20表面との間の相対的な高さ(Z変位)を、カンチレバー21背面(特定部位36)を介して得られるものであり、前述のように走査手段18に運動誤差があったとしても、参照鏡12とワーク20との相対位置は固定のため、スタイラス14がワーク20と接触している限り、運動誤差の影響は受けない。
【0046】
また、干渉信号58に基づきスタイラス14のZ変位を求めるため、以下のように干渉の位相検出を行うことも好ましい。
すなわち、同図においては、無偏光ビームスプリッタ34からの透過光を、参照鏡12で参照光54と透過光とに分割している。この透過光は光学素子74を透過すると、偏光面が回転し、レンズ60を透過する。レンズ60は、透過光を収束させてスタイラス14の特定部位36に入射させる。特定部位36での反射光である測定光56を、レンズ60、光学素子74及び参照鏡12を透過させ、参照鏡12では、参照光54と測定光56とを取り出す。取り出された参照光54と測定光56とは、偏光面が互いに直交した光となり、これらの位相差の変化を観測することにより、スタイラス14の特定部位36のZ変位がわかるため、ワーク20の参照鏡12に対する相対的な形状を測定することができる。
【0047】
ここで、光学素子74が、λ/4板の場合は、レーザ52を往復させることにより、偏光面を90°回転させることができる。
また、光学素子74が透過と反射とが偏光によって分離されるもの、例えばワイヤーグリッド偏光板の場合は、参照光54と測定光56の偏光を直交させてもよい。この場合、透過光を前記測定光56とし、反射光をそのまま前記参照光54として使用することにより、光学素子74は図1に示した参照鏡12の機能も兼ね備えるので、光学素子74及び参照鏡12を、一の光学素子74で実現することができる。
【0048】
次に、干渉信号の位相差を算出する方法の一例を示す。同図においては、前記参照光と前記測定光との偏光が紙面に対して水平と垂直の偏光の光であるとし、光学部品を紙面内に配置して、位相差を解析するために必要な干渉信号を受光する場合の例を示している。
同図において、検出手段30は、λ/2板80と、無偏光ビームスプリッタ82と、λ/4板84と、光センサ86a〜86dと、偏光ビームスプリッタ88と、を備える。
【0049】
そして、同図においては、λ/2板80により、前記参照光と前記測定光の偏光面を45°回転させ、無偏光ビームスプリッタ82により二つの光に分割する。無偏光ビームスプリッタ82における透過光を、さらに偏光ビームスプリッタ88により二つの光に分割し、光センサ86a〜86dにより受光すると、光の性質上、透過で生じる干渉と反射で生じる干渉の間では、180°の位相差がついた干渉強度の情報が得られる。無偏光ビームスプリッタ82で反射した、もう一方の光路上にはλ/4板84を配置して、参照光と測定光の間の相対的な位相をシフトさせる。そして、偏光ビームスプリッタ88で分割すると、二の干渉強度の間では、180°の位相差が生じ、さらにλ/4板84での相対的な位相遅延の効果により、無偏光ビームスプリッタ82での透過光で生じる干渉信号に対して90°位相のずれた強度となるために、4つの光センサ86a〜86dで受光される干渉信号は、0°、90°、180°、270°で相対的に位相差のついたものとなる。
解析手段50では、このようにして得られた4つの干渉信号から、参照光と測定光との位相差を算出するため、0°と180°、90°と270°との間で、それぞれ差をとり、その結果を除算し、逆正接をとる。
このようにして算出された参照光と測定光との位相差に基づきスタイラス14の特定部位36のZ変位を求めることができるので、該スタイラス14のZ変位に基づきワーク20上の凹凸を把握することができる。
【0050】
<走査>
前記構成では、走査手段18が、スタイラス14の変位軸線38と変位計16の測定軸線40とを一致させた状態で、ワーク20及び参照鏡12に対し、スタイラス14及び変位計16を、X方向に送り移動した例について説明したが、本発明は、これに限定されるものでなく、図7に示されるように、スタイラス14及び変位計16に対し、ワーク20及び参照鏡12を、X方向に送り移動することも好ましい。
また、X軸方向の1軸のみならず、Y方向にも同様の走査測定を行い、2次元領域での対象物の凹凸形状を測定できることは、言うまでもない。
【0051】
第二実施形態
前記構成では、変位計として、光波干渉式のものを用いた例について説明したが、静電容量式のものを用いることもできる。
図8には静電容量式変位計を用いた測定装置の概略構成が示されている。前記第一実施形態と対応する部分には符号100を加えて示し説明を省略する。
本実施形態では、変位計が、静電容量式変位計116である。静電容量式変位計116は、平行に対向した接地側平面電極(基準部材)112及び検出側平面電極192と、管制部194と、を備える。
すなわち、本実施形態においては、基準部材が接地側平面電極112である。検出側平面電極192が、スタイラス114の特定部位136に設けられている。
そして、静電容量式変位計116が、平面電極112,192間の静電容量を測定し、該静電容量情報を含む静電容量信号158を出力する。静電容量信号158はコンピュータ144に入力される。コンピュータ144は、静電容量信号158に含まれる静電容量情報に基づき、スタイラス114の特定部位136のZ変位を把握し、Z変位に基づきスタイラス144のZ変位を把握する。
【0052】
また、本実施形態では、遮蔽板が、静電遮蔽板162である。
静電遮蔽板162は、遮蔽部195と、通過部196と、を備える。
遮蔽部195は、接地側平面電極112とスタイラス114の特定部位136間以外の静電容量を遮蔽する。
通過部196は、接地側平面電極112とスタイラス114の特定部位136間のみの静電容量を通過して、変位計116で測定するためのものとする。
【0053】
本実施形態にかかる微細形状測定装置110は概略以上のように構成され、以下にその作用について、図9を参照しつつ説明する。
同図に示されるように、ワーク120及び接地側平面電極112に対し、スタイラス114及び静電遮蔽板162をX方向に走査することにより、スタイラス114でワーク120の表面がなぞられ、スタイラス114がワーク120の表面の凹凸にそってZ方向に変位する。
このとき、スタイラス114と共に検出側平面電極192がZ方向に変位し、平面電極112,192間の距離が変化するので、該平面電極間192,112間の静電容量も変化する。
このため変位計116で、平面電極112,192間の静電容量を測定することにより、該平面電極112,192間の距離を求めることができる。
【0054】
例えば平面電極112,192間の静電容量Cは、平面電極112,192の対向する面積S、対向距離L、電極112,192間の誘電体(空気)の誘電率εとすると、近似的にC=ε・S/Lで表せる。
ここで、面積S、誘電率εが一定であれば、距離Lは、静電容量Cに反比例する。したがって、平面電極112,192間の静電容量の変化を測定することにより、電極112,192間の距離Lの変化、つまり接地側平面電極112を基準に検出側平面電極192のZ変位を求めることができる。
また、本実施形態は、静電遮蔽板162の遮蔽部195により、スタイラス114の特定部位136以外の静電容量を遮蔽している。そして、静電遮蔽板162の通過部136により、スタイラス114の特定部位136のみの静電容量を測定している。このため、静電容量式変位計116が、基準部材である接地側平面電極112に対するスタイラス114の特定部位136のZ変位のみを高精度に測定することができる。
【0055】
このように本実施形態は、前記第一実施形態と同様、スタイラス114の変位軸線138と変位計116の測定軸線140とを常に一致させた状態で、走査を行うので、高精度な変位測定を行うことができる。
しかも本実施形態は、前記第一実施形態と同様、基準部材を基準に、スタイラス114の変位測定を行うので、走査手段118やZ軸駆動手段142等のアクチュエータに運動誤差があっても、その影響を大幅に低減し、高精度な変位測定を行うことができる。
また、本実施形態は、前記第一実施形態と同様、走査手段118やZ軸駆動手段142等のアクチュエータの高精度化を図ることなく、より高精度な測定を行うことができるので、低コストとなる。
【図面の簡単な説明】
【0056】
【図1】本発明の第一実施形態にかかる測定装置の概略構成の説明図である。
【図2】図1に示した測定装置の作用の説明図である。
【図3】図1に示した測定装置の変形例の説明図である。
【図4】図3に示した測定装置の作用の説明図である。
【図5】図3に示した測定装置の変形例の説明図である。
【図6】図5に示した測定装置の具体例である。
【図7】図1に示した測定装置の走査手法の変形例である。
【図8】本発明の第二実施形態にかかる測定装置の概略構成の説明図である。
【図9】図8に示した測定装置の作用の説明図である。
【符号の説明】
【0057】
10 微細形状測定装置(測定装置)
12 参照鏡(基準部材)
14 スタイラス
16 光波干渉式変位計(変位計)
18 走査手段
21 カンチレバー
110 微細形状測定装置(測定装置)
112 接地側平面電極(基準部材)
114 スタイラス
116 静電容量式変位計(変位計)
118 走査手段
121 カンチレバー

【特許請求の範囲】
【請求項1】
測定時において、ワークに対して位置と姿勢とが変化しないように保持された基準部材と、
前記ワーク表面を走査しながら、該ワーク表面の凹凸に応じて上下方向に変位するスタイラスと、
前記スタイラスの特定部位の変位を、前記基準部材との比較において測定する変位計と、
前記スタイラスを前記ワーク表面に沿って走査させる走査手段と、
を備え、前記基準部材は、前記走査によっても、該ワークに対する位置及び姿勢が変化せず、
前記スタイラスの特定部位の上下方向の変位を、前記基準部材を基準にして測定し、
該測定されたスタイラスの特定部位の変位に基づき、前記ワークの微細な形状を把握することを特徴とする測定装置。
【請求項2】
請求項1記載の測定装置において、
前記走査手段は、測定時において、前記スタイラスの上下方向への変位方向である変位軸線と、前記変位計が該スタイラスの特定部位の変位を測定する測定軸線とが常に一致するように、該スタイラス及び該変位計に対する該ワーク及び該基準部材の走査を行うこと、又は該ワーク及び該基準部材に対する該スタイラス及び該変位計の走査を行うことを特徴とする測定装置。
【請求項3】
請求項1又は2記載の測定装置において、
前記変位計は、光波干渉式変位計であり、
前記基準部材は、前記光波干渉式変位計の参照鏡であり、
少なくとも前記参照鏡及び前記スタイラスの特定部位を、前記スタイラスの変位軸線上及び前記変位計の測定軸線上に一致させ、
前記光波干渉式変位計は、前記変位軸線及び前記測定軸線と一致する中心軸を有する可干渉光の一部を前記参照鏡に入射して得られた該参照鏡での反射光と、該参照鏡を透過し該スタイラス特定部位に入射して得られた該スタイラス特定部位での反射光とを該参照鏡で干渉させ、その干渉に基づき該スタイラスの特定部位の変位を測定することを特徴とする測定装置。
【請求項4】
請求項3記載の測定装置において、
さらに、前記参照鏡からの可干渉光を前記スタイラスの特定部位に収束させ、その反射光を集光して前記測定軸線上において真上に射出する集光レンズを備え、
前記集光レンズを、前記スタイラスと共に横方向に走査することを特徴とする測定装置。
【請求項5】
請求項4記載の測定装置において、
前記集光レンズは、平行光束である前記可干渉光中を横方向に走査され、
さらに、前記集光レンズ透過光以外の光を遮断する遮光板を備えることを特徴とする測定装置。
【請求項6】
請求項1又は2記載の測定装置において、
前記変位計は、二の平面電極を備えた静電容量式変位計であり、
前記基準部材は、前記二の平面電極のうちの一方の平面電極であり、
前記二の平面電極のうちの他方の平面電極は、前記スタイラスの特定部位に設けられており、
前記静電容量式変位計が、前記二の平面電極間の静電容量を測定し、該測定された静電容量に基づき前記スタイラスの特定部位の変位を測定することを特徴とする測定装置。
【請求項7】
請求項6記載の測定装置において、
さらに、前記基準部材と前記スタイラスの特定部位間のみの静電容量を測定するための静電遮蔽板を備えることを特徴とする測定装置。
【請求項8】
請求項1〜7のいずれかに記載の測定装置において、
前記基準部材は、前記ワークの測定領域以上のサイズを有することを特徴とする測定装置。
【請求項9】
請求項1〜8のいずれかに記載の測定装置において、
前記スタイラスは、可撓性を有するカンチレバーの自由端に設けられており、前記ワークに接触した状態で上下方向に変位することを特徴とする測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2008−51602(P2008−51602A)
【公開日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2006−226827(P2006−226827)
【出願日】平成18年8月23日(2006.8.23)
【出願人】(000137694)株式会社ミツトヨ (979)
【Fターム(参考)】